
sensors

Article

Influence of Axial Load on Electromechanical
Impedance (EMI) of Embedded Piezoceramic
Transducers in Steel Fiber Concrete

Zhijie Wang 1, Dongdong Chen 2,†, Liqiong Zheng 2, Linsheng Huo 2,* ID and Gangbing Song 3,*
1 Department of Underground Engineering, School of Civil Engineering, Southwest Jiaotong University,

Chengdu 610031, China; zhjwang@swjtu.edu.cn
2 Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;

chendongdlut@mail.dlut.edu.cn (D.C.); joan@mail.dlut.edu.cn (L.Z.)
3 Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston,

Houston, TX 77204, USA
* Correspondence: lshuo@dlut.edu.cn (L.H.); gsong@uh.edu (G.S.)
† The co-first author who has equal contribution with the first author.

Received: 15 March 2018; Accepted: 29 May 2018; Published: 1 June 2018
����������
�������

Abstract: With the advantages of high tensile, bending, and shear strength, steel fiber concrete
structures have been widely used in civil engineering. The health monitoring of concrete structures,
including steel fiber concrete structures, receives increasing attention, and the Electromechanical
Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load
and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM),
including the EMI-based method. However, many of the concrete structure monitoring algorithms
do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a
steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120)
(kg/m3) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as
the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber
content specimens, and the electromechanical impedance values were measured. The Normalized
root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate
the test results. The results show that the normalized root-mean-square deviation index increases
with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI
values for steel fiber concrete and this influence should be considered during a monitoring or damage
detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel
fiber content, often at low mass and volume percentage, has no obvious influence on the PZT’s EMI
values. Furthermore, experiments to test the repeatability of the proposed method were conducted.
The repeating test results show that the EMI-based indices are repeatable and there is a great linearity
between the NI and the applied loading.

Keywords: steel fiber concrete; axial loads; Structural Health Monitoring (SHM); Electromechanical
Impedance (EMI); Lead Zirconate Titanate (PZT); smart aggregates

1. Introduction

Distributed short steel fibers in concrete hinder the expansion of microcracks and the formation
of macroscopic cracks [1], enhancing the crack resistance of concrete. Steel fiber concrete has been
widely used in important projects, such as tunnels, subways, airports, and seismic engineering.
The health monitoring of steel fiber concrete structures, like that of other concrete structures, is receiving
increasing attention.
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Piezoelectric materials have been used in the health monitoring of concrete structures for many
years [2–4]. The characteristics of fast response, high sensitivity, broad bandwidth, and low cost [5–7]
enable the detection of small changes in the selected variables (stress, damage) at critical locations [8,9].
Lead Zirconate Titanate (PZT), a type of piezoceramic, is widely used because of its strong piezoelectric
effect [10,11]. Annamdas et al. presented an easy method of embedding a PZT sensor in concrete
for monitoring either fresh concrete or cured concrete [12]. Soh et al. [13] proposed the formulation
of a three-dimensional (3D) interaction model of PZT–structure with the consideration of the mass
of both the PZT transducers and the adhesive. A reusable PZT transducer setup for monitoring
initial hydration of concrete and structural health was developed by Yang et al. [14]. To overcome
the shortcoming of PZT’s brittleness and to offer protection to the PZT core, the concept of “Smart
Aggregate” (SA) was proposed for use as an embedded sensor in concrete structures for damage
detection, structural health monitoring, and other purposes. The smart aggregates are embedded
into the desired locations before the casting of the concrete structure [15]. A smart-aggregate-based
approach was proposed by Yan et al. [16] for the structural health monitoring of a concrete shear
wall structure. Hou et al. [17] developed an SA-based sensing system, which can monitor the seismic
stress of low- and middle-rise building structures under moderate earthquakes. Feng et al. [18] used
embedded piezoceramics-based smart aggregates transducers along with the active sensing approach
to detect common types of pile damage. A combination of smart aggregates and surface-bonded
PZTs was used by Divsholi et al. [19] for structural health monitoring and a one-dimensional
Electromechanical Impedance (EMI) model accounting for shear lag between the PZT patch and
the host structure was presented by Yang et al. [20].

The sensing technology is a critical part of structural health monitoring [21,22]. EMI enabled by
PZT transducers in structural health monitoring receives considerable attention [23–27]. Wu et al. [28]
performed an investigation to detect debond in reinforced concrete structures. PZT discs were
utilized as sensors and actuators in a pitch–catch mode to generate sensor data. The test results
indicated that debond between concrete and rebar and yielding in rebar can be detected. Li et al. [29]
proposed the preliminary application of a new type of cement-based piezoelectric sensor developed for
monitoring traffic flow. Song et al. [30] developed an over-height vehicle–bridge collision detection and
evaluation system using PZT transducers. A simple and versatile measurement system was proposed
by Baptista et al. [31] to allow for real-time data acquisition from multiple sensors for structural health
monitoring based on the electromechanical impedance technique. Tsangouri et al. [32] used embedded
piezoelectric transducers to seal cracks and monitor damage recovery of a concrete healing system.
Campeiro et al. [33] carried out impedance-based damage detection under noise and vibration effects.

Until now, there have been many methods to evaluate the service performance and health
condition of concrete structures [34,35]. The impedance-based SHM method has been a promising
tool for damage identification and is considered a real-time evaluation technique [36]. In 1993,
Liang et al. [37] first proposed the theoretical basis for the piezoelectric impedance method used
in structural health monitoring, and analyzed the single-degree-of-freedom spring–mass–damping
system (SMD) model theoretically. The relationship between the impedance of the piezoelectric element
and the impedance of the structure was obtained and demonstrated on a cantilever structure. In 1995,
Sun et al. [38] applied the piezoelectric impedance technique to structural damage identification
of a fabricated truss. In his experiment, a damage index based on root-mean-square deviation
(RMSD) was applied to the piezoelectric impedance technique in the field of structural health
diagnosis. Park et al. [39] used the principle of piezoelectric impedance to monitor the bolting
of pipelines. High-frequency structural excitation was utilized through surface-bonded piezoelectric
sensors/actuators to detect changes in structural point impedance due to the presence of damage.
This technique can be applied to the rapid detection of a pipeline system after earthquake and
other early damage identification of a pipeline engineering structure. An innovative piezoelectric
device named a “smart washer” was proposed by Huo et al. [40] with the impedance method
to monitor the pre-stress level of rock bolts and a normalized RMSD index was developed to
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evaluate the degradation level of the rock bolt pre-stress. Bhalla et al. [41] proposed a new
approach for fatigue life assessment of bolted steel joints using the equivalent stiffness determined
by surface-bonded piezo-impedance transducers. Previously developed impedance models were
revisited by Yun et al. [42] to investigate the effects of sensor and/or bonding defects on the admittance
measurement. The feasibility of the modified impedance model for sensor self-diagnosis using the
admittance measurements was demonstrated by a series of parametric studies using a simple example
of PZT-driven single-degree-of-freedom spring–mass–damper system. Yang et al. [43] presented an
electromechanical impedance (EMI) model for health monitoring of cylindrical shell structures to
investigate the interaction between the PZT transducers and a typical cylindrical shell structure.

The influence of axial force on piezoceramic-transducer-based monitoring is crucial for evaluation
the health status of structures. The pitch–catch method was employed by Liu et al. [44] to measure the
amplitude and velocity of active sensing signals during the loading process. The experimental results
demonstrated that the load variation within elastic range still has a significant effect on monitoring
signals using an SA-based monitoring system. However, the influence of the axial load on the
commonly used EMI-based approach for steel fiber concrete structures has not been studied, to the
authors’ best knowledge.

In this paper, the authors proposed to experimentally study the influence of the axial load on
EMI-based damage or SHM of steel fiber structures. In addition, the influence of steel fiber content
on the EMI values will also be experimentally studied. Standard concrete cube specimens (150 mm
× 150 mm × 150 mm) with five different steel fiber contents (0, 30, 60, 90, 120) (kg/m3) were casted.
For each fiber content, three specimens were fabricated. The strength of the concrete specimens
is 50 Mpa. The EM impedance signals were recorded at the axial force values of 0, 20, 40, 60, 80,
and 100 kN, which ensured the specimens deformed within the elastic range of strains. The elastic
loading range prevents damage to the steel fiber concrete specimens and narrows the influencing factor
to only the axial load for a test period when the load is increased from 0 to 100 kN. A smart aggregate
with a 15 mm × 15 mm × 1 mm PZT patch as its sensing core was embedded in each specimen for the
EMI measurement. During each test period, the PZT EMI measurements were acquired through an
impedance analyzer. Testing results clearly demonstrated that the axial load greatly influences the EMI
value and the effect of axial load should be considered for EMI-based structural health monitoring
of concrete structures. Experimental results also clearly revealed that the fiber content, normally at a
small mass and volume percentage, has no obvious effect on the EMI values.

2. Smart Aggregate (SA) and the Electromechanical Impedance Method

2.1. Smart Aggregate (SA)

Shown in Figure 1a is the configuration of a PZT-based smart aggregate (SA). The core of the SA is
a waterproofed PZT patch with electrical connecting wires. The dimension of the PZT patch is 15 mm
× 15 mm × 1 mm. The PZT patch is sandwiched between two marble blocks, which offer protection
to the fragile PZT patch. The height and diameter of the smart aggregates are 20 mm and 25 mm,
respectively. Figure 1b shows a photo of the fabricated SA with the connecting wire and a connector.
With this configuration, SA can be embedded into a concrete structure and survive the harsh vibration
process. The direct and converse piezoelectric effect make the PZT-based smart aggregate suitable
for sensing and actuation applications, including active sensing and impedance-based for concrete
structure health monitoring. For example, Kong et al. [45] presented research on very-early-age
concrete hydration characterization by using piezoceramic-based smart aggregates. Du et al. [46] used
SA to monitor quartz Sand-Filled Steel Tube Column (SFSTC) internal stress during impacts.
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Figure 1. Illustration of Smart Aggregate (SA): (a) The composition of the smart aggregate; (b) Photo of
the smart aggregate.

2.2. Electromechanical Impedance (EMI) Method

For EMI-based damage detection, a PZT transducer is often embedded in or surface-bonded
to a structure. Damage to a structure will often cause the change of its physical properties, such as
mass, stiffness, damping, and boundary conditions, and this change will alter the energy transfer
between the PZT and host structure [37]. The coupling effect between the host structure and the PZT
transducer can be detected by the PZT’s electromechanical impedance (EMI) in the high-frequency
range (typically >20 kHz). In this study, the PZT-based Smart Aggregate was embedded into the
steel fiber concrete specimen. As shown in Figure 2, a one-degree-of-freedom spring–mass–damper
electromechanical system is used to illustrate the coupling effect between the PZT transducer and the
steel fiber concrete specimen.
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Figure 2. A 1D spring–mass–damper electromechanical model to illustrate the coupling between the
PZT and the specimen.

The electromechanical impedance (EMI) and the electric admittance are reciprocal to each other.
In the PZT-transducer-driven, single-degree-of-freedom mass–stiffness–damping system, the Z(ω),
which is the impedance of the piezo-transducer coupled to the host structure, is given by

Z(ω) =
hA

iωwAlA

{
εσ

33 −
ZS

ZS + ZA
d2

32Y22
E
}−1

(1)

where ω is the angular frequency of excitation; i is the imaginary unit; wA, hA, and lA are the width,
thickness, and length of the PZT patch, respectively; ε33 is the complex permittivity when the PZT
stress is zero or a constant; d32 is the piezoelectric constant; and YE

22 is the complex Young’s modulus
at zero or constant electric field. Please note that the complex Young’s modulus includes a real part
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that is called the elastic Young’s modulus, and an imaginary part that is called the loss Young’s
modulus. ZA and ZS represent the electromechanical impedance of PZT and the structure, respectively.
Assuming that the mechanical properties of the PZT patch do not vary during the measurement
procedure, Equation (1) shows that the electrical impedance of the PZT patch is directly related to
the structure’s impedance [47]. Axial force causes changes in the structure’s mechanical impedance,
thus changing local dynamic features. Based on the EMI information measured by the impedance
analyzer, the root-mean-square deviation of the impedance real part (RMSDR) is used in this paper,
as indicated by

RMSDR =

√√√√√√∑
N
(ZR

i − ZR
N)

2

∑
N
(ZR

N)
2 × 100% (2)

where ZR
i is the ith measurement of the EMI real part signal at a certain frequency range, and ZR

N is the
real part of the EMI signal under the same frequency range in the nondestructive state.

3. Steel Fiber Concrete Specimens and Experimental Setup

3.1. Steel Fiber Concrete Specimens

The cube specimens were composed of 50 MPa strength concrete with different steel fiber content
(0, 30, 60, 90, 120) (kg/m3). The stress wave propagation velocity in the 50 MPa strength concrete
structure is about 4000 m/s. The concrete mix proportion is shown in Table 1. End-hook-type
steel fibers, as shown in Figure 3, were used in this research, and the detailed technical information
of the steel fibers is shown in Table 2. The content of the concrete specimens and the groups of
specimens are shown in Table 3. The dimension of the specimens was 150 mm × 150 mm × 150 mm.
The steel fiber concrete specimens were fabricated in the lab in accordance with the fiber concrete
specimen mixing standards: “Technology specification for application of fiber-reinforced concrete and
steel-fiber-reinforced concrete”. For each specimen, one smart aggregate was embedded in the steel
fiber concrete specimen, as shown in Figure 4. The SA is located along the center line of the specimen,
25 mm below the top surface. All test specimens were cured in a standard condition for 28 days and
then moved into the lab for testing.
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Table 1. Technical properties of steel fiber.

Length (mm) Diameter (mm) Aspect Ratio Tensile Strength (MPa)

35 0.75 46 7.4
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Table 2. Proportions of concrete mix.

Ingredients of Concrete Cement Sand Stone Water Pulverized Fuel Ash Water Reducing Agent

Weight (kg/m3) 400 740 1100 150 50 7.4
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Table 3. The groups of specimens.

Steel Fiber Content of Concrete (kg/m3) Specimen Numbers

0 1-1, 1-2, 1-3
30 2-1, 2-2, 2-3
60 3-1, 3-2, 3-3
90 4-1, 4-2, 4-3

120 5-1, 5-2, 5-3

3.2. Experimental Setup

The instrumentation setup, mainly including the impedance analyzer, is shown in Figure 5.
The entire test setup is shown is Figure 6, which shows that an electric universal loading machine with
a capacity of 100 kN was used to load the concrete specimens. A step-by-step load was used in this
study to increase the axial load to the specimens. The Agilent 4294A (Agilent Technologies, Santa Clara,
CA, USA) precision impedance analyzer produced by Agilent Technologies, was used to measure the
impedance signals, the frequency range of which is from 40 Hz to 110 MHz. The excitation frequency
in the range of 10 kHz to 500 kHz was chosen in the test. Too low a frequency range is not sensitive
to tiny damages in the structures, while too high a frequency range causes PZT to be too sensitive to
temperature and boundary conditions, which can affect the judgment of damage information [48].

The baseline impedance signals of all steel fiber concretes were recorded before applying any
load. The load was applied on each specimen according to the designed step-by-step load schedule.
As shown in Figure 7, the step loads include 0, 20, 40, 60, 80, and 100 kN, and the largest loading value
of 100 kN is less than 10% of the failure load of 50 MPa concrete cube specimens; therefore, the strain
is within the elastic range. During each load increasing stage, the loading rate was taken as 100 N/s.
During this load increasing stage, three EMI measurements were taken at the beginning, the middle,
and the end of each stage. Then, the load was kept at a constant for 600 s, during which there are seven
measured points and 100 s delay between each measured point. The step-by-step loading strategy is
shown in Figure 7.
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4. Experimental Results and Discussion on Influence of Axial Load on EMI

The step-by-step loading schedule was applied to steel fiber concrete specimens within the elastic
range. We purposely chose step-by-step loading so that we could measure the impedance value at a
steady state to minimize the dynamic effect. For each loading value, the impedance information of the
smart aggregate was directly acquired by the impedance analyzer. The real parts of the impedance for
Specimens 1-1, 2-1, 3-1, 4-1, and 5-1 over the frequency range of 10 kHz to 500 kHz were recorded and
plotted in Figure 8, which clearly shows that with the increase of the axial load, the EMI value increases.
Therefore, the axial load has an influence on the EMI value. Specifically, the central frequencies of
Specimens 1-1, 2-1, 3-1, 4-1, and 5-1 are 175 kHz, 174 kHz, 178 kHz, 175 kHz, and 170 kHz, respectively.
With the increasing axial forces, the central frequencies shift little. This is caused by the high stiffness
and small geometric size. On the other hand, with the increase of the steel fiber content (0, 30, 60,
90, 120) (kg/m3), as shown in Figure 8a–e, no clear trend of change of the EMI can be observed.
Hence, the steel fiber content has no clear impact on the EMI value, which is reasonable since the steel
fiber content in terms of mass or volume percentage is very small. In addition, the steel fibers have
very small cross-sectional area.
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The real parts of the recorded impedance values of experiments were analyzed with the RMSD
index. Due to the deviation of the RMSD values under different loading conditions, the RMSD results
of each specimen were normalized based on the following equation:

NI =
Ii
RMSD − Iw

RMSD

Il
RMSD − Iw

RMSD
(3)

where i denotes the ith loading condition in the experiment; Iw
RMSD is the RMSD index of the specimen

without loading applied; Il
RMSD is the RMSD index with the largest load applied; and Ii

RMSD is the
RMSD index at the ith loading condition. The normalized results are shown in Figure 9.

In all cases in Figure 9, the normalized RMSD indices (NI) increase with the loading value,
which is consistent with the finding from Figure 8. It should be noted that the normalized RMSD index
in the same mix seems to vary to some degree at the same load level, as shown in Figure 9. There are
two main reasons for this: (1) concrete is notorious for its inconsistent properties and uncertainties;
and (2) the steel fiber concrete is an anisotropic material. In this research, for each case of fiber content,
we have three specimens. It is not surprising for us to see differences among the specimens for each
case. The important observation is that all specimens show a clear and similar trend. As an important
finding of this research, if an impedance-based index is used for structural health monitoring, the index
should be corrected by subtracting the increase caused by the applied load. To address the issue of
discrepancy, for practice, we will calculate the mean value of the specimens with the same fiber content,
and this mean value will be used for the correction. A future work will be the study of the discrepancy
among the specimens with the same fiber content.
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In addition, as shown in Figure 9, there is no clear trend in how the fiber content impacts the
normalized RMSD index. It is clear that the steel fiber content has no clear impact on the EMI value.
In this research, the excitation frequency is in the range of 10 kHz to 500 kHz. The 500 kHz wave
has the shortest wave length, 0.008 m or 8 mm, which is obtained by dividing the wave velocity of
4000 m/s by the frequency of 500,000 Hz. We used the fact that the stress wave propagation velocity in
the 50 MPa strength concrete structure is about 4000 m/s. Since the profile of the fiber is very small
(0.75 mm in diameter) as compared with the shortest wave length of the stress wave (8 mm), the fiber
content will have very little impact on the stress wave propagation.

It should be noticed that in Figure 9h,k, the normalized RMSD index (NI) was missing for 40 kN
and 20 kN, respectively. The reason for this is that these two impedance signals were acquired during
the unstable axial loading stages. Severe drift of impedance signals occurred at 40 kN and 20 kN.
Therefore, the two curves cannot be used in calculating the normalized RMSD index (NI).

Observations and Discussions

Experimental results clearly demonstrated that the axial load greatly influences the EMI value and
the effect of axial load should be considered for EMI-based structural health monitoring of concrete
structures. Experimental results also clearly revealed that the fiber content, normally at a small mass
and volume percentage, has no obvious effect on the EMI values.

To investigate the influence of axial load on concrete, Liu et al. [44] proposed the pitch–catch
method to measure the voltage amplitude and the velocity of the monitoring signals during the
loading steps. In their experiments, there was no consistent relationship between amplitudes and
unloading steps for different specimens or monitoring signals when step-by-step loads were applied
on the specimens. However, as shown in Figure 9, the normalized RMSD index (NI)-based impedance
method can monitor the loading process well with different steel fiber content (0, 30, 60, 90, 120) (g/m3).
Therefore, it is more reasonable to use electrical impedance to study the influence of axial force on the
voltage amplitude. In this research, the loading is along the axial direction and the loading level is
relatively small to ensure the elastic response of the specimen. In reality, the loading may be complex
and loading levels may be large and sometimes damage the steel fiber structures. For the next step,
we will investigate the feasibility of electromechanical impedance (EMI)-based damage monitoring
of steel fiber concrete structures. In addition, we will study the effectiveness of SA-enabled EMI in a
complex state of stresses.

5. Additional Experiments to Study Repeatability of the Proposed Method

In order to demonstrate the repeatability and reliability of the proposed technique, additional
experiments were conducted. A new specimen with 90 kg/m3 steel fiber content was casted, as shown
in Figure 10. It was cured in a standard condition for 28 days and then moved into the lab for testing.
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The test procedure was the same as that detailed in Section 3.2. Nine repeated experiments
were conducted and the impedance-based normalized RMSD index was also calculated according to
Equation (2). The impedance-based normalized RMSD index is shown in Figure 11.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 17 

 

The test procedure was the same as that detailed in Section 3.2. Nine repeated experiments were 
conducted and the impedance-based normalized RMSD index was also calculated according to 
Equation (2). The impedance-based normalized RMSD index is shown in Figure 11. 

 
Figure 11. The impedance-based normalized RMSD index of 9 repeated experiments. 

As shown in Figure 11, the repeated testing results demonstrate that the normalized RMSD 
indices vary within a small range for different loading cases. The largest discrepancy is no more than 
10%, which is in the loading case of 60 kN. The repeated experimental results clearly show the 
repeatability of the proposed method. 

In order to demonstrate the reliability of the proposed method, data fitting was conducted for 
the nine repeated experimental results as shown in Figure 12. 

 
Figure 12. Linear fitting of nine repeated experiments. 

The linear fitting formula f(x) = 0.009854x + 0.04817 can be obtained. The R-squared value is 
0.9919, which means that there is a good linearity between the normalized RMSD index and loading 
value. These results can be good evidence for the good reliability of the proposed method. 

It should be noted that the distribution of steel fibers in steel fiber concrete is uneven [49]. The 
uneven distribution of steel fiber may cause the RMSD value discrepancy of different specimens with 
same steel fiber content. In addition, the proprieties of dielectricity and piezoelectricity of each smart 
aggregate are not the same. Therefore, although with the same steel fiber content, the sensibility of 
each smart aggregate is different. The above experimental results demonstrated that, for one specific 
smart aggregate, the stability and good linearity show that the proposed technique has good 
repeatability and reliability. For field implementation, each smart aggregate will be individually 
calibrated to obtain the relationship between the EMI value and the applied load. 
  

N
or

m
al

iz
ed

 R
M

SD
 in

de
x 

f(x)= 0.009854x+0.04817 

R-square: 0.9919 

Figure 11. The impedance-based normalized RMSD index of 9 repeated experiments.

As shown in Figure 11, the repeated testing results demonstrate that the normalized RMSD indices
vary within a small range for different loading cases. The largest discrepancy is no more than 10%,
which is in the loading case of 60 kN. The repeated experimental results clearly show the repeatability
of the proposed method.

In order to demonstrate the reliability of the proposed method, data fitting was conducted for the
nine repeated experimental results as shown in Figure 12.
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The linear fitting formula f(x) = 0.009854x + 0.04817 can be obtained. The R-squared value is
0.9919, which means that there is a good linearity between the normalized RMSD index and loading
value. These results can be good evidence for the good reliability of the proposed method.

It should be noted that the distribution of steel fibers in steel fiber concrete is uneven [49].
The uneven distribution of steel fiber may cause the RMSD value discrepancy of different specimens
with same steel fiber content. In addition, the proprieties of dielectricity and piezoelectricity of each
smart aggregate are not the same. Therefore, although with the same steel fiber content, the sensibility
of each smart aggregate is different. The above experimental results demonstrated that, for one
specific smart aggregate, the stability and good linearity show that the proposed technique has good
repeatability and reliability. For field implementation, each smart aggregate will be individually
calibrated to obtain the relationship between the EMI value and the applied load.
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6. Conclusions and Future Work

This paper addressed two important issues related to PZT-enabled electromechanical impedance
(EMI)-based structural health monitoring of steel fiber concrete structures. The first is how the axial
load affects the EMI values and the second is how the steel fiber content impacts the EMI values.
To address these two issues, 50 MPa strength concrete cube specimens (150 mm × 150 mm × 150 mm)
with different steel fiber content (0, 30, 60, 90, 120) (kg/m3) were fabricated and tested under the
axial loads of 0, 20, 40, 60, 80, and 100 kN, which ensured the specimens deformed within the elastic
range of strains. The elastic loading range prevents damage to the steel fiber concrete specimens and
narrows the influencing factor to only the axial load for a test period when the load is increased from
0 kN to 100 kN. Each specimen was equipped with an embedded smart aggregate with a 15 mm ×
15 mm × 1 mm PZT patch as its core. During each test period, the PZT EMI measurements were
acquired through an impedance analyzer. Experimental results clearly demonstrated that the axial
load greatly influences the EMI value and the effect of axial load should be considered for EMI-based
structural health monitoring of concrete structures. Experimental results also clearly revealed that
the fiber content, normally at a small mass and volume percentage, has no obvious effect on the EMI
values. Experiments to test the repeatability of the proposed method were conducted. The repeating
test results show that the EMI-based indices are repeatable and there is a great linearity between the
NI and the applied loading. As an important finding of this research, if an impedance-based index
is used for structural health monitoring, the index should be corrected by subtracting the increase
caused by the applied load. To address the issue of discrepancy in practice, we will calculate the mean
value of the specimens with the same fiber content, and this mean value will be used for the correction.
Future work will be the study of the discrepancy among specimens with the same fiber content. For the
next step, we will investigate the feasibility of electromechanical impedance (EMI)-based steel fiber
concrete structure damage monitoring. It will be an interesting topic for future work to study the
effect of loading rate or unloading rate on the impedance response. In addition, we will study the
effectiveness of SA-enabled EMI in a complex state of stresses.
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