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Abstract: Multitarget tracking in clutter using bearings-only measurements is a challenging problem.
In this paper, a performance improved nonlinear filter is proposed on the basis of the Random Finite
Set (RFS) theory and is named as Gaussian mixture measurements-based cardinality probability
hypothesis density (GMMbCPHD) filter. The GMMbCPHD filter enables to address two main
issues: measurement-origin-uncertainty and measurement nonlinearity, which constitutes the key
problems in bearings-only multitarget tracking in clutter. For the measurement-origin-uncertainty
issue, the proposed filter estimates the intensity of RFS of multiple targets as well as propagates the
posterior cardinality distribution. For the measurement-origin-nonlinearity issue, the GMMbCPHD
approximates the measurement likelihood function using a Gaussian mixture rather than a single
Gaussian distribution as used in extended Kalman filter (EKF). The superiority of the proposed
GMMbCPHD are validated by comparing with several state-of-the-art algorithms via intensive
simulation studies.

Keywords: bearings-only; multitarget tracking; measurement-origin-uncertainty; measurement
nonlinearity; Gaussian mixture measurements-cardinality probability hypothesis density

1. Introduction

Multitarget tracking in clutter [1] is an interesting but difficult problem needed to be
investigated, especially when only bearings-only measurements are available. Two main issues
should be addressed: measurement-origin-uncertainty [2] and measurement nonlinearity [3].
The measurement-origin-uncertainty shows the common situation that one cannot tell a measurement
originated from a target or clutter. As the coordinates of the tracker are usually different from those
of the measurements, different levels of measurement nonlinearity arises, such as, the bearings-only
measurement shows high-level nonlinearity while the range-bearing measurement gives relative
low-level nonlinearity. Besides, targets may not be detected by the passive sensors thus miss-detection
problem needs to be considered. Furthermore, the target tracking using bearings-only measurements
is further complicated by the observability problem, in which the motion of the observer is suggested
to outmaneuver the targets in order to satisfy the observability condition [4,5].

For multitarget tracking in clutter, the measurement-origin-uncertainty problem has been
addressed by many classical and emerging methods. One popular traditional approach is the joint
probability data association (JPDA) [1,6]. It enumerates and probabilistically evaluates every feasible
measurement-to-target association event, and the target states are then estimated by using the marginal
association probability. However, one main limitation of JPDA is that it can only track known and
fixed number of targets. To override this limitation, joint integrated probability data association
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(JIPDA) was proposed in [7], which recursively calculates the probability of target existence as a
track quality measure to enable track management, as a result, the number of tracked targets can be
effectively estimated. The abovementioned methods all utilize the feasible joint events to effectively
address the measurement-origin-uncertainty problem in multitarget tracking; however, it suffers from
heavy computational load and the time complexity increases exponentially along with the number
of tracks and measurements involved in the cluster. To alleviate the computational load, the linear
multitarget integrated probability data association (LMIPDA) [3] is then proposed to modulate the
clutter measurement density by considering the possible contributions of targets being followed by
other tracks, in which the numerical complexity is linear in the number of targets and the number of
measurements. Multiple hypothesis tracker (MHT) [2,8,9] is another classical tracker for multitarget
tracking in clutter. Though many versions of MHT have been developed, most of them can be
divided into two categories: track-oriented and measurement-oriented. In terms of the tracking
accuracy, the MHT-based methods usually outperform than the JPDA-based methodologies; however,
the computational complexity of MHT is much heavier than JPDA. To balance the computational load
and tracking accuracy, the emerging Random Finite Set (RFS)-based methods provide a prominent
alternative recently [10,11]. The key idea of RFS-based methods is to model the multitarget states
and corresponding measurements as a state set and a measurement set, respectively, in which the
measurement set is utilized to estimate the multitarget state set and the measurement-to-target
association is thus tactfully avoided.

The measurement nonlinearity [12] issue occurs in many practical situations when the coordinates
of target states are different from those of measurements, as a consequence, different types of
measurements have different levels of nonlinearity. Typically, the nonlinearity of bearings-only
measurements usually gives higher level of nonlinearity than that of range-bearing measurements.
To resolve the measurement nonlinearity problem, many techniques have been proposed. The most
popular one is the extended Kalman filter (EKF) [12], which linearizes the measurement nonlinear
function at the predicted target state using Taylor expansion, and the subsequent update procedure
is similar with that of Kalman filter (KF) [12]. Another well-known nonlinear filter is the particle
filter (PF) [13] which has been developed into many more advanced versions since proposed, such
as sampling importance resampling (SIR), regularized particle filter (RPF) [4] and so on. The main
difference between EKF and PF is that the posterior density of target state is modeled by a Gaussian
distribution in the EKF while modeled using amounts of weighted particles in the PF. Thus the
computational resources that the PF consumes are quite larger than that of EKF. Besides, there are also
many other types of filters to deal with the nonlinearity of measurements, just name a few, unscented
Kalman filter (UKF) [14], cubature Kalman filter (CKF) [15] and ensemble Kalman filter (EnKF) [16] etc.

Recently, in order to address multitarget tracking in clutter using bearings-only measurements, an
improved RFS-based filter, called the Gaussian mixture measurements-based probability hypothesis
density (GMMbPHD), was proposed in [17]. The probability hypothesis density (PHD) [18] in
GMMbPHD is the first moment approximation of the density of target states set. As there is no close
form solution of the PHD filter, approximated solutions such as sequential monte carlo (SMC) [19,20]
and Gaussian mixture (GM) are usually two suggested implementation methods. Though SMC method
delivers relative higher tracking accuracy than the GM method, unfortunately, it is difficult to extract
estimated target states and usually computationally-dense demanding. Thus GMMbPHD improves
the existing GM-based PHD (GMbPHD) [18] by using the Gaussian mixture measurements (GMM)
technique [21], which models the likelihood function of nonlinear measurements using Gaussian
mixtures instead of a single Gaussian probability density function used in the EKF. Compared with
GMbPHD with EKF (GMbPHDwEKF) and GMbPHD with UKF (GMbPHDwUKF), GMMbPHD shows
significant improvement on position accuracy. However, the GMMbPHD algorithm focuses on the
position improvement and neglects the cardinality. As a result, in order to fully improve the tracking
performance on both position and cardinality accuracy, an further improved filter, termed as the
Gaussian mixture measurements-based cardinality probability hypothesis density (GMMbCPHD),
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is proposed in this paper. Inspired from the idea of the Gaussian mixture measurement methodology,
the GMMbCPHD algorithm approximates the likelihood function of the bearings-only measurements
by a Gaussian mixture of numbers of refined Gaussian probability density functions, thereafter,
rederives the update procedure of the cardinality and intensity density of the multitarget state set,
eventually, the improved formulations on both the localization and position intensity update are
obtained. For the sake of verifying the effectiveness and superiority of the proposed filter, numbers
of classical experiments are simulated to compare the GMMbCPHD with several state-of-the-art
algorithms, i.e., GMbPHDwEKF, GMbPHDwUKF, GMMbPHD, GM-based cardinality PHD with
EKF (GMbCPHDwEKF) and GM-based cardinality PHD with UKF (GMbCPHDwUKF), the tracking
performance is shown in terms of the optimal subpattern assignment (OSPA) [22] as well as OSPA
localization and OSPA cardinality.

In Section 2, the target motion model, measurement model and clutter model are presented.
The proposed GMMbCPHD filter is given in detail in Section 3. Simulation studies are presented in
Section 4. Finally, a conclusion is proposed in Section 5.

2. Bearings-Only Multitarget Tracking Models

2.1. Target Motion Model

In this paper, we assume that the motion of each target follows the continuous white noise
acceleration motion model [1,12] given by

xt
k = Φxt

k−1 + νk−1, (1)

where the state propagation matrix Φ is time-invariant,

Φ =

[
1 T
0 1

]
⊗ I2, (2)

and νk−1 is a sequence of zero mean, white Gaussian process noises with covariance

Qk−1 = q

[
T4/4 T3/2
T3/2 T2

]
⊗ I2. (3)

Besides, T is the sampling time, I2 is the 2× 2 identity matrix, and q is the power spectral density
(PSD) [1]. Please note that the target t with state xt

k is presented as

xt
k = [xt

k, yt
k, ẋt

k, ẏt
k]
′, (4)

where (xt
k, yt

k) and velocity (ẋt
k, ẏt

k) are position and velocity at time k, respectively.
In a target state set Xk = {xt

k,1, . . . , xt
k,Nk
}, the number of targets Nk can be random value and the

sequence of target states in the set can also be random. In this paper, we assume that χ denote the
single target state space and F (χ) denote the set of all finite subsets of χ, i.e., xt

k,1, . . . , xt
k,Nk
∈ χ with

Xk ∈ F (χ).

2.2. Bearings-Only Measurement Model

Let xs
k denote the sensor state shown as xs

k = [xs
k, ys

k, ẋs
k, ẏs

k]
′. At each sampling time k, we assume

that each target t can be detected with the probability PD,k. Using θt
k to denote the bearings-only

measurement of target t if it is detected. The measurement generated by the passive sensor is
represented as

zk
∆
= θt

k = h(xt
k, xs

k) + vk, (5)
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where

h(xt
k, xs

k) = tan−1

(
xt

k − xs
k

yt
k − ys

k

)
, (6)

and vk is white Gaussian measurement noise with zero mean and covariance

Rk = σ2
θ , (7)

which is uncorrelated with νk. Obviously, the measurement set Θk(xt
k) generated by each target t can

be either {θt
k} or ∅ where denote that the target t is detectable or not detected, respectively.

2.3. Clutter Measurement Model

In practical situations, some false measurements originated from clutter may also be detected by
the sensor and form an RFS Kk at each time k. These false measurements are always assumed to be
uniformly distribute in the sensor detection space. Finally, the bearings-only measurements RFS Zk at
time k can be expressed as

Zk = Kk ∪

 ⋃
x∈Xk

Θk (x)

 . (8)

Furthermore, we use Zk = {Z1, . . . , Zk} to denote the measurement collection from time 1 to
time k.

3. The Proposed GMMbCPHD Filter

In the framework of the RFS-based methods, the Bayesian recursion of multitarget posterior
density propagates in time as

pk|k−1

(
Xk|Zk−1

)
=
∫

fk|k−1(Xk|X) pk−1

(
X|Zk−1

)
µs(dX), (9)

pk

(
Xk|Zk

)
=

gk (Zk|Xk) pk|k−1

(
Xk|Zk−1

)
∫

gk (Zk|X) pk|k−1

(
X|Zk−1

)
µs (dX)

, (10)

where fk|k−1 (Xk|X) denotes the transition density of multitarget state and gk (Zk|Xk) represents the

measurement likelihood. Furthermore, pk

(
Xk|Zk

)
denotes the multitarget state posterior density,

with µs(dX) denoting an proper reference measure on F (χ) [18].
Obviously, the recursion in (9) and (10) is difficult to be calculated. Thus a first moment

approximation was proposed in [18] and named as PHD filter. The PHD propagates the intensity
density of the multitarget state density and the general form is given by (without target spawning):

vk|k−1(x)=
∫

PS,k(η) fk|k−1(x|η) vk−1(η) dη+ γk(x) , (11)

vk|k (x) = [1− PD,k (x)] vk|k−1 (x) + ∑
z∈Zk

PD,k (x) gk (z|x) vk|k−1 (x)

κk (z) +
∫

PD,k (x) gk (z|x) vk|k−1 (x) dx
, (12)

where vk|k−1 (x) and vk|k (x) denote the predicted intensity and the updated intensity, respectively,
PS,k (η) is the target survival probability from time k− 1 to k. fk|k−1 (x|η) and gk (z|x) represent the
single target transition density and measurement likelihood function, respectively. γk (x) denotes the
prior intensity of spontaneous target births and κk (z) is the clutter intensity at time k.
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To improve the estimation accuracy of the number of targets, except the intensity density,
the CPHD [23] also propagates the cardinality density:

pk|k−1 (n) =
n

∑
i=0

pγ,k (n− i)
∞

∑
j=i

Cj
i

〈
PS,k, vk|k−1

〉i〈
1− PS,k, vk|k−1

〉j−i

〈
1, vk|k−1

〉j pk−1|k−1 (j) , (13)

vk|k−1 (x) =
∫

PS,k (x) fk|k−1 (xk|xk−1) vk−1 (x) dxk−1 + γk (x) , (14)

pk|k (n) =
Υ0

k

[
vk|k−1, Zk

]
(n)〈

Υ0
k

[
vk|k−1, Zk

]
, pk|k−1

〉 pk|k−1 (n) , (15)

vk|k (x) =
〈Υ1

k [vk|k−1,Zk],pk|k−1〉
〈Υ0

k [vk|k−1,Zk],pk|k−1〉
[1− PD,k (xk)] vk|k−1 (x)

+ ∑
zk∈Zk

〈Υ1
k [vk|k−1,Zk\{zk}],pk|k−1〉
〈Υ0

k [vk|k−1,Zk],pk|k−1〉
ψk (x) vk|k−1 (x),

(16)

Υu
k [v, Z] (n) =

min(|Z|,n)

∑
i=0

(|Z| − i)!pκ,k (|Z| − i) Pn
i+u

〈
1− PD,k, vk|k−1

〉n−(i+u)

〈
1, vk|k−1

〉n Ei (Λk (v, Z)), (17)

Λk (v, Z) =
{〈

vk|k−1, ψk

〉
: z ∈ Z

}
, (18)

ψk (x) =
〈1, κk〉
κk (zk)

gk (zk|xk) PD,k (x) , (19)

where:

Cj
i =

j!
i!(j−i)! is the binomial coefficient;

Pn
i = n!

(n−i)! is the permutation coefficient;
〈α, β〉 =

∫
α (x) β (x) dx denotes the inner product defined between two real-valued functions α and β;

Ei (Z) = ∑
S⊆Z,|S|=i

(
∏

η∈S
η

)
is the elementary symmetric function defined for a finite set Z of real

numbers with E0 (Z) = 1 by convention;
pk−1|k−1 denotes the posterior cardinality distribution at time k− 1;
pγ,k is the prior cardinality distribution of spontaneous births at time k;
pκ,k is the cardinality distribution of clutter at time k;
PS,k (x) is the probability of survival at time k;
fk|k−1 (xk|xk−1) is the target transition density from time k− 1 to time k;
γk (x) is the prior intensity of spontaneous target births at time k;
PD,k (x) is the probability of detection at time k;
gk (zk|xk) is the likelihood function;
κk (z) is the clutter intensity at time k.

3.1. Cardinality and Intensity Prediction of GMMbCPHD

The cardinality distribution of multitarget is propagated from time k− 1 to time k, given by

pk|k−1 (n) =
n

∑
i=0

pγ,k (n− i)
∞

∑
j=i

Cj
i Pi

S,k(1− PS,k)
j−i pk−1|k−1 (j) . (20)
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Based on the Gaussian mixture assumption, the posterior intensity at time k − 1 can be
represented as

vk−1 (x) =
Jk−1

∑
i=1

ω
(i)
k−1N

(
xk−1; x̂(i)k−1, J(i)k−1

)
. (21)

Assume that θ, r, c, and s denote the bearing, range, course and speed in polar coordinates,
respectively. The function Ψ (x; γk (θ, r, c, s)) is utilized here to interpret the transformation of the
density γk (θ, r, c, s) from polar coordinates to Cartesian coordinates. Then, the predicted intensity at
time k is given by

vk|k−1 (x) = vS,k|k−1 (x) + Ψ (x; γk (θ, r, c, s)) , (22)

where

vS,k|k−1 (x) = PS,k

Jk−1

∑
i=1

ω
(i)
k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
, (23)

γk (θ, r, c, s) = ωb
kU(θ;Hθ)N

(
r; r̄, σ2

r

)
N
(

c; θ − π, σ2
c

)
N
(

s; s̄, σ2
s

)
. (24)

In Equation (23), PS,k (x) denotes the survived probability and is usually independent of the target
state, for simplicity, it is abbreviated as PS,k. In Equation (24), ωb

k denotes the expected number of
targets that are born at time k, U (θ;Hθ) denotes a uniform distribution with respect to θ over the
regionHθ [24], r̄ and σ2

r are the prior known mean range and it corresponded variance, respectively.
Besides, s̄ and σ2

s denotes the prior known mean speed and it corresponded variance, respectively,
with σ2

c denoting the prior known course variance. x̂(i)k|k−1 and J(i)k|k−1 are the predicted target state
estimates and its corresponded covariance, which are calculated based on the prediction step of the
Kalman filter:

x̂(i)k|k−1 = Φx̂(i)k−1, (25)

J(i)k|k−1 = ΦJ(i)k|k−1Φ
′
+ Qk−1. (26)

A binary variable β is utilized to augment the target state so as to distinguish the surviving
components from the birth components.

vk|k−1 (x, β) =


Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
, β = 0

Ψ (x; γk (θ, r, c, s)) , β = 1,
(27)

where ω
(i)
k|k−1 = PS,kω

(i)
k−1. As mentioned in [25], in order to avoid the cardinality estimation bias, the

surviving component and birth components are suggested to be separately considered.

3.2. GMM Model in GMMbCPHD

In the proposed GMMbCPHD filter, the measurement likelihood function gk (z|x) is modeled
by Gaussian mixtures but not a single Gaussian distribution. As the measurement uncertainty of
bearings-only measurement is non-Gaussian in Cartesian coordinates, thus the key idea of the GMM
method is to model this non-Gaussian measurement uncertainty area by several refined components,
where each component can be approximated by a Gaussian distribution

We use the range interval [rk,min, rk,max] and received measurement θt
k along with the standard

deviation σθ to illustrate the measurement uncertainty in Cartesian coordinates. Then the range
interval is divided into Ak subintervals, given by [21,26]

rk,a+1

rk,a
= τk; a = 1, . . . , Ak, (28)
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where

τk =

(
rk,max

rk,min

)1/Ak

. (29)

Please note that each component a is determined by rk,a, rk,a+1, θt
k− σθ , θt

k + σθ in polar coordinates.
Based on the information of r̄ = (rk,a + rk,a+1) /2 and ∆r = (rk,a+1 − rk,a) /2, the probability density
function of measurement component a is approximated by a Gaussian distribution with mean ẑk,a and
covariance Rk,a defined in Cartesian coordinates, obtained by

ẑk,a =

[
xs

k
ys

k

]
+ r̄

[
sin
(
θt

k
)

cos
(
θt

k
) ] , (30)

Rk,a = φ

[
(∆r)2 0

0 r̄2σ2
θ

]
φ′, (31)

where the transformation matrix

φ =

[
sin
(
θt

k
)
− cos

(
θt

k
)

cos
(
θt

k
)

sin
(
θt

k
) ]

. (32)

As the area of each component is different, thus the component weight is chosen to be proportional
to the area, given by [26]

λk,a =

√
det (Rk,a)

Ak
∑

a=1

√
det (Rk,a)

, (33)

and
Ak

∑
a=1

λk,a = 1. (34)

Finally, the likelihood function (β = 0) is approximated using a Gaussian mixture

gk (z|x, β = 0) ≈ Ck

Ak

∑
a=1

λk,aN (ẑk,a; Hxk, Rk,a), (35)

where the observation matrix H =

[
1 0 0 0
0 1 0 0

]
, with the constant Ck calculated by [27]

Ck =
∫ rk,max

rk,min

rdr =
r2

k,max − r2
k,min

2
. (36)

From the measurement model defined in equation (3), we can know the measurement noise
follows a Gaussian distribution, therefore the likelihood function defined in the polar coordinates
(β = 1) can be obtained by

gk (z|x, β = 1) = N
(

θt
k; θ, σ2

θ

)
. (37)

3.3. Cardinality and Intensity Update of GMMbCPHD

The new targets are always assumed to be detected when they are birth. For the sake of simplicity,
the detection probability for surviving target is assumed to be independent from their state, which
results in the definition as follows
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PD,k (x, β) =

{
PD,k, β = 0
1, β = 1.

(38)

To make the mathematical derivation procedure friendlier, the notations defined below
are necessary

χ =

〈
Υ1

k

[
vk|k−1, Zk

]
, pk|k−1

〉
〈

Υ0
k

[
vk|k−1, Zk

]
, pk|k−1

〉 , (39)

χ (z) =

〈
Υ1

k

[
vk|k−1, Zk\ {zk}

]
, pk|k−1

〉
〈

Υ0
k

[
vk|k−1, Zk

]
, pk|k−1

〉 , (40)

pk|k (n) =
Υ0

k

[
vk|k−1, Zk

]
(n)〈

Υ0
k

[
vk|k−1, Zk

]
, pk|k−1

〉 pk|k−1 (n) , (41)

vk|k (x, 0) = [1− PD,k] χvk|k−1 (x, β = 0) + ∑
zk∈Zk

χ (z)ψk (x, β = 0) vk|k−1 (x, β = 0), (42)

vk|k (x, β = 1) = ∑
zk∈Zk

χ (z)ψk (x, β = 1) vk|k−1 (x, β = 1), (43)

where

Υu
k [v, Z] (n) =

min(|Z|,n)

∑
i=0

(|Z| − i)!pκ,k (|Z| − i) Pn
i+u

〈
1− PD,k, vk|k−1

〉n−(i+u)

〈
1, vk|k−1

〉n Ei (Λk (v, Z)), (44)

Λk (v, Z) =
{〈

vk|k−1, ψk

〉
: z ∈ Z

}
, (45)

ψk (x, β) =
〈1, κk〉
κk (zk)

gk (zk|x, β) PD,k (x, β) . (46)

The inner product with respect to vk|k−1 and ψk is defined and obtained by〈
vk|k−1, ψk

〉
=
∫∫

vk|k−1 (x, β)ψk (x, β) dxdβ

=
∫ 1

∑
β=0

vk|k−1 (x, β)ψk (x, β) dx

=
∫ Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

) 〈1, κk〉
κk (zk)

gk (zk|x, β = 0) PD,k (x, β = 0)

+Ψ (x; γk (θ, r, c, s))
〈1, κk〉
κk (zk)

gk (zk|x) PD,k (x, β = 1) dx

≈
Jk−1

∑
i=1

ω
(i)
k|k−1

〈1, κk〉
κk (zk)

Ck

Ak
∑

a=1
λk,aPD,k

∫
N (ẑk,a; Hxk, Rk,a)N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
dx

+
〈1, κk〉
κk (zk)

ωb
k

2π

Ak
∑

a=1
λk,a

∫
N
(
x; x̃k

(
θt

k
)

, J̃k
(
θt

k
))

dx

=
〈1, κk〉
κk (zk)

(
ωb

k
2π

+ CkPD,k

Jk−1

∑
i=1

Ak
∑

a=1
ω
(i)
k|k−1λk,aq(i)k (ẑk,a)

)
,

(47)
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where q(i)k (ẑk,a) = N
(

ẑk,a; Hx̂(i)k|k−1, S(i)
k|k−1

)
denotes the likelihood of measurement component ẑk,a

with respect to component i, and the innovation covariance:

S(i)
k|k−1 = HJ(i)k|k−1H

′
+ Rk,a, (48)

and the updated target states and corresponding covariance are given by:

x̂(i,a)k|k = x̂(i)k|k−1 + K(i)
k

(
ẑk,a −Hx̂(i)k|k−1

)
, (49)

J(i,a)k|k = J(i)k|k−1 −K(i)
k HJ(i)k|k−1, (50)

with the Kalman gain:

K(i)
k = J(i)k|k−1H

′ (
S(i)

k|k−1

)−1
. (51)

In the third step of Equation (47), as both likelihood function gk (z|x, β = 1) and the target birth
model γk (θ, r, c, s) are given in the same polar coordinates, we have:

gk (z|x)Ψ (x; γk (θ, r, c, s)) = Ψ (x; gk (z|x) γk (θ, r, c, s)) . (52)

Then,
ϕk (θ, r, c, s) , gk (z|x) γk (θ, r, c, s)

= N
(
θt

k; θ, σ2
θ

)
ωb

kU(θ;Hθ)N
(
r; r̄, σ2

r
)
N
(
c; θ − π, σ2

c
)
N
(
s; s̄, σ2

s
)

= ωb
k

1H(θ)
VH
N
(
θ; θt

k, σ2
θ

)
N
(
r; r̄, σ2

r
)
N
(
c; θ − π, σ2

c
)
N
(
s; s̄, σ2

s
)

≈ ωb
k

2πN
(
θ; θt

k, σ2
θ

)
N
(
r; r̄, σ2

r
)
N
(
c; θ − π, σ2

c
)
N
(
s; s̄, σ2

s
)

,

(53)

where 1H (θ) denotes the indicator function of the bearings-only measurement space regionHθ and
VH is the volume ofHθ . Besides, the following approximation is made:

1H (θ)N
(

θ; θt
k, σ2

θ

)
≈ N

(
θ; θt

k, σ2
θ

)
. (54)

The transformation function Ψ (x; ϕk (θ, r, c, s)) is used to transform the function ϕk (θ, r, c, s) from
polar coordinate to Cartesian coordinate, which is obtained by:

Ψ (x; ϕk (θ, r, c, s)) ≈
ωb

k
2π

Ak

∑
a=1

λk,aN
(
x; x̃k

(
θt

k
)

, J̃k
(
θt

k
))

, (55)

where the weight λk,a is calculated by Equation (33), the position component of x̃k
(
θt

k
)

and J̃k
(
θt

k
)

are
obtained by Equations (56) and (57), respectively, and the velocity component can be approximately
calculated in the way in [28,29]:

x̃k
(
θt

k
)
=


xs

k + r̄ sin
(
θt

k
)

ys
k + r̄ cos

(
θt

k
)

s̄ sin
(
θt

k − π
)

s̄ cos
(
θt

k − π
)

 , (56)

J̃k
(
θt

k
)
=


Pxx Pxy 0 0
Pyx Pyy 0 0
0 0 Pẋẋ Pẋẏ

0 0 Pẏẋ Pẏẏ

 , (57)
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where:
Pxx = (∆r)2sin2(θt

k
)
+ r̄2σ2

θ cos2(θt
k
)

, (58)

Pyy = (∆r)2cos2(θt
k
)
+ r̄2σ2

θ sin2(θt
k
)

, (59)

Pxy = Pyx =
1
2

sin 2θt
k

[
(∆r)2 − r̄2σ2

θ

]
, (60)

Pẋẋ = σ2
s sin2 (θt

k − π
)
+ σ2

c s̄2cos2 (θt
k − π

)
, (61)

Pẋẋ = σ2
s cos2 (θt

k − π
)
+ σ2

c s̄2sin2 (θt
k − π

)
, (62)

Pẋẏ = Pẏẋ =
1
2

sin
(
2
(
θt

k − π
)) [

σ2
s − σ2

c s̄2
]

. (63)

Hence, the elementary symmetric functions are calculated over the set defined by

Λk (v, Z) =

{
〈1, κk〉
κk (zk)

(
ωb

k
VH

+ CkPD,k

Jk−1

∑
i=1

Ak

∑
a=1

ω
(i)
k|k−1λk,aq(i)k (ẑk,a)

)
: z ∈ Z

}
. (64)

The inner products involved in the CPHD recursions are obtained by

〈
1, vk|k−1

〉
=
∫ Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ Ψ (x; γk (θ, r, c, s)) dx

=
〈

1, ωk|k−1

〉
+ ωb

k ,

(65)

〈
1− PD,k, vk|k−1

〉
=

Jk−1

∑
i=1

[1− PD,k]ω
(i)
k|k−1 = [1− PD,k]

〈
1, ωk|k−1

〉
, (66)

Υu
k [v, Z] (n) =

min(|Z|,n)
∑

i=0
(|Z| − i)!pκ,k (|Z| − i) Pn

i+u[1− PD,k]
n−(i+u) 〈1,ωk|k−1〉n−(i+u)

(〈1,ωk|k−1〉+ωb
k)

n Ei (Λk (v, Z)). (67)

Finally, the posterior PHD is approximated by

vk|k (x, β = 0) = [1− PD,k] χvk|k−1 (x, β = 0) + ∑
zk∈Zk

χ (z)ψk (x, β = 0) vk|k−1 (x, β = 0)

= [1− PD,k] χ
Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ ∑

zk∈Zk
χ (z)ψk (x, β = 0)

Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
≈ [1− PD,k] χ

Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ ∑

zk∈Zk

Jk−1

∑
i=1

〈1,κk〉
κk(zk)

χ (z) PD,kω
(i)
k|k−1Ck

Ak
∑

a=1
λk,aN (ẑk,a; Hxk, Rk,a)N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
= [1− PD,k] χ

Jk−1

∑
i=1

ω
(i)
k|k−1N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ ∑

zk∈Zk

Jk−1

∑
i=1

Ak
∑

a=1

〈1,κk〉
κk(zk)

χ (z) PD,kCkω
(i)
k|k−1λk,aN (ẑk,a; Hxk, Rk,a)N

(
x; x̂(i)k|k−1, J(i)k|k−1

)
=

Jk−1

∑
i=1

ω
(i)
k,mN

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ ∑

zk∈Zk

Jk−1

∑
i=1

Ak
∑

a=1

〈1,κk〉
κk(zk)

χ (z) PD,kCkω
(i)
k|k−1λk,aq(i)k (ẑk,a)N

(
x; x̂(i,a)k|k , J(i,a)k|k

)
=

Jk−1

∑
i=1

ω
(i)
m,kN

(
x; x̂(i)k|k−1, J(i)k|k−1

)
+ ∑

zk∈Zk

Jk−1

∑
i=1

Ak
∑

a=1
ω
(i,a)
s,k N

(
x; x̂(i,a)k|k , J(i,a)k|k

)
,

(68)
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and
vk|k (x, β = 1) = ∑

zk∈Zk
χ (z)ψk (x, β = 1) vk|k−1 (x, β = 1)

= ∑
zk∈Zk

χ (z) 〈1,κk〉
κk(zk)

gk (zk|x) PD,k (x, β = 1)Ψ (x; γk (θ, r, c, s))

≈ ∑
zk∈Zk

〈1,κk〉
κk(zk)

χ (z) ωb
k

2π

Ak
∑

a=1
λk,aN

(
x; x̃k

(
θt

k
)

, J̃k
(
θt

k
))

= ∑
zk∈Zk

Ak
∑

a=1

〈1,κk〉
κk(zk)

χ (z) ωb
k

2π λk,aN
(
x; x̃k

(
θt

k
)

, J̃k
(
θt

k
))

= ∑
zk∈Zk

Ak
∑

a=1
ω
(a)
b,kN

(
x; x̃k

(
θt

k
)

, J̃k
(
θt

k
))

,

(69)

where
ω
(i)
m,k = [1− PD,k] χω

(i)
k|k−1, (70)

ω
(i,a)
s,k =

〈1, κk〉
κk (zk)

χ (z) PD,kCkω
(i)
k|k−1λk,aq(i)k (ẑk,a) , (71)

ω
(a)
b,k =

〈1, κk〉
κk (zk)

χ (z)
ωb

k
2π

λk,a. (72)

In GMMbCPHD, the component management is same as that of GMMbPHD, while the state
extraction is quite different as that of the GMMbPHD. Since the cardinality distribution has been
estimated in the GMMbCPHD, the estimated target states can be extracted based on this cardinality
distribution. The detailed extraction implementation procedure is: if the cardinality with N has the
biggest probability in the distribution, N target states are extracted from the posterior intensity with
the N biggest weights.

4. Simulation Experiments

For the sake of fair comparison as well as not losing generality, the simulation scenarios follow
the exact same as those in [17]. The improvements of cardinality and localization estimation of
GMMbCPHD are presented by comparing with GMbPHDwEKF, GMbPHDwUKF, GMMbPHD,
GMbCPHDwEKF as well as GMbCPHDwUKF.

4.1. Simulation Scenarios

4.1.1. Experiment 1

The initial position of the bearings-only sensor installed in a maneuvering moving platform
is [−4200 m, 3500 m]. To satisfy the observability condition, the sensor platform firstly moves at
a speed of 5 knots and changes its course twice: the first one changes from 220◦ to 60◦ from the
time 840th seconds to 1360th seconds, and the second time changes from 60◦ to 220◦ from the time
1860th seconds to 2040th seconds. In this paper, we define the positive direction of measurements
is that the clockwise rotation from the positive Y-axis. In different periods, the number of targets
changes along with time and Table 1 shows the motions of all targets. Targets #1, #2, #3, #4, #5 start
to move from the initial point [−8000,−2500]m, [−3000, −6500]m, [4100, −6100]m, [4200, −2200]m
and [6300, 4000]m, respectively. Figure 1 presents the moving condition of the sensor and the targets.
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Table 1. Motion details of targets.

Target Index Survival Time (s) Course (Degree) Speed (Knots)

#1 [0, 2400] 95 8
#2 [300, 3000] 20 7
#3 [500, 3000] 280 8
#4 [0, 3000] 275 7
#5 [0, 2700] 215 10

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

X−axis (km)

Y
−

a
x
is

 (
k
m

)

 

 

Sensor

Targets

Initial positions

Final positions

Figure 1. The geometry between sensor and targets (the original source of this picture is from Figure 2
in [17]).

The simulation lasts 3000 s and the sampling interval is 10 s. Suppose that the measurement noise
has the standard deviation σθ = 1◦, and the survival probability of each target is PS,k = 0.98. To simulate
the practical situations, we assume that the clutter distributes uniformly in the measurement space
and the number follows the Poisson distribution with mean 15. As each target cannot be detected at
each sampling time, the detection probability is assumed to be 0.95. For the new born targets, the prior
target course and speed are set to be θt

k − π and s̄ = 10 knots with standard deviation σc = 50◦ and
σs = 4 knots, respectively. Usually, the initial target range information is barely known, for simplicity,
the initial target range information required in the UKF-based and EKF-based algorithm is assumed to
follow a Gaussian distribution in this simulation, with known mean r̄ = 12,000 m and standard deviation
σr = 4000 m and, the minimum and maximum target range information required in the GMMbPHD and
GMMbCPHD are set to be [300 m, 18, 000 m], respectively. The number of measurement components
at each scan is predefined to be Ak = 8. In each filter, the birth intensity is assumed to be ωb

k = 0.05.
and the biggest number of Gaussian components is Mk = 100.
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4.1.2. Experiment 2

To show the advantages of proposed filter in more challenging situation, this experiment considers
a higher clutter measurement density as well as a lower target detection probability compared
to the experiment 1, i.e., the averaged number of clutter measurements increases to 30 while the
target detection probability decreases to 0.85. All remained parameters are exactly same as those in
experiment 1. Figure 2 presents the demonstration of the measurements for experiment 2.
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d
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)

Figure 2. A demonstration of sensor received measurements (the original source of this picture is from
Figure 3 in [17]).

4.1.3. Experiment 3

Some preselected parameters for each filter are changed in this simulation experiment.
The survival probability PS,k and the birth intensity ωb

k are changed to 0.95 and 0.01, respectively.
Furthermore, the biggest number of Gaussian components Mk increases to 150. The remained
parameters in this simulation experiment are same as those in experiment 1.

4.1.4. Experiment 4

To illuminate the effectiveness and superiority of our proposed method in the scenario
of maneuvering target tracking, this experiment extra adds another two maneuvering targets
(Targets #6 and #7) to the scenario in experiment 1, as depicted in Figure 3. Targets #6 and #7 are birth
in the point [1000 m,−8000 m] and [3000 m, 3000 m], respectively. The traveling courses of Target #6
is changed from 350◦ to 270◦ at 1500th seconds and from 180◦ to 240◦ at 1680th seconds for target #7.
Targets #6 survives from 200th seconds to 2800th seconds, and target #7 survives from 400th seconds
to 3000th seconds. The speeds of both maneuvering targets are 8 knots.
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Figure 3. The geometry between sensor and targets (the original source of this picture is from Figure 4
in [17])).

4.2. Simulation Results

The average OSPA with order 2 and cutoff 400 is used as a metric to evaluate performances of each
filter over 500 Monte Carlo runs. The simulation results of experiment 1, experiment 2, experiment 3
and experiment 4 are shown in Figures 4–7, respectively. Basically, the OSPA error consists of two parts
(OSPA localization error and OSPA cardinality error). To fully show the benefits of the filters, both the
OSPA distance and the OSPA components (OSPA localization and cardinality) are also shown in each
experiment result. The execution time to show the computational load of each filter in experiment 1 is
given in Figure 8.
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Figure 4. Cont.



Sensors 2018, 18, 1772 16 of 23

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

O
S

P
A

 C
a

rd
in

a
lit

y
 E

rr
o

r 
(m

)

 

 

GMbPHDwEKF

GMbPHDwUKF

GMMbPHD

GMbCPHDwEKF

GMbCPHDwUKF

GMMbCPHD

(c)

Figure 4. Results of experiment 1: (a) OSPA error; (b) OSPA localization error; (c) OSPA cardinality error.
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Figure 5. Results of experiment 2: (a) OSPA error; (b) OSPA localization error; (c) OSPA cardinality error.
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Figure 6. Results of experiment 3: (a) OSPA error; (b) OSPA localization error; (c) OSPA cardinality error.

0 500 1000 1500 2000 2500 3000
1500

2000

2500

3000

3500

4000

time (s)

O
S

P
A

 E
rr

o
r 

(m
)

 

 

GMbPHDwEKF

GMbPHDwUKF

GMMbPHD

GMbCPHDwEKF

GMbCPHDwUKF

GMMbCPHD

(a)

Figure 7. Cont.



Sensors 2018, 18, 1772 20 of 23

0 500 1000 1500 2000 2500 3000
1000

1500

2000

2500

3000

3500

4000

time (s)

O
S

P
A

 L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

 

 

GMbPHDwEKF

GMbPHDwUKF

GMMbPHD

GMbCPHDwEKF

GMbCPHDwUKF

GMMbCPHD

(b)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

time (s)

O
S

P
A

 C
a

rd
in

a
lit

y
 E

rr
o

r 
(m

)

 

 

GMbPHDwEKF

GMbPHDwUKF

GMMbPHD

GMbCPHDwEKF

GMbCPHDwUKF

GMMbCPHD

(c)

Figure 7. Results of experiment 4: (a) OSPA error; (b) OSPA localization error; (c) OSPA cardinality error.
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Figure 8. Execution time.

In all simulation experiments, as can be seen obviously from Figures 4a, 5a, 6a and 7a, the
proposed GMMbCPHD filter delivers much lower OSPA distance error than other filters. As the
nonlinear bearings-only measurement is approximated by Gaussian mixtures using GMM technique
which is more accurate than that is approximated by a single Gaussian distribution, the localization
estimation of targets in GMMbPHD and GMMbCPHD is much more accurate than EKF and UKF-based
filters, such as GMbPHDwEKF, GMbPHDwUKF, GMbCPHDwEKF and GMbCPHDwUKF as shown
in Figures 4b, 5b, 6b and 7b. From Figures 4c, 5c, 6c and 7c, we can see that the CPHD-based filters
deliver much lower OSPA cardinality error than those of PHD-based filters such as GMbPHDwEKF,
GMbPHDwUKF and GMMbPHD as the cardinality distribution has been modeled and propagated
properly in GMbCPHDwEKF, GMbCPHDwUKF and GMMbCPHD.

Compared results of experiment 1 and experiment 2, we can see that the OSPA distance, OSPA
localization and OSPA cardinality in experiment 1 are more accurate than those in experiment 2.
As experiment 2 has much higher clutter density and lower target detection probability than those in
experiment 1, the tracking situation in experiment 2 is more challenging than that in experiment 1.
Fortunately, the proposed GMMbCPHD also performs much better than other filters. From results
of experiment 3, we can see that GMMbCPHD has stable performance than other filters as the
changed preselected parameters do not have much influence on the the proposed filter. However, these
preselected parameters have negative effects on filters such as GMbCPHDwEKF and GMbCPHDwUKF.
When two extra maneuvering targets are considered, the OSPA errors of all filters are increased as
shown in Figure 7. However, the proposed GMMbCPHD also shows the best performance compared
with other filters.

In all simulation experiments, all compared filters present a large OSPA distance error and OSPA
localization error before 1000 s as the target states are not observable. After the maneuvering motion of
sensor, the observability condition is satisfied and the OSPA distance and localization errors decrease
sharply. Based on the discussion above, the improvements of proposed GMMbCPHD reflect in both
target localization estimation and target cardinality estimation. As GMM technique can improve
the localization tracking accuracy, the GMMbPHD and GMMbCPHD show advantages on the OSPA
localization. Besides, estimating cardinality distribution can improve the cardinality estimation of
multitarget states and the GMMbCPHD gives the benefits on OSPA cardinality. However, the GMM
technique and cardinality distribution estimation will increase the computational load of the filter.



Sensors 2018, 18, 1772 22 of 23

Figure 8 shows the execution times of all filters and we can see that GMMbPHD and GMMbCPHD
filters have a little bit heavier load than other filters. As the measurement likelihood function is
modeled by single Gaussian distribution in GMbCPHDwEKF and the likelihood function of each
measurement is modeled using eight Gaussian measurement components in proposed GMMbCPHD,
the computational time of GMMbCPHD is almost eight times heavier than that of GMbCPHDwEKF as
shown in Figure 8. Please note that each measurement component is used to update predicted intensity
component using Kalman filter. Similarly, the GMbCPHDwUKF approximates the measurement
likelihood function using nine sigma points, but these sigma points are utilized in only one Kalman
filter cycle. Thus, the computational time of GMbCPHDwUKF just shows a little bit heavier than that of
GMbCPHDwEKF. For simulation scenarios with more number of targets or clutter measurements, the
computational loads of all methods obviously increase as more intensity components will be generated
and more Kalman filter cycles are performed in algorithms. Though the GMM technique takes
much computational sources in the GMM-based filters, fortunately, the execution time of proposed
GMMbCPHD shows much smaller than the real time. Please note that all simulation cases are executed
on the platform with a 2.4 GHz Intel Core i5 CPU, Windows 7, and Matlab.

5. Conclusions

In this paper, we proposed a random finite set (RFS)-based filter, Gaussian mixture
measurements-based cardinality probability hypothesis density (GMMbCPHD), which delivers
significant benefits from two aspects: Gaussian mixture measurements (GMM) and cardinality
distribution estimation. The GMM models the nonlinear bearings-only measurement likelihood
using Gaussian mixtures but not single Gaussian distribution. The GMM is used in the proposed
GMMbCPHD and each measurement component is used to update the predicted intensity components.
Thus, the number of updated intensity components is also larger than that in GMbCPHDwEKF
and GMbCPHDwUKF. In traditional GMbCPHD, the likelihood function is modeled by single
Gaussian distribution; however, that is approximated using Gaussian mixtures in GMMbCPHD.
Each measurement is associated with each predicted intensity component with state updated using
Kalyan filter. Furthermore, the predicted cardinality distribution is also updated using measurement
components of all received measurement. As the GMM is more precise to model the likelihood function,
the estimation of updated intensity and cardinality show significant improvement. The GMMbCPHD
also propagates the cardinality distribution estimation which can improve the target number estimation
in multitarget tracking. In different simulation scenarios with different parameters, simulation results
show that the proposed filter performs much better than other filters on both optimal subpattern
assignment (OSPA) localization and OSPA cardinality.

Author Contributions: Conceptualization, Y.S. and Y.D.; Formal analysis, D.P.; Methodology, Y.S. and Y.D.;
Validation, M.X.; Writing—original draft, Y.S.

Funding: This work was surported by the National Natural Science Foundation of China (grant No. 61702369
and grant No. 61703131).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bar-Shalom, Y.; Willett, P.K.; Tian, X. Tracking and Data Fusion: A Handbook of Algorithms; Storrs, CT, YBS
Publishing: Bradford, UK, 2011.

2. Blackman, S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech House: Norwood, MA,
USA, 1999.

3. Challa, S.; Morelande, M.; Mušicki, D. Fundamentals of Object Tracking; Cambridge University Press:
Cambridge, UK, 2011.

4. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter; Artech House: Norwood, MA, USA, 2004.
5. Nardone, S.C.; Aidala, V.J. Observability Criteria for Bearings-Only Target Motion Analysis. IEEE Trans.

Aerosp. Electron. Syst. 1981, 17, 162–166. [CrossRef]

http://dx.doi.org/10.1109/TAES.1981.309141


Sensors 2018, 18, 1772 23 of 23

6. Bar-Shalom, Y.; Li, X.R. Multitarget-Multisensor Tracking: Principles and Techniques Storrs; University of
Connecticut: Mansfeld, CT, USA, 1995.

7. Mušicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst.
2004, 40, 1093–1099. [CrossRef]

8. Reid, D.B. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 1979, 24, 843–854.
[CrossRef]

9. Li, X.; Li, Y.; Yu, J.; Chen, X.; Dai, M. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in
Clutter. Sensors 2015, 15, 28177–28192. [CrossRef] [PubMed]

10. Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House, Inc.: Norwood, MA, USA, 2007.
11. Mahler, R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst.

2004, 39, 1152–1178. [CrossRef]
12. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; Wily: New York,

NY, USA, 2001.
13. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]
14. Wan, E.A.; Van Der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation. In Proceedings of the

IEEE Svrnposiurii 2000 (AS-SPCC), Lake Louise, AB, Canada, 1–4 October 2000.
15. Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 1984, 54, 1254–1269.

[CrossRef]
16. Evensen, G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn.

2003, 53, 343–367. [CrossRef]
17. Zhang, Q.; Song, T.L. Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering. Sensors 2016,

16, 1469. [CrossRef] [PubMed]
18. Vo, B.N.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process.

2006, 54, 4091–4104. [CrossRef]
19. Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo methods for multitarget filtering with random finite

sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245.
20. Liu, Z.; Wang, Z.; Xu, M. Cubature Information SMC-PHD for Multi-Target Tracking. Sensors 2016, 16, 653.

[CrossRef] [PubMed]
21. Mušicki, D. Bearings only single-sensor target tracking using Gaussian mixtures. Automatica 2009, 45,

2088–2092. [CrossRef]
22. Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters.

IEEE Trans. Signal Process. 2008, 56, 3447–3457. [CrossRef]
23. Vo, B.T.; Vo, B.N.; Cantoni, A. Analytic implementations of the cardinalized probability hypothesis density

filter. IEEE Trans. Signal Process. 2007, 55, 3553–3567. [CrossRef]
24. Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Gaussian mixture PHD and CPHD filtering with partially

uniform target birth. In Proceedings of the 15th International Conference on Information Fusion, Singapore,
9–12 July 2012; pp. 535–541.

25. Ristic, B.; Clark, D.; Vo, B.N.; Vo, B.T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans.
Aerosp. Electron. Syst. 2012, 48, 1656–1668. [CrossRef]

26. Kronhamn, T.R. Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive
ownship motion control. IEE Proc. Radar Sonar Navig. 1998, 145, 247–252. [CrossRef]
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