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Abstract: In this contribution, a fault-tolerant control strategy for the longitudinal dynamics of an
autonomous vehicle is presented. The aim is to be able to detect potential failures of the vehicle’s
speed sensor and then to keep the vehicle in a safe state. For this purpose, the separation principle,
composed of a static output feedback controller and fault estimation observers, is designed. Indeed,
two observer techniques were proposed: the proportional and integral observer and the descriptor
observer. The effectiveness of the proposed scheme is validated by means of the experimental
demonstrator of the VEDECOM (Véhicle Décarboné et Communinicant) Institut.
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1. Introduction

The development of autonomous vehicles is enjoying a huge infatuation among the scientific
community around the world. Hence, the research projects are globally intended to reduce traffic
accidents, cut down fuel consumption and increase the efficiency of transportation systems, as well
as passengers’ safety. In fact, vehicles’ automated systems have seen a significant advancement in
a few decades, and several commercial cars are equipped with smart ADAS systems. Additionally,
some leading companies around the world have shown promising results of fully-autonomous driving
vehicles, such as the Google Car, Cruise of GM and the Tesla Autopilot. From this perspective, the
SAE On-Road Automated Vehicle Standards Committee assessedr the classification of autonomous
vehicles [1]. The Information Report provides a taxonomy for motor vehicle automation ranging
in level from no automation to full automation. Thus, high levels of automation (namely 4 and 5)
exclude the driver as a fall-back solution and must operate under specific environments (Level 4) or
in all possible situations (Level 5), by ensuring autonomous monitoring of the surrounding area, the
performance of the sensors and the algorithms and by deciding on the actions to maintain the vehicle
in a safe state. Consequently, the monitoring of the performance of vehicle sensors is critical, as long
as the entire operation of the car depends deeply on the sensors’ information. Indeed, the sensors’
reliability is a serious concern, especially since the architecture of an autonomous vehicle includes the
tasks of: perception, localization, planning, control and system management, which share information
with each other [2]; that is why a single faulty task can result in the dangerous behaviour of the vehicle.

From this perspective, it is necessary to design a fault tolerant control mechanism that can diagnose
faults and preserve a safe vehicle behaviour even under faulty or degraded sensing. Furthermore,
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the designed fault tolerant mechanism must meet the requirements of the complexity of the high
vehicle dynamics.

The fault tolerant control field has been an active research area. It is based on the inter-connection
between the domains of system modelling, control theory and fault diagnosis. Several techniques
and methodologies have been inventoried in review papers [3–21]. Mainly, there are two major
branches of fault tolerant control, techniques that need a system analytical model and techniques
that do not. Hence, methods without models are simple to synthesize and implement. On the other
have, they have some issues in the event of transient faults, where the controlled closed loop system
tends to dampen the effects of faults, and so, simply checking the size of the output signals does not
give reliable insight into the overall system health [22]. Advances in the control theory field have
boosted the development of mathematical modelling, made possible with recent computer technology.
Hence, the model-based techniques provide a significant robustness against exogenous disturbances
and structural model uncertainties, thanks to the H∞ and Lyapunov techniques. Further, exploiting
analytical dynamic relations leads to estimated variables that cannot (or their dedicated sensors are
expansive) be measured [23].

Moreover, looking at road death casualties, the human driver is mostly responsible, and the
automated system may, hypothetically, decrease the number of deaths on the road by 90% [24]. Further,
the report of the French Inter-ministerial Office of Road Safety pointed out that speeding was one of
the main causes of accidents in French roads for the year 2015 with about 32% of the cases. Indeed,
speed control and regulation are critical in such automated systems [25]. Hence, the automated vehicle
must have the ability to adjust its speed keeping, and, subsequently, a safe distance behind the front
vehicle. This safe distance is a sufficient condition to immediately stop the vehicle if the front target
stops rapidly, avoiding the collision. Thus, it is clear that inaccuracies or faults in the vehicle speed
sensor can corrupt the inter-distance, leading to injurious control actions [26]. The problem of the
vehicle speed sensor reliability belongs to the general family of proprioceptive fault diagnosis for
which several techniques have been presented in the literature. The main methodologies aim to take
advantage of the model-based techniques, mainly because of their robustness. Main methodologies
aim to take advantage of the Model-Based techniques, mainly because of their robustness. In fact,
the fault diagnosis task can be performed by using a large panel of methods, such as the parameter
estimation (mainly for process faults), that exploit the the input/output pair to estimate the process
model, and judge later whether the estimated parameters are more or less close to the parameters of
the nominal case [27]. An other manner to proceed, is the design of a residual generator matrix using
parity equations. Thus, the generated residuals give indications of the health of the diagnosed system,
in such a way that if they are null it implies that there is no fault, contrariwise, if they are non null, one
can conclude that some faults occurred [28]. Both aforementioned techniques can diagnose a fault, but
they lack in robustness by leading to false alarms, due to the fact that they have a threshold, and the
robust design of one threshold ensuring a global operating range is a harsh task. Thus, fault estimation
observers appear to be an advantageous tool. Additionally, the reduced order observers can estimate
states which dedicated sensors are very expensive, and can thereby, replace this expensive sensors.
Several techniques of observers were presented in the literature recently, thus, it can be cited non
exhaustively: the Unknown Input Observer (UIO) [29–31], Disturbance Observer [32,33], Descriptor
Observer [34–36], Kalman Filtering variants [37–39]. As aforementioned, the main purpose of this work
is to counteract the sensor faults of an autonomous vehicle. The proposed scheme in this paper aims to
overcome the proprioceptive additive faults, with its three different forms (abrupt fault, intermittent
fault and incipient fault) [40], as they occur with a far higher probability than multiplicative faults [41].
Furthermore, it is assumed in the designed scheme that there are no occurrence of parametric (tire
deflation) and actuator (motor abnormalities) faults when the vehicle is operating.

The remainder of this paper is divided into the following sections: Section 2 describes the problem
that we will be undertaking and the theoretical methods, while the experiments are described in
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Section 3. Section 4 shows the experimental results and discussions. Concluding remarks of this
contribution are given in Section 5.

2. Materials and Methods

To tackle the probable proprioceptive sensor faults, an active fault tolerant strategy based on the
separation principle is designed. The FTC scheme consists of: a Static Output Feedback controller
(SOF) and a fault estimation observer. Hence, the SOF ensures the tracking of the reference speed, and
it is designed in the nominal case (faultless scenarios). The aim of the separation principle is to keep
the controller running always in the nominal case, even if faults are occurring. This is made possible
by subtracting the estimated fault from the measurement signal, in such a way that the controller uses
a healthy speed signal (see Figure 1). The proper functioning of the proposed scheme is ensured by the
robustness of the controller and the perfect fault estimation provided by the observer [23].

Figure 1. Adaptive Cruise Control (ACC) fault tolerant paradigm.

In this study, we are interested in designing a controller and two observers for the vehicle
longitudinal dynamics in the Adaptive Cruise Control (ACC) driving scenario. Furthermore, the
single track representation is advantageous in ensuring simplicity. The vehicle dynamics relies on the
following assumptions [42–44]:

• The road is assumed to be a plane (no slope, no inclination);
• The lateral dynamics is not considered;
• Yaw, pitch and roll dynamics are neglected.

Considering the above assumptions, the longitudinal vehicle dynamics can be expressed by the
following equations (see Figure 2):

mV̇x(t) = ∑4
i=1 Fxi (t)− Fa(t)

J̄ri ω̇ri (t) = Tm(t)− rFxi (t)− rFri (t)− Tbi
(t), i = 1, 2

Jri ω̇ri (t) = −rFxi (t)− rFri (t)− Tbi
(t), i = 3, 4

(1)

where the vehicle parameters are expressed in Table 1. Adopting a single track modelling by defining:
Tb f

= Tb1 + Tb2 , Tbr = Tb3 + Tb4 , Tr f = r(Fr1 + Fr2), Trr = r(Fr3 + Fr4), Fx f = Fx1 + Fx2 , Fxr = Fx3 +

Fx4 , ω̇r f = ω̇r1 = ω̇r2 , ω̇rr = ω̇r3 = ω̇r4 , J̄r = J̄r1 + J̄r2 , Jr = Jr3 + Jr4
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We obtain the following equation:
mV̇x(t) = Fx f (t) + Fxr (t)− Fa(t)

J̄rω̇r f (t) = Tm(t)− rFx f (t)− Tr f (t)− Tb f
(t)

Jrω̇rr (t) = −rFxr (t)− Trr (t)− Tbr (t)

(2)

Table 1. Vehicle parameters.

Notation Definition Unit

m Vehicle mass kg
Vx Vehicle speed ms−1

Fxi Tire/road force of the i-th wheel N
Fa Aerodynamic force N
J̄r Global inertia of the front axle kg·m2

J̄ri Inertia of the i-th front wheel kg·m2

ω̇ri Acceleration of the i-th wheel rad·s−2

Tm The engine torque Nm
r The tire radius m

Fri The rolling force of the i-th wheel N
Tbi

The braking torque of the i-th wheel Nm
Tr f /Trr The rolling torque of the front/rear axle Nm

Jr Global inertia of the rear axle kg·m2

Jri Inertia of the i-th rear wheel kg·m2

Figure 2. Vehicle longitudinal dynamics.

Substituting Fx f and Fxr in Equation (1) leads to:

mV̇x(t) =
1
r
[Tm(t)− Tb f

(t)− Tbr (t)− Tr f (t)− Trr (t)− J̄rω̇r f (t)− Jrω̇rr (t)]− Fa(t) (3)

The longitudinal slip ratio hypothesis can be written as:

λ =
rωr −Vx

max(rωr, Vx)
= 0

leading to rωr = Vx, then rω̇r = V̇x. Substituting ω̇r in (3), we obtain:

(m +
J̄r + Jr

r2 )V̇x(t) =
1
r
[Tm(t)− Tb f

(t)− Tbr (t)− Tr f (t)− Trr (t)]− Fa(t) (4)

Denoting Tb = Tb f
+ Tbr , Tr = Tr f + Trr , we get:

JeqV̇x(t) = Teq(t)− aVx(t)− bV2
x (t) (5)
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where Jeq = (rm +
J̄r + Jr

r
), Teq = Tm − Tf − Tr, Fa = aVx + bV2

x and a and b are aerodynamic
coefficients. Teq is the torque given by the engine and the brake system; its dynamics is subject to loss
and to a decay rate. To overcome this problem, we assume a first order dynamics, with a time constant
τ [26]:

Ṫeq(t) =
1
τ
(−Teq(t) + u(t)) (6)

Finally, the vehicle longitudinal dynamics is given in the quadratic form by combining (5) and (6)
as follows:

[
V̇x(t)
Ṫeq(t)

]
=


−a
Jeq

1
Jeq

0
−1
τ

 [
Vx(t)
Teq(t)

]
+

 0
1
τ

 u(t) +

−b
Jeq
0

V2
x (7)

The model (7) can be written in the following Lipschitz nonlinear form:{
ẋ(t) = Ax(t) + Bu(t) + Gg(x(t))

y(t) = Cx(t)
(8)

with: x =

[
Vx

Teq

]
, A =


−a
Jeq

1
Jeq

0
−1
τ

, B =

 0
1
τ

, G =

−b
Jeq
0

, g(x) = V2
x , C =

[
1 0

]
.

Taking into account the exogenous disturbances:{
ẋ(t) = Ax(t) + Bu(t) + Gg(x(t)) + Wd(t)

y(t) = Cx(t)
(9)

where d(t) is the disturbance signal and W the disturbance distribution matrix of the appropriate
dimension.

In order to design the controller and the observers, we adopt the following hypothesis and
algebraic lemmas:

Hypothesis 1. The nonlinear terms are considered to be a smooth Lipschitz function satisfying the
following relation:

||g(x1)− g(x2)|| ≤ l||x1 − x2|| (10)

where x1, x2 ∈ Rn and l is a positive Lipschitz constant.

Hypothesis 2. The sensor faults fs(t) and the exogenous disturbances w(t) are assumed to be bounded:{
|| fs(t)|| ≤ fmax

||w(t)|| ≤ wmax
(11)

where fmax and wmax are constant scalars.

Lemma 1 (Schur complement). Given the matrices S ∈ Rn×n, M ∈ Rn×m and Γ ∈ Rm×m, the following
implication holds [45]:

S + MΓ−1MT < 0, Γ < 0⇔
[

S M
MT Γ

]
< 0 (12)
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Lemma 2. Consider matrices A, B and a scalar δ; the following inequality holds [32]:

AT B + BT A ≤ δAT A + δ−1BT B (13)

Lemma 3 (Elimination lemma). Assume matrices Q ∈ Sn, B ∈ Rm×n and C ∈ Rp×n. Thus, the following
statements are equivalent [46]:

• (B⊥
T

QB⊥ < 0 or BT B > 0) and (C⊥
T

QC⊥ < 0 or CTC > 0);
• ∃ K ∈ Rp×m : Q + CTKB + BTKTC < 0.

2.1. Static Output Feedback Controller Design

The controller must ensure a robust tracking of the reference signal against mismodelling
dynamics and model noises. Indeed, for the sake of convenience with the separation principle,
the SOF controller is designed in this subsection. In fact, this control technique is more appropriate
with the longitudinal vehicle dynamics model. The output feedback theory is an active research area,
and several works are presented in the literature [47]. These works aim to overcome the multiple
challenges of the output feedback methodology.

In order to design the SOF controller, we rewrite the system (3) in the following form:
ẋ = Ax + Gg(x) + Bu + Ww

z = Czx + Bzu + Wzw

y = Cx + Wyw

(14)

where z is the performance output vector, with Cz, Bz and Wz being matrices of appropriate dimensions.
The stabilizable static output feedback controller is given by:

u = −KSOFy (15)

The real problem of the static output feedback control design lies in the difficulty of designing
the gain KSOF when the matrix C is singular (as in our case). To deal with this issue, the system
parametrization of Lemma 4 is adopted [48].

Lemma 4. The parametrization of System (14) minimizing an optimal H∞ criterion γ2
00 for a SOF controller is

given by:

ℵ(P∞) =


δ00l2 Ī00 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −δ−1

00 I

+

[
A W B G
I 0 0 0

]T [
P∞ 0
0 P∞

] [
A W B G
I 0 0 0

]

+

[
Cz Bz Wz 0
0 0 I 0

]T [
I 0
0 −γ2

00 I

] [
Cz Bz Wz 0
0 0 I 0

] (16)

Proof. Let us consider the following relation:

J =:V(P∞) + J(δ−1
00 )

=:xT P∞x +
∫ ∞

0
(zTz− γ2

00wTw)dt
(17)

Deriving the relation (17) yields:

J̇ =: ẋT P∞x + xT P∞ ẋ + zTz− γ2
00wTw (18)
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Developing (18), by using the model (14), gives:

J̇ =:xT AT P∞x + uT BT P∞x + gT(x)GT P∞x + wTWT P∞x

+ xT P∞ Ax + xT P∞Bx + xT P∞Gg(x) + xT P∞Ww + xTCT
z Czx + xTCT

z Bzu

+ xTCT
z Wzw + uT BT

z Czx + uT BT
z Bzu + uT BT

z Wzw + wTWT
z Czx

+ wTWT
z Bzu + wTWT

z Wzw− γ2
00wTw

(19)

Based on Hypothesis 1 and Lemma 2, the relation (19) can be written in the quadratic form of (20).

J̇ =:

x
u
w


T AT P∞ + P∞ A + δ00l2 Ī00 + δ−1

00 P∞GGT P∞ P∞B P∞W
BT P∞ 0 0
WT P∞ 0 0


+

CT
z Cz CT

z Bz CT
z Wz

BT
z Cz BT

z Bz BT
z Wz

WT
z Cz WT

z Bz WT
z Wz − γ2

00 I


x

u
w


(20)

Using the Schur complement, we obtain:

J̇ =:


AT P∞ + P∞ A + δ00l2 Ī00 P∞B P∞W P∞G

BT P∞ 0 0 0
WT P∞ 0 0 0
GT P∞ 0 0 −δ−1

00 I



+


CT

z Cz CT
z Bz CT

z Wz 0
BT

z Cz BT
z Bz BT

z Wz 0
WT

z Cz WT
z Bz WT

z Wz − γ2
00 I 0

0 0 0 0


(21)

The expression (16) can be obtained easily after that concluded from (21) by factorization, and
that ends the proof.

Using the compact form of parametrization lemma, the optimal control gain is then obtained by
the following theorem:

Theorem 1. The system (14) is stabilizable by the static output feedback controller KSOF, and minimizing a
H∞ criterion γ2

00, if there exist, a positive semidefinite matrix P∞ ∈ R2×2, matrices Q00 ∈ R1×1, Q01 ∈ R1×1,
KSF ∈ R1×2, Kw ∈ R1×2 and scalars δ00 and γ00, such that the following constraints are satisfied [48]:

min
P∞ ,Q00,Q01,Kw ,KSF

subject to

γ2
00

P∞ ≥ 0,

ℵ(P∞) +H




KT
SF

KT
w
−I
0

 [
Q00C Q00Wy Q01 0

] ≤ 0

(22)

The static output feedback controller can finally be deduced by: KSOF = −Q−1
01 Q00.
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Proof. Taking advantage of the parametrization lemma (Lemma 4), the closed loop formulation of the
static output feedback H∞ control problem can be written as follows:

min
P∞ ,KSOF
subject to

γ2
00

P∞ ≥ 0,
I 0
0 I

−KSOFC −KSOFWy

I 0


T

ℵ(P∞)


I 0
0 I

−KSOFC −KSOFWy

I 0

 ≤ 0

(23)

By application of Lemma 3, we obtain:

min
P∞ ,KSOF ,F∞1,F∞2,Q01

subject to

γ2
00

P∞ ≥ 0,

ℵ(P∞) +H




FT
∞1

FT
∞2
−Q01

0

 [
KSOFC KSOFWy I 0

] ≤ 0

(24)

Factorizing the matrix Q01 in (24) (Note that for this purpose, the matrix Q01 must be invertible.
This exigence is verified, since the block (3, 3) of (24) reads Q01 + QT

01 < 0.), we get:

min
P∞ ,KSOF ,F∞1,F∞2,Q01

subject to

γ2
00

P∞ ≥ 0,

ℵ(P∞) +H




QT
01FT

∞1
QT

01FT
∞2

−I
0

 [
Q01KSOFC Q01KSOFWy Q01 0

] ≤ 0

(25)

LMI summarised in Relation (22) can be easily deduced from Relation (25), by taking the following
notations: KT

SF = QT
01FT

∞1, KT
w = QT

01FT
∞2, Q00 = Q01KSOF.

Remark 1. It is clear that Theorem 1 is a non-convex optimization problem, and its solution seems to be non
trivial. To overcome this issue, an initialization of the variables Kw and KSF can be obtained reasonably by
solving the following H∞ optimal problem [48]:

min
X∞ ,K∞1,K∞2,Y,δ01

subject to

γ2
01

X∞ ≥ 0,
H(AX∞ − BY) + δ01l2 Ī01 W + BK∞1 (Cz + BzK∞2)

T G
∗ −γ2

01 I (Wz + BzK∞1)
T 0

∗ ∗ −I 0
∗ ∗ ∗ −δ−1

01 I

 ≤ 0

(26)

Finally, we obtain: KSF = YX−1
∞ and Kw = K∞1.
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Proof. For brevity, the proof is omitted here, but the reader can refer to [48] and the references
therein.

The cross-decomposition Algorithm 1 to design the optimal static output feedback controller is
then given as follows:

Algorithm 1 The cross-decomposition algorithm.

1. Initialization step (k = 1): solve LMI (26) and choose KSF and Kw;
2. Iterative step (k):

(a) first part: solve LMI of Theorem 1, and fix Q01 and Q00;

(b) second part: solve LMI of Theorem 1, and fix KSF;

3. Final step: if γ
part 1
00 − γ

part 2
00 < ε then choose KSOF = −Q−1

01 Q00, else k = k + 1 and return to
Step 2.

where ε is a desired performance determined by the designer.

2.2. Proportional and Integral Observer Design

The proportional and integral observer has been broadly developed and applied in recent years
for the topic of fault diagnosis and fault tolerant control [49]. It has a strong ability in obtaining fault
information, such as the size and the shape. Indeed, the additive sensor fault can be estimated for the
faulty system of the following form:{

ẋ = Ax + Gg(x) + Bu + Ww

y = Cx + F fs
(27)

where fs is the additive sensor fault and F is the fault matrix distribution.
The proportional and integral fault estimation observer of the system (27) is described by [50]:{

˙̂x = Ax̂ + Gg(x̂) + Bu + Lp(y− Cx̂− F f̂ )
˙̂fs = LI(y− Cx̂− F f̂ )

(28)

To calculate the observer gains Lp and LI , we adopt the following considerations:

• The estimated state error e is defined as e = x− x̂;
• The estimated fault error e f is defined as e f = fs − f̂s;

• The free fault case ( fs = 0), residual signal r, is defined as r = N1(y− ŷ) =

[
N1

0

] [
C 0

] [ e
e f

]
=

N1C0

[
e
e f

]
(where N1 ∈ R2×1 is a weighting matrix to be designed).

By taking into account the latter considerations, the dynamics of estimated state error and
estimated fault error are written:{

ė = (A− LpC)e + Gg̃ + Ww− LpFe f

ė f = ḟs − LICe− LI Fe f
(29)

where g̃ = g(x(t))− g(x̂(t)). Based on (28) and (29), an augmented system of the following form can
be written: {

Ż1 = (A−LC)Z1 +Gg̃ +Ww̃

Ż2 = AZ2 +LCZ1 +Gg(x̂) +Bu
(30)
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where:

Z1(t) =

[
e
e f

]
Z2(t) =

[
x̂
f̂s

]
A =

[
A 02×2

02×2 02×2

]
(31)

L =

[
Lp

LI

]
C =

[
C F

]
B =

[
B

02×1

]
(32)

G =

[
G

02×1

]
W =

 W 02×2

02×3

[
0
1

] w̃ =

[
w
ḟs

]
(33)

In order to make the residual signal r insensitive to external disturbances w, we propose the
following property:

Property 1. The H∞ criterion ensuring the disturbances rejection is written as follows [51]:∫ ∞

0
(rTr− γ2wTw)dt ≤ 0 (34)

Theorem 2. The nonlinear Lipschitz Proportional and Integral Observer (28) is asymptotically stable, if there
exist positive definite matrices P1 and P2, matrices U1, U2 and N1 and positive scalars δi, (i = 1, 2), λ and γ,
such that the following LMI is verified: [

Σ11 Υ11

∗ Ξ11

]
≤ 0 (35)

P−1
1 U1 = P−1

2 U2 (36)

and:

Σ11 =

[
AT P1 + P1A−CTUT

1 + δ1l2 Ī CTUT
2

U2C AT P2 + P2A+ I + δ2l2 Ī

]
(37)

Υ11 =

[
0 P1W P1G CT

0 NT
1 0

P2B 0 0 0 P2G

]
(38)

Ξ11 =


−λ2 I 0 0 0 0

0 −γ2 I2 0 0 0
0 0 −δ−1

1 I 0 0
0 0 0 −I 0
0 0 0 0 −δ−1

2 I

 (39)

Finally, the observer gains are calculated:

L = P−1
1 U1 (40)

Proof. Consider the following multiple Lyapunov function, where matrices P1 = PT
1 and P2 = PT

2 are
symmetric definite positive matrices:

V = ZT
1 P1Z1 + ZT

2 P2Z2 > 0 (41)
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Deriving (41) and using Property 1 and L2, based on Lyapunov theory, we obtain:

ŻT
1 P1Z1 + ZT

1 P1Ż1 + ŻT
2 P2Z2 + ZT

2 P2Ż2 + rTr + ZT
2 Z2 − λ2uTu− γ2wTw ≤ 0 (42)

Using Hypothesis 1 and Lemma 2, we get:
Z1

Z2

u
w̃


T 

∆1 CTLT P2 0 P1W
P2LC ∆2 P2B 0

0 BT P2 −λ2 I 0
WT P1 0 0 −γ2 I2




Z1

Z2

u
w̃

 ≤ 0 (43)

and:

∆1 = H(P1(A−LC)) + δ1l2 Ī + δ−1
1 P1GGT P1 +CT

0 NT
1 N1C0 (44)

∆2 = H(P2(A)) + δ2l2 Ī + δ−1
2 P2GGT P2 + I4×4 (45)

Remark 2. The matrix Ī is the consequence of applying Lemma 2 and Hypothesis 2; it characterizes in
which system states the nonlinearities are applied. On the other hand, the residual signal is rewritten to fit
in the dimension with the expression (42), in such a way that: C0 =

[
C 01×2

]
and NT

1 =
[

NT 0T
2×1

]
.

Additionally, the matrix I2 is written as follows:

I2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Using the Schur Complement (Lemma 1) three times and denoting U1 = P1L, U2 = P2L yields

the LMI constraints of (35)–(39), and that ends the proof.

2.3. Descriptor Observer Design

The descriptor observer is based on the descriptor systems approach. The idea is to assume the
additive sensor faults as a system state, in such a way that the resulting augmented system represents
a descriptor system. Thus, the descriptor observer tends to estimate physical system states and the
additive faults thanks to the appropriate gain matrices [52].

In order to design the descriptor observer, the system (27) is rewritten in the following
augmented form: {

E ˙̄x = Āx̄ + Ḡg(x) + B̄u + W̄w + F̄ f̄s

y = C̄x̄ = C0 x̄ + f̄s
(46)

with: x̄ =

[
x
fs

]
, E =

[
I 0
0 0

]
, Ā =

[
A 0
0 0

]
, Ḡ =

[
G
0

]
, B̄ =

[
B
0

]
, W̄ =

[
W
0

]
, F̄ =

[
0
I

]
, f̄s = F fs,

C̄ =
[
C F

]
, and C0 =

[
C 0

]
.

The nonlinear Lipschitz descriptor observer leading to the estimate of the system states and the
sensor faults is written as follows: {

Ēż = Sz + Ḡg(x̂(t)) + B̄u(t)
ˆ̄x = z + Ly

(47)

z is an internal variable, S =

[
A 0
−C −I

]
, L =

[
0
I

]
, Ē =

[
I + ΘC Θ

RC R

]
, where Θ and R are chosen in

such a way that Ē is nonsingular.
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Let us define the error e = x̄− ˆ̄x and the free faults’ residual r = N2(y− ŷ) = N2C0e (where N2 is
a weighting matrix to be designed). Indeed, the following error dynamics:

ė = S̃e + G̃g̃ + W̃w (48)

with g̃ = g(x(t)) − g(x̂(t)), S̃ = Ē−1S =

[
A + ΘR−1C ΘR−1

−CA− (R−1 + CΘR−1)C −R−1 − CΘR−1

]
,

G̃ = Ē−1Ḡ =

[
G
−CG

]
, W̃ = Ē−1W̄ =

[
W
−CW

]
.

From (27) and (48), we have the following augmented system:[
ė
ẋ

]
=

[
S̃ 0
0 A

] [
e
x

]
+

[
G̃ 0
0 G

] [
g̃

g(x)

]
+

[
0
B

]
u +

[
W̃
W

]
w (49)

The stability of the system (49) is ensured, using Property 1, and the L2-gain form, if the LMI
condition summarized in the following Theorem holds:

Theorem 3. The nonlinear augmented Lipschitz descriptor system is asymptotically stable, if there exist positive
definite matrices P̄11, P̄12, and P̄2, matrices N̄1, N̄2 and N2 and positive scalars λ̄, γ̄ and δi(i = 3, 4), such that
the following LMI condition is satisfied: [

Σ22 Υ22

∗ Ξ22

]
≤ 0 (50)

and:

Σ22 =

Φ11 Φ12 0
∗ Φ21 0
∗ ∗ Φ31

 (51)

Υ22 =

 0 P̄11W P̄11G CT NT
2 0

0 −P12CW −P̄12CG 0 0
P̄2B P̄2W 0 0 P̄2G

 (52)

Ξ22 =


−λ̄2 I 0 0 0 0
∗ −γ̄2 I 0 0 0
∗ ∗ −δ−1

3 I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −δ−1

4 I

 (53)

Φ11 = H(P̄11 A) +H(N̄1C) + δ3l2 Ī + I

Φ12 = N̄1 − ATCT P̄T
12 − CT N̄T

2

Φ21 = −H(N̄2) + I

Φ31 = H(P̄2 A) + δ4l2 Ī + I

The estimated fault is written as follows:

f̂s = −(FT F)−1FT ˆ̄fs (54)

where:
ˆ̄fs =

[
0 I

]
ˆ̄x (55)
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Proof. Consider the following Lyapunov function, where P̄1 = P̄T
1 > 0 and P̄2 = P̄T

2 > 0 are symmetric
definite positive matrices, of appropriate dimensions:

V(e(t), x(t)) =

[
e
x

]T [
P̄1 0
0 P̄2

] [
e
x

]
≤ 0 (56)

Deriving (56) and using Property 1, as well as the L2-gain form, we obtain:

V̇(e(t), x(t)) + rTr + xTx− γ̄2wTw− λ̄2uTu (57)

Using Hypothesis 1 and Lemma 2, Equation (57) can be written as follows:
e
x
u
d


T 

Γ1 0 0 P̄1W̃
∗ Γ2 BT P̄2 P̄2W
∗ ∗ −λ̄2 I 0
∗ ∗ ∗ −γ̄2 I




e
x
u
d

 < 0 (58)

with:

Γ1 = H(P̄1S̃) + δ3l2 I + δ−1
3 P̄1G̃G̃T P̄1 + CT

0 NT
2 N2C0 + I

Γ2 = H(P̄2 A) + δ4l2 II+ δ−1
4 P̄2GGT P̄2 + I

Using the Schur complement twice:

Γ′1 0 0 P̄1W̃ P̄1G̃ CT
0 NT

2
∗ Γ2 BT P̄2 P̄2W 0 0
∗ ∗ −λ̄2 I 0 0 0
∗ ∗ ∗ −γ̄2 I 0 0
∗ ∗ ∗ ∗ −δ−1

3 I 0
∗ ∗ ∗ ∗ ∗ −I


< 0 (59)

where Γ′1 = H(P̄1S̃) + δ3l2 Ī + I.

Substituting S̃, G̃ and W̃ by their values and taking P̄1 =

[
P̄11 0
0 P̄12

]
, N̄1 = P11ΘR−1 and N̄2 =

P12(R−1 + CΘR−1) implies:

Φ11 Φ12 0 0 P̄11W P̄11G CT NT
2

∗ Φ21 0 0 0 0 0
∗ ∗ Γ2 BT P̄2 P̄2W 0 0
∗ ∗ ∗ −λ̄2 I 0 0 0
∗ ∗ ∗ ∗ −γ̄2 I 0 0
∗ ∗ ∗ ∗ ∗ −δ−1

3 I 0
∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (60)

Using the Schur complement yields the LMI constraint of (50).

3. Experimental Bench

This section is devoted to the evaluation of the proposed fault tolerant scheme through a real
driving scenario data. For that purpose, the VEDECOM demonstrator is used (you can refer to Figure 3).
This demonstrator, is a bi-mode electric and connected vehicle. Further, it is based on a Renault Zoe
electric vehicle, and equipped by VEDECOM teams with several autonomous requirements equipments
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as Lidar (Velodyne VLP-16, VELODYNE LIDAR Inc., San Jose, CA, USA), Radar (Continental ARS-3XX
series, CONTINENTAL AG, Hanover, Germany), GPS-RTK sensors and a DSpace MicroAutoBox
(MABx) real time embedded computer. The wheel speeds, the motor speed and the steering wheel
angle are measured by the sensors embedded in the vehicle architecture for ABS (Anti-lock Brake
System) and ESP (Electronic Stability Program).

Figure 3. (a) The VEDECOMdemonstrator. (b) Hardware platform of the vehicle demonstrator.

The experiments were conducted on the Satory test track (see Figure 4). The approach consists of
self-driving mode, obeying a given reference speed profile, and in addition, recording the measured
speed, the acceleration and braking torques of the vehicle, thanks to the CAN bus. This experimental
data help us to validate the proposed fault tolerant scheme. Proceeding in this way allows us to
properly evaluate our FTC proposition.

Indeed, this methodology provides us the assurance that the lateral dynamics (which has
not been taken into account in the model dynamics) do not influence the longitudinal speed and
fault estimations.

Figure 4. Aerial view of the Satory test track.

The fault tolerant strategies are tested in the real-time software RTMaps (See: https://intempora.
com/products/rtmaps.html for more details), which is a modular toolkit for multi-modal applications
and provides simplicity to test and validate ADAS and autonomous driving applications. Thus,
RTMaps modules of the observers are build from the MATLAB/Simulink scheme. The build task is
made with respect to the sampling time of the sensor measurements; to this end, the C++ compilation

 https://intempora.com/products/rtmaps.html
 https://intempora.com/products/rtmaps.html


Sensors 2018, 18, 1893 15 of 24

builder and the Simulink blocks are set to the same sampling time of the measurement logged data, in
our case 10 ms.

Nevertheless, before the building of the modules, the LMI conditions of Theorems 2 and 3 are
solved in order to obtain the SOF controller DO and PIO gains. These gains, as well as the Lyapunov
matrices are given in Appendix A.

4. Experimental Results and Discussions

4.1. Descriptor Observer Results

We want, through this manoeuvre, to give an outline of the autonomous vehicle driving in the
case of stop and go. Initially, the vehicle has a velocity of 1 m/s. Then, the vehicle accelerates to reach
the speed of 5 m/s. At t = 60 s, the vehicle carries out a deceleration until stopping, and thereafter,
at t = 80 s, the vehicle accelerates to reach a velocity of 10 m/s at t = 110 s. On can note that both
estimated and measured speed are identical, which proves the convergence of the observer in a finite
time with a negligible steady state error.

As we can notice through Figures 5–7, the measured signal and the estimated one are
simultaneously represented. The following remarks can be deduced:

• The estimated states (speed, equivalent torque and fault) converge quickly toward the real states;
• The performances obtained are good in dynamic, as well as in static output;
• The observation errors are steered to zero in finite time;
• The estimated vehicle speed seems to be insensitive to the fault variation and, so, in different

phases of the considered driving scenario (accelerating phase, decelerating phase and constant
speed phase).
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Figure 5. (a) Speed profile of the vehicle with the descriptor observer. (b) Zoom in at t ∈ [45 s, 50 s].
(c) Zoom in at t ∈ [165 s, 175 s].
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Figure 6. (a) Torque evolution of the vehicle with the descriptor observer closed loop FTC. (b) Zoom in
at t ∈ [42 s, 48 s]. (c) Zoom in at t ∈ [163 s, 170 s].
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Figure 7. The additive fault with the descriptor observer closed loop FTC.

Moreover, the estimated torque tracks the vehicle control torque with a high attenuation level of
the disturbances as depicted in Figure 6a–c.

4.2. Proportional and Integral Observer Results

The proportional and integral observer is tested in identical conditions as previously in terms of
driving manoeuvre and fault type.

Thus, as depicted in Figure 8a–c, the estimated vehicle speed tracks the measured vehicle speed
with attenuation of the disturbances.
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Figure 8. (a) Speed profile of the vehicle with the proportional and integral observer closed loop FTC.
(b) Zoom in at t ∈ [45 s, 50 s]. (c) Zoom in at t ∈ [165 s, 175 s].

Additionally, the estimated torque with the proportional and integral observer converges to the
control torque (see Figure 9a–c). Furthermore, the estimated fault with the proportional and integral
observer struggles to converge in the event of abrupt additive fault variations. In fact, the variations at
t = 60 s, t = 100 s and t = 160 s generate a small fault estimation error that needs time to be cancelled
(see Figure 10).
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Figure 9. (a) Torque evolution of the vehicle with the proportional and integral observer closed loop
FTC. (b) Zoom in at t ∈ [42 s, 48 s]. (c) Zoom in at t ∈ [163 s, 170 s].
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Figure 10. The additive fault with the proportional and integral observer.

4.3. Comparison of the Two Observers

Globally, the two observers have shown a high ability to detect and estimate the additive sensors
faults, since the separation principle is applied to both observers and the same control approach is
designed based on Lyapunov theory.

In fact, the estimated equivalent torque comparison between descriptor observer and proportional
integral observer is depicted in Figure 11a. From this figure, we can note that the descriptor observer
has a significant disturbance attenuation level compared to the proportional and integral observer.
Further, we can notice that the abrupt additive fault variations affect the estimated equivalent torque,
as shown in Figure 11b,c. Additionally, estimation error is very small with the proportional and
integral observer and negligible with the descriptor observer.

In fact, Figure 12 shows the comparison between the two observers fault estimations, and the
Figure 13 shows the comparison of the fault estimation error. One can notice that the descriptor
observer estimated fault state tracks the emulated one where the performances are good in dynamic,
as well as in static output. On the other hand, the proportional and integral observer seems to present
a small estimation error. This error is the consequence of the abrupt variations in the additive fault,
and it is due to the proportional and integral observer scheme.
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Figure 11. (a) Comparison of the vehicle estimated torque with the two observers. (b) Zoom in at
t ∈ [58 s, 70 s]. (c) Zoom in at t ∈ [98 s, 108 s]

The difference between the descriptor observer and the proportional and integral observer in
performing fault estimation is due to the nature of the last one. In fact, in a real-time environment,
the numerical integration may not be achievable and lead to a highly time-consuming process, thus
generating significant estimation errors. However, the vehicle speed estimation by the two observers
presents no significant difference (see Figure 14a–c). Indeed, the speed estimation error comparison
given in Figure 15 shows a negligible estimation error (around 0.4 ms−1).
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Figure 12. Comparison of the estimated additive fault with the two observers.

Time (s)

40 60 80 100 120 140 160 180

Fa
ul

t (
m

s-1
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fault Estimation Error (PIO) Fault Estimation Error (DO)

Figure 13. Comparison of fault estimation error between the two observers.
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Figure 14. (a) Comparison of the vehicle estimated speed with the two observers. (b) Zoom in at
t ∈ [45 s, 50 s]. (c) Zoom in at t ∈ [165 s, 175 s].
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Figure 15. (a) Comparison of speed estimation error between the two observers. (b) Zoom in at
t ∈ [166 s, 169 s]. (c) Zoom in at t ∈ [110 s, 112 s]

4.4. FTC Results

In order to test the proposed FTC scheme, the closed-loop approach is designed by numerical
simulations using MATLAB/Simulink. Furthermore, the proposed adaptive cruise control FTC
(depicted in Figure 1) is simulated with the same scenarios of the speed profile and fault.

Indeed, Figure 16a shows the speed profile of the vehicle in blue, which tracks the reference
speed in red with the descriptor observer closed-loop FTC. In fact, the vehicle speed is well estimated
as shown in the figure (the green line). In addition, the estimation of the additive fault is given in
Figure 16b, where we can see a good estimation. On the other hand, the speed profile of the closed-loop
FTC with the proportional and integral observer is shown in Figure 16c. The designed static output
feedback control shows the good tracking performance of the reference speed. Indeed, the estimated
speed converges to the estimated one. Figure 16d shows the estimation of the additive fault given by
the proportional and integral observer.
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Simulations have been carried out to illustrate the ability of this approach, to give the good
performance of the states’ estimation and FTC control scheme design in scenarios of autonomous
driving. From this prospect, the tests on the vehicle prototype will be implemented.
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Figure 16. Speed profile( (a) with descriptor observer, (c) with proportional and integral observer) and
fault estimations ( (b) with descriptor observer, (d) with proportional and integral observer) of the
simulated closed-loop FTC scheme.

5. Conclusions

The purpose of the proposed study is the sensor fault tolerant design of an autonomous vehicle.
The designed theory is based on the separation principle. This approach consists of the design, in a
separate manner, of a controller (a static output feedback) and a sensor fault estimation observer (a
descriptor and a proportional and integral observer). Indeed, this methodology is easy to implement
where the controller and observers are considered in a convex LMI optimization problem, avoiding in
recourse to the use of the complex Bilinear Matrix Inequalities (BMI) in the case of an observer-based
controller concept design. The experimental results of the proposed scheme show a high ability in
estimating the additive fault and in maintaining a safe operating behaviour. Additionally, the designed
observers have accurately estimated unmeasurable vehicle states (the vehicle equivalent torque), and
this ability may be interesting when we do not need to measure a vehicle side slip angle for example
or avoiding the design of cascading observers; this is made possible by the Lipschitz model used in
this designed control approach. Thus, all vehicle dynamics that can be in Lipschitzian form are eligible
for the method studied in this paper. The obtained successful experimental results will represent the
basis of our future works in the design of fault detection for vehicle exteroceptive sensors (such as
radars, LiDARs and cameras) and where the accurate proprioceptive informations must be highly
accurate and fault tolerant. Afterwards, the robustness against parameter uncertainties will be taken
into account; thus, the vehicle will be able to operate in all conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

SAE Society of Automotive Engineers
ADAS Advanced Driver-Assistance Systems
FDD Fault Detection and Diagnosis
FTC Fault Tolerant Control
LMI Linear Matrix Inequality
BMI Bilinear Matrix Inequality
MABx MicroAutoBox
LTI Linear Time Invariant
DO Descriptor Observer
PIO Proportional and Integral Observer
SOF Static Output Feedback

Appendix A. The Different Gain Matrices

To solve the LMI conditions of Algorithm 1 and Theorems 2 and 3, we use the penlab solver
running under the yalmpi environment of MATLAB. The LMI solutions are given as follows:

• The static output feedback controller:

The optimization is run for an objective of ε = 0.1 and took eight steps.

The state feedback gain is obtained with a H∞ criterion of γ01 = 0.7071, δ01 = −1.4758× 104

and matrices: K∞1 =
[
751.2876 22.5961

]
, K∞2 =

[
−165.1174 −35.3645

]
, Y = 103 ∗[

1.3924 0.0005
]

and X∞ =

[
0.5 0
0 0.5

]
.

Thus, the initializing state feedback gain is given:

KSF = YX−1
∞ = 103

[
2.7847 0.0011

]
.

At the end of the algorithm, the H∞ criterion of the the two parts is given: γ
part 1
00 = 1.0087,

γ
part 2
00 = 1.0857.

The the static output feedback control gain is given:

KSOF = −19.0598.

• The proportional and integral observer:

For an H∞ criterion of γ = 0.1484 with a L2 gain norm of λ = 0.1266, the proportional and
integral gains are given by:

Lp =

[
−2.1481
2.5996

]
, LI =

[
108.1434
15.7486

]
,

with the following positive semi-definite matrices:

P1 =


0.2900 −0.0532 0.0335 −0.0283
−0.0532 0.2859 −0.0382 0.0225
0.0335 −0.0382 0.1614 −0.0425
−0.0283 0.0225 −0.0425 0.2592

, P2 =


0.0706 0.0564 −0.0483 0.0281
0.0564 0.2008 0.0145 0.2503
0.0483 0.0145 0.1369 −0.1244
0.0281 0.2503 −0.1244 0.5916

,
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and:

δ1 = −0.0067, δ2 = 1.7229. U1 =


2.2977
−2.8020
16.5488
−0.4101

, U2 =


−4.7908
5.9063

12.9925
−3.5437

.

• The descriptor observer:

For an H∞ criterion of γ̄ = 0.0377 with a L2 gain norm of λ̄ = 0.0811, the descriptor gain is
given by:

R = 103 ×
[
−0.5974 1.3706
1.3685 −0.6446

]
, Θ =

[
−0.4480 −0.0088
0.0271 −0.4633

]
,

so that:

Ē = 103 ×


0.0006 −0.0000 −0.0004 −0.0000
0.0000 0.0005 0.0000 −0.0005
−0.5974 1.3706 −0.5974 1.3706
1.3685 −0.6446 1.3685 −0.6446

,

with the following positive semi definite matrices:

P̄11 = 103 ×
[

7.8343 0.3447
0.3447 7.8344

]
, P̄12 = 103 ×

[
7.8345 0.3448
0.3448 7.8344

]
, P̄2 = 103 ×

[
7.8197 0.2733
0.2733 7.8199

]
,

with:

N̄1 =

[
−1.7233 −3.3102
−3.3102 −1.4026

]
, N̄2 =

[
1.9811 4.0318
−4.0318 2.0544

]
, N2 =

[
0.9799 0

0 1.0011

]
, δ3 = 1.0010,

δ4 = 1.0100.
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