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Abstract: Although an automatic parking system has been installed in many vehicles recently, it is still
hard for the system to confirm by itself whether a vacant parking area truly exists or not. In this paper,
we introduced a robust vision-based vacancy parking area detecting method for both indoor and
outdoor environments. The main contribution of this paper is given as follows. First, an automatic
image stitching method is proposed. Secondly, the problem of environment illuminating change
and line color difference is considered and solved. Thirdly, the proposed algorithm is insensitive to
the shadow and scene diversity, which means the detecting result satisfies most of the environment.
Finally, a vehicle model is considered for tracking and reconfirming the detecting results to eliminate
most of the false positives.

Keywords: image mosaic; computer vision; parking area detection

1. Introduction

Since autonomous driving has become more and more popular in recent years, an automatic
parking system, as one of autonomous driving’s most typical components, has become a hot topic
both in research and volume manufacturing. Most of the automatic parking systems nowadays can
only be called semi-automatic because a parking area detection method using ultra-sonic signals
cannot even distinguish between a vacant parking area and a free space between two garbage bins.
As a result, consumers need to activate the system close to the parking area and confirm the vacancy
manually, which limits the application of this function. In this paper, a vision-based parking area
detection method with the fusion of ultra-sonic sensors is proposed to solve the detecting problem.
The reason why we choose vision is that a standard parking area always has specific marks around it,
which makes up for the uncertainty of the ultrasonic method. Usually, the image is obtained from the
fisheye cameras placed outside the vehicle, called a 360 surrounding view system [1]. In recent years,
many works have been done using this typical system, such as image enhancing [2], lane marking
detection [3], obstacle detection [4], etc.

2. Related Work

Some similar work has been done focusing on the parking area detecting and tracking problem.
The authors of [5] proposed a surround view camera synthesis algorithm, but most attention has been
paid to the color correction of the system only to makes the four images smoother for humans to see.
The authors of [6] implemented the system mentioned in [5] on an emended system board. In the
same year, The authors of [7] also gave a surrounding view camera solution for embedded systems,
mainly focusing on the geometric and photometric alignment. Similarly, although a Harris corner
detection [8] and BRIEF descriptor [9] based algorithm for images mosaicking is mentioned, not much
detail was given, including the most important part of residual optimization. The authors of [10], from
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Delphi Automotive, proposed an image stitching method based on traditional checkerboard calibration
and look-up tables (LUT). The obvious problem with this method is that a big check board is needed
and the position of placement is strictly restricted. In addition, the number of cameras is not easy to
expand for a bigger vehicle. The above works all focus on the image stitching problem without parking
area detection.

The authors of [11] proposed a visual-based free parking space detecting method. However,
they only focused on the simplest situations with only white parallel lines on the ground and without
mentioning the image stitching approach. The authors of [12] proposed a surrounding view-based
parking area detection and tracking algorithm, but the method only works when the ground is clean
without too many sundries or too much reflection of light like underground garages. In addition,
the algorithm does not distinguish a vacancy, which will cause problems in practice. The authors
of [13] introduced a complete system of using both a surround view system and an ultra-sonic method
to obtain parking spaces and their availability. They paid more attention to the detection problem,
but neglected the image stitching part. In addition, the paper only focused on an indoor environment
without demonstrating any results on the special ground with much linear texture like brick stone
ground. The authors of [14] introduced a method to detect available parking slots using around view
monitor (AVM), which is similar to our 360 surrounding view system. However, they only tested the
method in the place without ground reflection and without introducing their image stitching method.
The authors of [15] introduced a guideline based detecting method, but they did not solve the overlap
problem. In addition, they only tested their method in one environment. In conclusion, the difficulty
of this problem is as follows, and is illustrated in Figure 1.

Figure 1. Typical scenes for vision-based parking area detection using green and red to represent
vacancy or not. (a) Testing vehicle (b) Vertical parking areas in underground garage (c) Vertical parking
areas on marble ground (d) Vertical parking areas with brick texture and similar line and ground color
(e) Parallel parking areas on parquet ground (f) Parallel parking areas with strong shadow (g) Parallel
parking areas at night (h) Oblique parking areas.

(i) The method to calibration surrounding cameras in order to form the bird view of the environment

around the vehicle;
(ii)) Due to the severe change of the color and luminance caused by reflection of the ground in

garages, it is very hard to segment the image using RGB color.
(iii) Due to the great difference between the indoor and outdoor parking lots environment, it is very

hard to train a learning based classifier or match with template. For example, the line color of
the parking area can be any bright color compared with the ground color; the ground material
and texture may different greatly from each parking lot; the shadow on the ground really does
harm to the training accuracy;, etc.
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In this paper, the above difficulties are what mostly concern us. Solving these problems makes
up of the biggest novelties of this paper. In Section 2, the system overview is demonstrated including
sensor placement and a system diagram to give the reader a general idea of the system. In Section 3,
a method for camera automatic calibration and image mosaic is proposed to obtain the image for
parking area detection in the next few sections. In Section 4, a detailed algorithm for parking area
detection and tracking in a single frame is introduced. In Section 5, a vehicle model-based parking
area tracking and confirming method fusion with ultra-sonic are introduced. In Sections 6 and 7,
experiment results and the conclusion are demonstrated by tables and figures.

3. System Overview

In this section, the sensor placement and a general procedure of the system will be introduced
and demonstrated in Figure 2. The vehicle is equipped with four fisheye cameras with resolution
of 640 x 480, horizontal and vertical field of view (FOV) of 194°and 134°, respectively. The four
cameras are placed in the front, at the rear and at two sides of the vehicle. Thanks to their large FOV,
the overall view of the surrounding environment can be obtained without a blind point. However,
the serious distortion of the view results in the great loss of the structured information such as the
straight line, parallel and perpendicular. In addition, the vehicle is equipped with 12 ultra-sonic
sensors with a maximum valid detection distance of 3.5 m. The FOV of the front and rear eight sensors
are 100°, and the side four sensors 60°. Since the ultra-sonic is a simple and cheap sensor, it can
only obtain the relative distance of the obstacle within the FOV without any angle information. As a
result, it is used for fusion with the vision system to determine vacant areas. After four distorted
images are obtained from the cameras, an undistortion procedure needs to be carried out. We use
Apriltag [16], which is a kind of QR code, to calculate the homography matrix in order to obtain the
bird’s eye view. Simultaneously, with two cameras seeing at least one identical Apriltag, the external
parameters of cameras can be obtained automatically. These are all done automatically offline in the
calibration stage. With the real-time panorama image calculated by the gained homography matrix,
several steps will be operated to get the available parking area. There are two separate threads in
this system: the detecting thread and tracking thread. In the detecting thread, the modified line
extractor based on Line Segment Detector (LSD) [17] obtains the candidate parking slot line edges
in the beginning. Secondly, the parking corner extractor obtained the structured information of the
L-shaped components, which meets the specification of most of the parking areas. Thirdly, with the
L-shaped result detected in the current frame and tracked from previous frames, a search method
is proposed to obtained the candidate parking areas. In the tracking thread, a vehicle and Kalman
Filter-based algorithm is used to update the real position of every parking area and give them a
confidence score. Finally, with the help of an ultra-sonic and reconfirmation scheme, most of the false
positives that include unparkable areas will be removed to obtain the final detecting result.
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Figure 2. System diagram of parking area detection. Sensor placement is demonstrated in the dash
box where the red dots stand for ultra-sonic and blue areas stand for the undistorted FOV of the
surrounding cameras.

4. Surrounding Camera Image Stitching

In this section, a method for surrounding camera automatic panorama is proposed based on
Apriltag—a practical and robust method of camera pose estimation. Since the surrounding cameras
are fisheye ones with serious distortion, although wide vision is available, it is necessary to undistort
the image before applying Apriltag for homography matrix calculation. Although there are many
algorithms like [10,18-21] to get panorama images of a 360 surrounding view system, almost all of them
need complex steps and big calibration fields. In addition, one of the biggest problems is that they are
only suitable for four-camera calibration. If there is a truck or bus that needs more than four cameras,
the method becomes invalid. So, a description of how to build a multi-camera automatic stitching
system is given as follows. Assume the ground is planar and we have n cameras to calibrate. First,
the intrinsic parameters of each camera are calibrated separately for image undistortion. Next, n big
Apriltags are put approximately in the center of camera view on the ground and #n small ones are put in
the junction area that can be seen by two cameras. Finally, the panorama image will be output directly.

4.1. Apriltag

Apriltag [16] is an opensource robust and lightweight visual fiducial system. It is designed to
recognize artificial landmarks. Each landmark has a full six degree of freedom (DOF) pose. This system
includes four subsystems, a robust line detection system, a precious quadrangle detection system,
a strong digital coding system, and a 6-DOF localization system. Many further applications can be
developed based on this system. For example, its coding system can be used to generate user interfaces
that overlay robots’ plans and task assignments onto a head-mounted display [22]. Its localization
system can be used for a visual fiducial of the Visual-Inertial Motion Capture system [23], used to
generate ground-truth robot trajectories and close control loops [24], or used to evaluate Simultaneous
Localization and Mapping (SLAM) algorithms under controlled algorithms. Compared with previous
methods (including ARTag [25] and Studierstube Tracker [26]), this visual fiducial has a small payload,
but also can be detected and localized even though the original image has a very low resolution.
The environment is at non-uniform illumination, the tag is oddly rotated and a large area is occluded
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and tucked away in a corner. In brief, it has a strong robustness to false positives arising from natural
imagery and significantly higher localization accuracy than previous systems.

4.2. Image Stitching

After n undistorted images are obtained, three Apriltags can be detected in one image, as is shown
in Figure 3. The biggest one in the middle is what we choose to calculate homography. In this paper,
the center of the rear axle of the vehicle is chosen to be the origin point Oyy. The only thing needed for
the measurement is the position of one of the n bigger Apriltags related to Oy. For the ith camera,
four corner points of one Apriltag is enough to solve the Homography matrix H;, which can transform
the image to a bird’s eye view Z; by equation x’ = H;x, where x and X’ are the pixel points before and
after perspective transformation. We denote each corner point of n small Apriltags which can be seen
by two cameras as (ui]-, vij), where i is the ith tag and j = 0,1, 2, 3 means the index of the corner points.
For the same point in two cameras, the distance error is defined by Equation (1).

T
T
errjy = ‘ (uio, vi0, 1) = T; (u(i+1)0r D(i+1)0r 1) 1
2
cosAB; —sinAbf; Ax;
where T; = sinAf; cosA8; Ay; | . Ax; Ay;, A; represent the translation and rotation values

0 0 1
of camera i to camera i + 1. Thus, mosaicking n cameras can be defined as an optimization problem
with Equation (2), which actually minimizes the sum of all the distance errors.

1
arg min EHPlanl_AlanlZnP/lznxlHz ()
Ax;, Ay, Ab;

where P= (MOQ, v00, 1, Uop1, 901, 1,.., u(n_1)3, v(n—l)B/ 1) ’ and p/ = (”10/ 010, 1,u11,911,1, ..., o3, 003, 1)T
are made up of all the corner points of smaller Apriltags. A =
diag (To, To, To, To, ..., Tn—1, Ty—1,Ty—1, Ty—1) is a diagonal matrix consists of the 3 x 3 rotation and
translation matrices of cameras adjacent to each other. After Equation (2) is solved, the prior that n
cameras form a closed loop is used to average the residual to every node. Here, the left-top point
of Zy and its orientation according to the vehicle Oy is denoted by &y = (xow, Yow, fow ). For each ¢;
and ¢;;1, the error matrix can be defined by Equation (3), and the optimization function is defined by
Equation (4). The overall stitching procedure is demonstrated in Figure 4.

e = B-b
cosAB; —sinAf; 0 —Ax;
_ sinAf; cosAf; 0 —Ay;
B= 0 o 1 0 ®)
0 0 0 1

b= (x(i+1)w —Xiw, Y(irnyw — Yiw, Oirnyw — Oiw, 1)

1
arg min EeiTei 4)
xiw Yiw Biw
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Figure 3. From left to right is the procedure of image undistortion and perspective transformation.
The bigger Apriltags indicated with the red box are used to calculate the homography matrix.
The smaller Apriltags indicated with the green box are used to montage images.

(b)

Figure 4. (a) General camera model. Nodes represent the positions of the cameras. Edges represent
transferal of position from every two adjacent cameras. (b) Example of a four-camera panorama system.
(c) Example panorama result of a four-camera system.

5. Parking Space Detection in a Single Frame

In this section, parking area detection in a single frame contains the following subsections,
including a modified line extractor based on LSD, L-shaped corner extractor for parking area entry
point detection and a parking area searching method. The reason why we choose a line extractor
rather than a traditional color segmentation method is that the gradient-based method is more robust
for a specific color threshold, since the line color of the parking area in a single frame may differ
greatly, causing a luminance change or shadow. An L-shaped structure is the most common style
of the parking area line mark in the world. By locating the L-shaped corners, parking areas can be
searched though proper combinations.

5.1. Line Extractor

One familiar line extractor method is known as Hough Transform (HT) [27], but HT performs
well only when the line is straight and long. The situation in this paper is different as the parking area
line marks may be short and discontinuous. Due to the poor quality of the on-vehicle camera and the
changeable environment, HT easily fails, and is quite hard to adjust parameters. Therefore, a gradient
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based line descriptor is chosen to solve the problem. For the mosaic image Z(*) obtained at time
t, a procedure including converting RGB color to gray scale, erode and dilate with a median filter

is applied to the source image to get the preprocessed image denoted as Z;(f,)e Afterwards, an LSD
descriptor is apphed to I,(,rz, with default parameters to obtained a set of line segment L. For each line
L®in L, Pst {x,y} and 736 y {x y} stands for the start and end point of L(). Here, the start point is set
to the left of or above the end point by swap (P(t), 77( )) when P( x> P(d) x or 73( ! P(d) x and

s
S(t) Y>> P(d) .. The angle of the i*" line segment is denoted by «(!). The L is divided into 20 groups
by an angle which is denoted by {Lo,L;, - -, Lig}. For every two lines LE,,) and L,(n) in groups Ly,
the Dis (L,(ﬂ), (] )) is calculated to estimate if L,(n) and L(] ) need to be combined into a new line, which is
defined by the following Equation (5) and demonstrated in Figure 5.

Dis (L,S?,L,S{)) —05 (Dis (’PS(Z),L( )) + Dis (PS(t),L(f))), ®)

st 7
are defined as: containing, overlap and disjoint, which is demonstrated in Figure 6. The position

(/)

is used to determine whether two line segments Lg,? and L;;” need to combine or not. In situation
(a) and (b), if Dis (Ps(tl), L(j)> < w which is a small threshold of the line distance, combination is

where Dis (73( L (')) is the distance from point Lg) to line LU). Here, three positions of two lines

needed. In situation (c), if Dis (PS(P, Pe(;)) < y which is a small threshold of the point distance,
(i)

combination is also needed. The combination result is to renew L,

farthest points chosen from PS(Z ), e(é), ’P(t), Pe(é), ( ) and ’P( i) . After the procedure of combination

to a line segment between two

is finished, the line width threshold nmmsand Hmax 1s used for deleting very far away line tuples, and
the line groups are renewed to the line tuple which {Lgf;), L%)} may be the candidate edges of line
marks. Finally, the color change from inside of the line tuple to outside will be taken into consideration.
In this paper, we assume that the color of the parking area line mark is brighter than the ground color.
Thus, the color of the middle line of the tuple (L,(f ), L,(,g )) is compared with the one out of the tuple,

which is defined in Equation (6) and demonstrated in Figure 7,

1n—1 0) 1 m—1 1)
. ZC {xi,yi}—a ;J CWx,yi}| <e

i=0

(6)

1= 15 0s
. 2 {xi,yi}—% Y O {x,yi}| >
i=0

i=0

where m,n,k € 7, C(9 {x;,y;} is the gray pixel value on middle line of the tuple at position (x;, y;)
and C(%/1) {x;,y;} is the gray pixel value on two sides of the candidate line edges. The distance between
(1)

two adjacent lines equals Dis (Lg,? ), L;; ) . ¢ and ¢ are color thresholds, where ¢ is close to zero, and ¢
needs to be as large as possible, theoretically.

5.2. L-Shaped Corner Extractor

From the above subsections, candidate parking area edged lines are detected and represented
: 0) (1) 0) (1) (0) (1) :
in the tupleset § (L, Ly’ ), (L; ", Ly ), (Ly’, Lin ,m € Z, which means there are m probable

parking area line marks in Z(/). Considering that an L-shaped structure is the key feature of the
parking area, the method to detect and locate it is what we focus on in this subsection. First, a T-shaped
structure should be detected, which is the base of the L-shaped one. Each element of the tuple
set is replaced by the middle line in order to form the new tuple with proper intersection angle.
The original line set arranged by angle is now replaced by the middle line of the parking area line
mark denoted as {L,;;g0, Lyig1, - - - Limiq19}. The segments are grouped by angle to accelerate the
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search for the segment with proper intersection angle. In addition, throughout the above operation,
each element L; contains only the most probable line marks. In this paper, considering most of the
situations in China, we choose the angle difference of two searching group to be 54°, 90° and 126°.

(i) )

Without losing generality, we use L, ;) and L, -, to introduce the algorithm of an L-shaped corner

extractor. Four situations are illustrated in Figure 8a,b distinguished from each other by the position of
the intersection point 73.(” ) (x,y) of Lf;) 10 and LY 3 -

e Insituation (a), P ) ¢ Lfnz 74 and Pmt ¢ Lml a0+ 1f

int

mas (Dis (P11, P3)  Dis (P, P0)) > 7, .
min <DIS (P( 7 P(t'())) Dis ("P(Z]) Pe(dz))) <A,

int’" s int ’
judging if Dis (Pz&t)',Ps(tjzi) > 7, make an L-shaped tuple £%) {{Pi(,i]t‘),’l’s(fg} , {Pi(rz),Pe(Z} },
where 7 is the minimum length of one parking side. Usually, this value is smaller than the reality
because not all of the four sides are closed. A stands for the maximum gap tolerance from the

)

intersection point to the nearest end point of L, ; 40

e  Situation (b) is 51m11ar to (a)
e Insituation (c), 77 §€ Lm i and P (i) ¢ LY

int

mid0* If

1])

max (Dis (P mt,Ps(t ).Dis (P, Pi)) > .
max (Dis (P{), PL}) , Dis (P, P ) ) > =,
min (Dis( i (),),DIS( int 7 edO)) <A N
min (Dis (P4, P4}) Dis (P, PYL)) < A,

add a new tuple £¥) { {79-(1.].) 735(;())} p {’P(Z]) Pe(dl}} to L-shaped set.

nt ’ int /

e Insituation (d), 7J € LY and 77(1”) LY) . The distance of ’P( 7 to each end point of Lf:lz 10

mt mid4 in mde
and L(] ) .44 Needs to be calculated. If Dis (73(1] ) PS%> > T and Dis (P(l] ) PE(Z) > 7, add a new

int ’

tuple £ {{P-(l]) 735(“))} , {P(l]) Pe(dzl}} to L-shaped set.

nt ’

int ’

nt ’

Figure 5. Result of line combination Left: before combination Right: after combination.
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Figure 6. Three positions of two lines with red dashed lines indicating the line combination result
(a) containing (b) overlap (c) disjoint.

Figure 7. Method to determine the candidate line edge by average pixel gray value.

L(r:1)id 0

— [

,1:‘ :Pint Ped Pst VPif“

SONENS

(i)
I—mid4 /) 7)ed (D

@ )
o

) |Q

Yol Vol
(© (d)

Figure 8. Four situations that can form an L-shaped structure are demonstrated in (a,b). The red dots
represent the virtual or actual intersections of two lines with distance tolerance value A. The attribution
Pst, Pint, Peg of L) are always clockwise. Four situations of L-shaped structure to form temp parking
spaces are demonstrated in sub-figures (a-d). In sub-figure (d), L-shaped structures in each temp
parking space are also clockwise. The red rectangle in (c,d) is the situation that an error detection
occurred without removing an L-shaped structure between spaces.

int

int
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5.3. Candidate Parking Area Searching Method

After the L-shaped set £ {E(O), £, @ . cm } ,m € 7 is obtained, parking areas containing
at least two L-shaped structures will be extracted. In this subsection, a searching algorithm is proposed
for the candidate parking space detection. At first, a four-L-shaped structure is used to represent a temp
parking space denoted by tpksps() {E(O), £M, @), 6(4)} , in which £ to £() are anti-clockwise,
and then parallelogram constrain is applied to solve the final position of four parking points denoted
by pksps() {p(m,p(n,p(z),p@)}

As is demonstrated in Algorithm 1, for every two elements £(), £U) € L, it is necessary to judge
whether they can form a new temp parking space or should be added to the existing one in array
tpksps. Thus, Function IsNewTempPkSp proposed with current L-shaped structure £(), the number
of temp parking spaces n as input and ¢pksps as both input and output. Two initial position relations
of £() and £) are defined to be the possible parking spaces by Equations (9) and (10), where s_tz is the
vector from £ .pin, to L) pg;, & is a fault-tolerant value close to zero, Angle (-) returns vector angle
€ [0,180], Dis (-) returns point-point, point-line and line-line distance, according to its input value
type. Both £()) and £1) are needed for comparison with all the detected temp parking spaces. The ith
temp parking space tpklots [i] may consist of two, three or four L-shaped structures. According to the
pre-defined position relationship above, only if £ satisfies every L-shaped structure in tpklots [i]
can it be added to tpklots [i], otherwise £()) and £() forms a new temp parking space. In addition,
to avoid the false detection in Figure 8c,d, it is necessary to make sure that there is no other LK)
between £() and £U) almost on the same line, which is defined by Algorithm 2 IsNewTempPkSp.
After finishing searching for all of the elements in £, real parking spaces with parallelogram constrain
will be calculated by their center ¢, width w, length [, acute angle of parking space «, angle of positive
x-axis and first side parallel with it through clockwise spinning 6. In Figure 8a, center point c is
estimated by using the minimum parking length.

e situation £, £0) adjacent
Angle (s ie

)7
Angle < i )
Dis (sti,gj) =

Dis (E(i).pint,/j(j).pint) < Dis (E(i).pst,ﬁ(j).ped>

e situation L), L) opposite

J/
~
. <

©)

Angle (5F,,5) — 7 = ¢

Angle (ed; ed;) = ¢

Dis (C(i).pint, E(j).pint) Dis (E(i).pst, E(j).pst)
Dis (L( ) Ping, L) Pmt) > Dis (['(i)-ped/['(j)-ped)

(10)
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Algorithm 1: algorithm parking space search.

Input: £

Output: pksps

1 Initiate pkspsMAX], n = 0;

2 for i < 0 to length of L do

3 for j < i+ 1tolengthof L do

4 if not IsCornerWithin( £(), £()) then
5 L continue;

6 if IsNewTempPkSp L), pksps, n and IsNewTempPkSp LU), pksps, n then
7 if £, £0) s adjacent then

8 LO)[pksps[n]] « L£);

9 LB [pksps[n]] « LY);

10 n<—n+1;

1 else if £, £U) is opposite then

12 LO)[pksps[n]] « L£);

13 L@ [pksps[n]] + £,

14 n—n+1;

Algorithm 2: IsNewTempPkSp( L, pksps, n ).

fori < Otondo

1
2 | Initiatetldx[4] = { -1 -1 -1 -1} ;

3 Initiate idx = 0,icnt =0 ;

1 for j <~ Oto4do

5 if j = 0 and L is adjacent to £LU) and £®) is empty then

6 L tldx [j] < 3;

7 else if L is adjacent to L1) and LU~ is empty then

8 | tldx[j] « j—1;

9 else if j < 2 and L is opposite to L) and £LU+?) is empty then
10 L tldx [j] < j+2;

1 else if j > 2 and L is opposite to £L1) and £U~2) is empty then
12 | tldx[f] « j—2;

13 for! < 0to4do

14 if tIdx [j] # —1 and icnt = 0 then

15 idx < tldxtldx [j];

16 icnt < icnt +1;

17 else if tIdx [I] # —1 and tIdx [I] = idx then

18 L icnt < icnt +1;

19 if icnt = 2 and pksps [i] already has two adjacent L

20 or icnt = 2 and pksps [i] already has two opposite L

21 or icnt = 3 then

2 LU4%) [pksps [i]] + L;

23 return false;

24 B return true;

25 return true;
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6. Parking Space Tracking and Parkable Confirmation

In this section, a vehicle kinematics model [28] and Kalman Filter [29] based parking space
tracking algorithm is proposed, which can be divided into three parts: introduction of vehicle model,
a method to observe parking space on the premise of single frame detection results obtained above and
a confidence level calculating scheme. In addition, parkable confirmation method of every detecting
result is introduced as the last part of this section.

6.1. Vehicle Model

In this subsection, we introduce a vehicle model, which measures the vehicle speed v and steering
wheel angel J with fixed intervals At, typically at 100 hertz. It assumes Gaussian noise g for vehicle
speed and steering wheel angle measurement. This can be formulated by Equation (11),

V=0+qy,6=03+q;s (11)

Since vehicles always move a short distance when the system is trying to initialize, we assume
the motion of the vehicle in initialization procedure is planar. Based on Ackermann steering geometry,
the center P of circular is known as Instantaneous Center of Rotation. This can be formulated in
Equation (12) and shown in Figure 9

o=T1YP
r=1/tand
AB = vAt/r , (12)

AX =71 (1—cos(Af))
AY = rsin (A)

where 1 is the steering angle measurement. T is transmission ratio from steering wheel to tire angle
whose value is usually around 1/16. r is instantaneous radius of the rotation. v is the velocity of rear
axle center. Af is the heading increment in a period of At. AX and AY are the lateral and longitudinal
distance increment relative to Af.

Y A

ol

Figure 9. Ackermann vehicle model. [ is the vehicle wheel base. v is velocity of rear axle center. ¢ is the
tire angel. P is the instantaneous center of rotation.

6.2. Parking Space Tracker

The vehicle kinematics model is the basic model to describe vehicle motion. Considering the
cumulative error of the vehicle model, it is unreliable to use only this information to estimate the
real position of each parking space. Thus, measurement data is introduced to stabilize the system
by Kalman Filter. Measurement data consists of two situations, namely, the single frame detection
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mentioned above and estimation from one L-shaped structure. Since the center, angle and size of
each parking space has been obtained, it is possible to use only one L-shaped structure to estimate the
updated position. This is useful, especially when the L-shape is obscured during a parking procedure.
Therefore, there are in total five situations in which a parking space is detected corresponding to the
number of L-shaped structure and their position relationship, respectively. With the vehicle kinematics
model, a parking space can be updated by Equation (13)

S (N+M) = Raxa (2xn—Taxn) Uaxm, (13)
Onim = (O — 1y - AQ) U0,

where c is the 2 X N center point matrix in former frames. ¢ is the newly detected 2 x M center point

matrix in the current frame different from c. R is the 2 x 2 rotation matrix C?S (46) * —sin (A6)
sin (Af)  cos (A)

T is the 2 x 1 translation matrix [AX, AY]T, At is the processing period.

Observation is introduced when the same parking space is detected. In the section, the Extended
Kalman Filter (EKF) is used to track the vehicle position. With the incrementation between two update
periods, AX, AY, Af can be obtained to update the position of every parking space. The prediction
model is given in Equations (14) and (15).

_W (sin (0) +sin (9 + ¢ tan (Tw))>

_ T
Pt = -1+ Fy W (cos (6) — cos (9 + 28 tan (Tl[)))) , (14)
”TAt tan (Ty)
¥ = Gi%1Gl 4+ FIR'F,, (15)
where ut = [po, P1, - P, xU]T is state vector, x, = [x,y, 6] is vehicle state, p; = [cx, ¢y, ¢, w, ] T is the ith
() -
parking space, Fx = [I3x3,03x5n], Gt = 9x ) , Xt is predicted covariance. The correction
0  Isnxsn

procedure is given as follows. If the parking area i did not appear before, its position can be calculated
by (13). If it is already in the map, the observation equation is defined by Equation (16)

N>
)4
Il
=
=
|
=
Q
=
~

(16)

where 2! is the observation vector, p; and x, are the state vectors mentioned above. With the observation
equation, Kalman gain K! can be calculated with the classic EKF model, by taking a partial derivative
with respect to the state variables. Through traversal all of the detected parking areas, the predicted
state i, and covariance ¥, are updated in each iteration. In practical application, the number of
historical parking spaces N are limited to a small quantity to ensure a low computational cost.

6.3. Parkable Area Detection

If only parking lines are taken into consideration, it is impossible to decide whether the detecting
result is vacant or not. If we choose a pure visual method to train a vacancy model, the algorithm will
be very time consuming and need a powerful CPU or even GPU. In addition, the ground situation
is very complicated, such as random light reflection, texture and color caused by different ground
material and unknown objects rather than vehicles inside the parking area, etc. Even if we have a big
number of training samples, it is easy to cause over-fitting since the samples have too much noise.
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As a result, sensor fusion is our best choice. We use the ultra-sonic method to judge if the visual
detecting results are parkable according to the nearest obstacle distance to the side of the ego vehicle.
Through integration vehicle speed over time, the discrete distance obtained by a single side sonic
sensor can form the tendency of the obstacles next to the ego vehicle. The visual detecting results will
be shrunk or abandoned with consideration of obstacle positions, which is demonstrated in Figure 10.

Here, the obstacle distance obtaining from the ultra-sonic is modeled as a point denoted by
pr =[xy
distance from the original point of the vehicle. Without losing the generality, we take the right front
sonic sensor as an example. Assume we already have the set of historical points obtained from t — n

, where t is current time stamp, x is the distance to the obstacle, y is the longitudinal

to t — 1 denoted by P;_1 = [pt—n, Pt—n+1,---» Pt—1]- The update method of the obstacle distance obtain
from the sensor is denoted by P; = F (Rax2 (Pt—1 — Tax1lixn) U pt), where F is a filter function to
smooth the points. In this article, a simple medium filter is selected. Ry 2, T2 are the rotation and
translation matrix of the vehicle mentioned in Section 5.2. Through traversing P, if distance jump
happens on the main direction or its normal direction, which is fit from set p using Random Sample
Consensus (RANSAC), the intersection part of the vacancy and the visual parking area is used to judge
whether the parking area is vacancy or not, which is demonstrated in Figure 10.

Position of the Ultra-
sonicin the example

5

|
I
I
vacancy : '. main drirection
ole
: ie ". Distance jump on the
L)
:& | ‘ PO ~~ normal direction
° ]
@) : Ego-vehicle ° ot
| - Distance
| jump on
E | the main e
. : direction
° | K
L] | : :
° | L
| pt—n+1'
I Pine
(b) ()

Figure 10. Parkable detection with an ultra-sonic sensor. In (a), the black box is the vision detecting
result. By fusion with sonic data, the parkable area shrinks to the green area. In (b), the parking area
detected by the camera has a car parking in it. Therefore, the result needs to be abandoned. In (c),
vacancy area is obtained by taking the example of the right-front sensor. The blue points are the
historical points obtained by the right-front sensor integrated over time.

7. Experiment

The experiments setup includes two parts: sensor placement and datasets. The databases
used in our experiments were acquired by a 360 surrounding camera system and ultra-sonic
sensors. The camera system contained four fisheye cameras with a resolution of 640 x 480@30 FPS.
The panorama image resolution is 500 x 500. The eight front and rear ultra-sonic sensors cover
a range of 20-350 cm with an FOV of 90 degrees. The four side ultra-sonic sensors cover a range
of 20-500 cm with an FOV of 50 degrees. The vehicle speed during the experiments was around
0-20 km/h. The sensor placement was demonstrated in Figure 2. Since all the data has been collected
from a real-time system with the real processors, sensor positions and acquisition frequency, it is
confirmed that the experiment setup is equivalent to the real-time application. We choose three typical
parking scenes to test the algorithm proposed in this paper, including underground parking lots with
white and yellow lines (UG), ground daytime (GD) and ground nighttime (GN). UG has 537 parking
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areas with 227 vacancies. GD has 336 parking areas with 144 vacancies. GN has 124 parking areas with
98 vacancies. In order to test the robustness of our proposed algorithms. The datasets we use contain
different light conditions, ground materials, parking mark colors and garage types. The proposed
detection and tracking methods were implemented in C++ language, and their execution times were
measured on both 3.19 GHz Intel Core i7-4700MQ CPU and a NVIDIA TX1. The parameters we used
in the experiments are shown in Table 1.

The detecting results of three datasets compared with ultra-sonic methods and pillar-based
method in [13] are shown in Tables 2—4 and Figure 11. All the best results are highlighted in bold style.
GD performs best among all of the datasets. The recall and precision are up to 0.9097 and 0.9632. Due
to the ground reflection and some unclear marks, the detection result of UG are a little poorer than GD.
Since our proposed algorithm is a vision-based method, poor light conditions in GN caused much
more miss-detection than the other two datasets. Thanks to the headlight and reduction of speed, our
proposed fusion algorithms are proven to work much better than conventional ultra-sonic methods.
The recall and precision are 0.7959 and 0.9398, respectively. We have realized the pillar-based methods
proposed in [13] to evaluate on our three datasets. Since this method is only adaptive to indoor and
underground environments, GD gets the highest performance. The recall evaluated on our datasets
are 0.8018, 0.7719 and 0.4388. There are three primary reasons causing this result. First, in our datasets,
the pillow structure is different from that in [13]. Guild lines in [13] are solid lines, while we have
dashed lines in most of the cases, which will cause failure in the “Guild Line Detection” part. Second,
the ground reflection is much more serious in GD. The reflection causes many noise points in gradient
calculation. Although RANSAC is utilized, the miss detection is still inevitable. Consequently, treating
every L-shaped structure as the separate subassembly of one parking area in our proposed method
shows much better robustness when some L-shaped structure fails to be detected. Usually, L-shaped
structure of the outdo/or parallel parking areas are even farther from each other with disturbance of
shadow. In addition, the assumption of opposite gradient direction does not work in the situations
demonstrated in Figure 11c. However, since our proposed method needs to be adaptive and robust
to different environments, our precision on three datasets are 0.9381, 0.9632, 0.9398, respectively and
method in [13] are 0.9783, 0.9703, 0.9677, respectively. This is one of the limitations of our method.
Figure 12 also shows the circumstances that our method currently does not support. There are three
errors in (a) including the left one caused by miss detection of the L-shaped structure and the right
two false positives caused by disturbance white lines on the ground. Fortunately, the left false positive
is eliminated by ultra-sonic sensor fusion method.

Figure 13 shows a typical tracking period. With the help of a vehicle model, the parking area can
be tracked even if all of the key L-shaped structures are lost. A rectangle without a cross in it means
that it is a pure tracking result. The number in the middle indicates the confidence score of every
frame. The score is continuously reducing when tracking in case a new detection has occurred. Since it
is difficult to measure error when the vehicle is moving, we stop the vehicle to do the measurement.
The relationship between error and distance from the ego vehicle is shown in Figure 14. The average
location and orientation error are 8.5 cm and 2.8°, and the max location and orientation error are
33.9 cm and 10.2°. Error mostly comes from the image mosaicking and vehicle motion tracking
model. The max error always happens when the parking area is far away from the vehicle, and the
error usually increases with an increase in the distance between the ego vehicle and the parking area.
In practical use, the accuracy of detecting and tracking is important, especially when the ego vehicle is
close to the parking space. So, we just evaluate the distance from about 0-10 m.

The processing time of one frame is about 50 ms on Intel CPU and 135 ms on NVIDIA TX1 on
average. About half of the processing time is caused by image mosaicking. A longer delay may cause
a bigger error, so speed compensation using the processing time is a must in practical use. The value
of vehicle speed multiplied by the time of processing is added to the longitudinal coordinates of four
paring area points to compensate the quantity of position error.
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Table 1. Parameters chosen for the experiments.

Minimum width of vertical parking area 22m  Maximum width of vertical parking area 35m
Minimum length of vertical parking area 51m Maximum length of vertical parking area 6.5m
Minimum width of parallel parking area 21m Maximum width of parallel parking area 2.7m
Minimum length of parallel parking area 53m  Maximum length of parallel parking area 7.0m
Scale of LSD API in OpenCV [30] 0.5 Sigma_scale of LSD API in OpenCV 0.375
Shape anlge of vertical parking area 54°90° Number of line angle group 10
Minimum width of parking edge 4 px Minimum width of parking edge 13 px
Maximum line distance for combination of 3 px  Angle tolerance of L-shaped extractor 10°
two LSD result
Minimum length of a valid LSD line after 15px Maximum length of a valid LSD line after 250 px
combination combination
Color threshold € in Section 5.1 5 Color threshold ¢ in Section 5.1 150
Maximum distance for treating two lineas 10 px Maximum point distance for treating two 0.7 m

intersection

parking areas as the same

Table 2. Performance comparison of parking area detection methods in UG.

No. of Vacant

No. of Correct No. of False

Method Parking Areas Detection Detection Recall  Precision
Ultrasonic sensor-based method 227 90 19 0.3965 0.8257
Pillar-based method in [13] 227 182 4 0.8018 0.9785
Proposed fusion method 227 197 13 0.8678 0.9381

M

Figure 11. Parking area detecting results. The green box means the parking area is vacant and the
red one means unparkable. (a—e) are the ground detecting results. The sceneries includes different
ground materials and light conditions. (e) is the nighttime detecting results. (fj) are the underground

detecting results containing both white and yellow parking lines. The ground reflection and poor light

condition are the biggest challenges for detection.
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Figure 12. Typical failure modes. In (a), the left rose red one is caused by miss detection of one L-shaped
structure which results in the detecting result as a parallel parking space. The right two error results are
caused by disturbance lines incorrectly appearing on the ground. (b) is a situation that our proposed
method currently does not support.

Figure 13. Parking area tracking results. The black rectangles represent vacant. The black rectangles
represent unknown parkable status. In the first two frames, the unknown status is because the ego
vehicle is inside the parking area and the ultra-sonic sensors could not scan this place. In the last two
frames, the unknown status is caused by the distance out of scan range. The cross in a rectangle means a
new detecting happened this moment. The number in the middle of a rectangle is the confidence score.
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Table 3. Performance comparison of parking area detection methods in GD.

No. of Vacant  No. of Correct No. of False

Method Parking Areas Detection Detection Recall  Precision
Ultrasonic sensor-based method 144 62 7 0.4306 0.8986
Pillar-based method in [13] 114 88 3 0.7719 0.9670
Proposed fusion method 144 131 5 0.9097 0.9632

Table 4. Performance comparison of parking area detection methods in GN.

No. of Vacant  No. of Correct No. of False

Method Parking Areas Detection Detection Recall  Precision
Ultrasonic sensor-based method 98 41 1 0.4184 0.8238
Pillar-based method in [13] 98 43 1 0.4388 0.9773
Proposed fusion method 98 78 5 0.7959 0.9398

Relationship betwwen location error(m) and distance(m) Relationship betwwen orientation error(Degree) and distance(m)
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Figure 14. Left: location error of 120 samples. Right: orientation error of 120 samples.

8. Conclusions and Future Work

In this paper, we proposed a robust parking area detecting and tracking method by fusion
of 360 surrounding cameras, an ultra-sonic method and a vehicle model. The novelty of the
approach relies in its great adaptability to different environments and low computational cost.
The algorithms are adaptive to most regular indoor and outdoor situations, and obtain a satisfying
result. The 360 surrounding images can be easily stitched together through automatic calibration in the
practical deployment. An L-shaped marks-based searching method is robust to most of the situations
in China. The experiments show that both of the recall and precision are high and close to each
other on different datasets. The similar performance also proves our method to be robust. A vehicle
model-based tracking method not only balances the accuracy and computation complexity, but also
accommodates both indoor and outdoor situations. Fusion-based vacancy detection is approved by
one of the biggest car manufacturers in China and proves to be an accurate and low cost method for
volume production.

Since parking lots and parking marks differ a lot from each other worldwide, it is necessary to
build an adequate public dataset including different parking marks, ground materials, light conditions,
etc. with marked ground truth vacant and occupied parking marks. Our team is now working through
this and hopes to open access to the public soon. With the public dataset, comparison between different
algorithms can be more meaningful. In addition, with large datasets, deep learning method and 3D
information are what we will add to the system to make the improvement.
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