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Abstract: A power line is particularly vulnerable to wildfires in its vicinity, and various damage
including line tripping can be caused by wildfires. Using remote sensing techniques, a novel model
developed to assess the risk of line tripping caused by the wildfire occurrence in high-voltage power
line corridors is presented. This model mainly contains the wildfire risk assessment for power line
corridors and the estimation of the probability of line tripping when a wildfire occurs in power
line corridors. For the wildfire risk assessment, high-resolution satellite data, Moderate Resolution
Imaging Spectroradiometer (MODIS) data, meteorological data, and digital elevation model (DEM)
data were employed to infer the natural factors. Human factors were also included to achieve
good reliability. In the estimation of the probability of line tripping, vegetation characteristics,
meteorological status, topographic conditions, and transmission line parameters were chosen as
influencing factors. According to the above input variables and observed historical datasets, the risk
levels for wildfire occurrence and line tripping were obtained with a logic regression approach. The
experimental results demonstrate that the developed model can provide good results in predicting
wildfire occurrence and line tripping for high-voltage power line corridors.

Keywords: high-voltage power line corridors; line tripping; logic regression; risk assessment;
wildfire occurrence

1. Introduction

With fast economic growth in China, the demand for electric power has increased significantly,
resulting in rapid progress in development of power infrastructure. Many high-voltage power
transmission networks, which have a total length of more than 100,000 km, have been built to
transfer electric power from the northwest and southwest regions to the relatively developed central
and eastern regions due to the imbalanced distribution of energy resources and loads in China [1].
On the other hand, the rapid development of high-voltage power transmission networks has increased
the requirements of land occupation. To resolve this issue, large parts of the power transmission
networks are located inside forested land and grassland. Furthermore, due to the implementation
of the Grain for Green Project in China since 1999 [2], not only total forest area but also vegetation
density in the vicinity of high-voltage power transmission networks have obviously increased. As
a result, the recorded number of line trippings caused by wildfires continues to grow, and wildfire
has been regarded as one of the main threats to the safe and reliable operation of high-voltage power
transmission networks [3,4].
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Due to the negative impacts of wildfire, numerous studies have been conducted to assess the risk
of its occurrence. Among existing studies, both natural and human factors were employed as input
variables for evaluating fire danger such as meteorological conditions, topographic status, vegetation
characteristics, and anthropogenic parameters [5]. Furthermore, a variety of methods were used for
estimating wildfire risk such as a logistic regression model [6], a fuzzy set theory integrated with a
decision-making algorithm [7], a Random Forest [8], and an artificial neural network [9]. In addition,
different experiments were performed to evaluate the performance of developed models. For example,
Satir et al. [9] employed the relative operating characteristic analysis to validate prediction results,
and declared that the coefficient of accuracy of their model was 0.83 when it was used for mapping
forest fire probability in a Mediterranean forest ecosystem. Zhang et al. [10] used the area under the
curve (AUC) value to evaluate the developed model’s predictive performance, and showed that their
model had 94.4% accuracy when it was applied to the prediction of forest fire risk in Northeast China.
Although some good results have been obtained for early warning of wildfires, a generalized wildfire
risk model that can provide accurate prediction results over a broad range of geographic areas remains
a challenging task because of the complex relationships between fire occurrence and influencing
factors [11]. Different from most existing works on predicting forest fire risk where the natural factors
have a larger contribution, human activities play the most important role in the wildfire occurrence
in high-voltage power line corridors (PLCs) according to these analyses described in [3,4]. Among
existing studies, Lu et al. [12] and Chen et al. [13] exploited remote sensing and geographic information
system (GIS) techniques for wildfire surveillance and evaluation. However, risk assessments of wildfire
occurrence in high-voltage PLCs have rarely been reported thus far.

For line tripping, it means that a transmission line is tripped when it starts carrying the fault
current or it gets broken. It is a protective measure which essentially isolates the faulty lines from the
rest of the healthy sections. As will be discussed later in Section 2, the line tripping can be caused by
wildfires because they can affect the conductor sag, as well as the conductivity between transmission
lines. Among existing studies, Hu et al. [14] analyzed how line tripping is caused by a wildfire. In
addition, the impact of wildfires on the line rating has been modeled by Ansari et al. [15], and their
studies were focused on the development of a model for operating the power grid during the course
of a progressing wildfire. However, risk assessments of line tripping, which is caused by wildfires
occurring in high-voltage PLCs, have not been reported to date. It should be noted that a fire occurrence
inside or near a PLC does not necessarily lead to line tripping.

In this paper, a novel model developed to assess the risk of line tripping caused by wildfire
occurrence in high-voltage PLCs is presented. This model includes the wildfire risk assessment for
PLCs and the estimation of the probability of line tripping when a wildfire occurs in PLCs. The
former was developed based on previous works such as [10,16] but adapted to high-voltage PLC
conditions. Specifically, referring to the aforementioned existing works, we first determined which kind
of natural and human factors should be chosen as input variables based on their potential influences
on wildfire occurrence, and how to obtain their values. Then, we considered how to use a traditional
logic regression approach to obtain the risk levels of wildfire occurrence in high-voltage PLCs, and
how to evaluate the performance of the developed model. The probability of line tripping caused
by wildfires was also estimated with the logic regression method, but the influencing factors were
selected based on the mechanism analysis of line tripping caused by wildfires. With this model, some
valuable suggestions in terms of predicting wildfire occurrence in high-voltage PLCs and line tripping
caused by wildfires can be provided. To the best of our knowledge, this is the first work to assess the
risk of line tripping caused by wildfire occurrence in high-voltage PLCs. The outline of this paper is
as follows. The configuration of the developed model is first introduced in Section 2. Next, the risk
assessment of wildfire occurrence in high-voltage PLCs is described in Section 3, and the estimation of
the probability of line tripping caused by wildfires is provided in Section 4. This section is followed by
evaluating the developed model’s performance in Section 5, where the predictive results are compared
with the actual wildfire data and line tripping events. Finally, conclusions are given in Section 6.
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2. Description of Developed Model

A block diagram of the model developed to assess the risk of line tripping caused by wildfire
occurrence in high-voltage PLCs is shown in Figure 1. According to the demands of the power
management department, the buffer zones along the high-voltage PLCs in one Chinese province
were chosen as the study area in our research, and the width of the buffer zones was set as ±1 km.
Furthermore, the buffer zones along the high-voltage PLCs were evenly divided into multiple
segmentations with an interval of approximately 1.5 km. In addition, the PLCs were loaded into the
vector map in terms of their position vectors provided by the electrical department. It can be seen from
Figure 1 that this model mainly includes the risk assessment of wildfire occurrence in high-voltage
PLCs and the estimation of the probability of line tripping when a wildfire occurs inside or near a
high-voltage PLC.
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Figure 1. Block diagram of the model developed to assess the risk of line tripping caused by wildfire
occurrence in high-voltage power line corridors. LST: land surface temperature; NDVI: normalized
difference vegetation index; FMC: fuel moisture content; MODIS: Moderate Resolution Imaging
Spectroradiometer; and DEM: digital elevation model.
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Since the wildfire occurrence is related to not only natural factors but also human factors, various
remotely sensed data have been employed in our research to estimate the influencing factors for the fire
risk assessment. The multi-temporal data obtained from the high-resolution remote sensing satellite
were adopted to classify the land-cover types in high-voltage PLCs, including the land covered by
different natural vegetation, cropland, water bodies, bare lands, and man-made structures such as
residential houses and graveyards. In practical operation, the high-resolution images were acquired
from the ZiYuan-3 (ZY-3) satellite or the GaoFen-2 (GF-2) satellite, and a genetic algorithm similar
to that described in [17] was applied to accurately classify land cover, where results with an overall
accuracy of 98% can be obtained. An output map of classification in one part of the PLC is shown
in Figure 2. Based on the classification results, the vegetation coverage and land cover type were
chosen as two input variables for the wildfire risk assessment because fire occurrence is closely related
to vegetation status at a given time [18]. Furthermore, different land cover types can also influence
the wildfire occurrence significantly [19]. For example, water bodies and bare lands can decrease the
probability of fire occurrence and can prevent fire spread.
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Figure 2. An output map of classification in one part of the high-voltage power line corridor.

In addition to high-resolution images, Moderate Resolution Imaging Spectroradiometer (MODIS)
Level 1B data with a resolution of 250 m were also employed to estimate the historical ignition
points and to evaluate the daily drought conditions. Here, the drought conditions include the land
surface temperature (LST) that is used to describe the fuel temperature leading to fire ignition [20], the
normalized difference vegetation index (NDVI) that is used to evaluate the proneness of vegetation to
fire [21], and the fuel moisture content (FMC) that is one of the critical dynamic factors driving fire
initiation, burning efficiency, and spread [22]. With regards to the acquisition of historical wildfire
data, the MODIS data during historical observation periods were first collected, and then processed
with an algorithm that uses the brightness temperatures derived from MODIS 4 and 11 µm channels.
More details about this algorithm can be found in [23]. It is important to note that some historical
wildfire data were acquired from the electrical department, considering that some burned areas cannot
be derived from the MODIS data because of cloud cover. Before use, the MODIS data should be
pre-processed, including geo-registration, de-striping, and cloud masking. As pointed out by Lozano
et al. [24], since fire risk is strongly linked with fire history, the recent wildfire occurrence history
should be chosen as an input variable for the wildfire risk assessment.

Fire initiation and spread are significantly influenced by weather conditions [25], therefore, the
climate data collected from the weather stations in the whole province were used to provide the
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meteorological data such as the daily temperature, precipitation, and wind speed. The interpolation
method was adopted to obtain the required meteorological data over the study area due to the sparse
distribution of weather stations. In addition, the digital elevation model (DEM) data obtained from
the Shuttle Radar Topography Mission (SRTM) were used to determine the topographic conditions
along the high-voltage PLC because the terrain slope may affect the fire occurrence [26]. With respect
to human factors, the distance between the power line and cropland, as well as the distance between
the power line and man-made structures, were selected as input variables. These variables were
selected because sometimes crop straws are burned after harvest [27], and many sacrificial paper
and firecrackers are usually burned around man-made structures during some traditional Chinese
festivals, which can lead to wildfire occurrence in high-voltage PLCs. Since the Chinese government
has banned the field burning of crop straws and firecrackers in recent years, contributions of the above
variables to wildfire occurrence have been reduced slightly. However, compared with natural causes,
human activities still have a relatively higher contribution to wildfire accidents. When modeling fire
occurrence, a logistic regression model has been regarded as a valuable tool [24,26,28,29]. Therefore,
one part of the historical wildfire data was first used for training to estimate the weight of each variable,
and then the logistic regression approach was exploited to perform the risk assessment of wildfire
occurrence in high-voltage PLCs.

When a wildfire occurs inside or near the high-voltage PLC, it can affect the transmission line
in different ways. For example, large fires can directly damage the wooden transmission towers and
poles, causing the power line to completely collapse. Furthermore, the heat released by the fire can
result in a rise in temperature around the conductors significantly. Such high temperature can not only
lead to excessive conductor sag that decreases the safety distance of the power lines but can also result
in thermal ionization to produce a large number of charged particles and can reduce the air density to
lower the breakdown voltage. At the same time, the particles and ions in the smoke and soot from
the fire can decrease the electric strength of the insulation strings that insulate the conductors from
the tower structure, as well as that of the air which is the insulation medium between conductors or
between the conductors and the ground [30]. All of these factors, in turn, could potentially lead to
insulation breakdown and subsequent flashovers to give rise to the line tripping events. Therefore,
when a wildfire burns inside or near the high-voltage PLC, the following various variables responsible
for the occurrence of line tripping were considered in our research:

(1) Vegetation types that are not only closely related to the heat released by the fire, but are also
related to the particles and ions in the smoke and soot from the fire. For example, the power line
can be more easily affected by trees than shrubs when both of them are on fire. In practice, in terms
of spectral signatures, the natural vegetation was further classified as tree, shrub, herbaceous,
and mixed vegetation by using the deep learning method [31]. Specifically, 1 m resolution images
obtained from the GF-2 satellite were employed for vegetation classification. To improve the
classification accuracy, 0.5 m resolution aerial images were also adopted. In our research, we
randomly chose 900 training and 300 validating samples for each class. The remaining pixels
were used as a test set. During training, we used the training samples to learn weights and
biases of each neuron, and used the validation samples to tune the best super-parameters such as
hidden unit sizes or hidden layer numbers. The test set was used to generate final classification
results. Furthermore, the accuracy of the classification results was evaluated using ground truth
data, and a confusion matrix given in Table 1 was employed to show the difference between
classification results and ground truth data. From Table 1, we can find that the value of overall
accuracy (OA), average accuracy (AA), and Kappa coefficient was at the level of 0.9380, 0.9122,
and 0.8816, respectively. Here, we only present the final results. Another paper, in which an
in-depth discussion of the vegetation classification is provided, is yet to be published.

(2) Vegetation coverage was considered because the power line will be affected by wildfires over a
longer period of time in the case of a high vegetation density.

(3) Fuel moisture content that influences the burning efficiency and fire spread.
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(4) Weather parameters. For instance, conductor sag is influenced by the daily temperature, and
fire-spread speed is influenced by the wind speed.

(5) Terrain slope that is related to the fire-spread speed.
(6) Transmission line parameters such as the distance between power lines or between the power

line and the ground were considered because the breakdown voltage increases with this distance.

Table 1. Confusion matrix of vegetation classification.

Vegetation Types Tree Shrub Herbaceous Mixed Vegetation

Tree 2612 83 6 101 2802
Shrub 68 3236 41 132 3477

Herbaceous 8 59 2766 98 2931
Mixed vegetation 172 202 157 2989 3520

Total number of test set 2860 3580 2970 3320 12,730

After variable selection, one part of the historical line-tripping data was used for training to
estimate the weight of each variable, and then the logistic regression model was used to calculate
the probability of line tripping when a wildfire occurs inside or near a high-voltage PLC. It is worth
noting that the transmission line parameters and the historical line tripping data were provided by
the electrical department. The risk assessment of line tripping in high-voltage PLCs was achieved
by combining the wildfire occurrence risk with the probability of line tripping caused by wildfires,
and finally, a risk map for the occurrence of line tripping caused by wildfires was plotted with
ArcGIS software.

3. Risk Assessment of Wildfire Occurrence

In the risk assessment of wildfire occurrence, we first calculated the value of each input variable
that has been listed in Section 2. Then, historical wildfire data were pre-processed and used for training
to estimate the weight of each variable. Finally, a logistic regression approach was applied to estimate
the probability of wildfire occurrence in high-voltage PLCs.

3.1. Fire-Influencing Variables

As pointed out by Zhang et al. [10], a universal criterion for selecting fire-influencing factors
does not exist because of the complex relationships between fire occurrence and influencing factors.
Based on the analysis of the causes of historical wildfires in high-voltage PLCs, ten fire-influencing
variables (see Table 2) were selected in our research to model the wildfire occurrence in high-voltage
PLCs, where these variables can be further divided into static and dynamic categories. Taking into
account the data availability for dynamic variables in practice, an appropriate temporal sampling
interval should be determined to achieve the required prediction accuracy. The calculation of each
variable’s value is described as follows.

According to the land-cover classification results, the natural vegetation coverage in high-voltage
PLCs can be calculated as follows:

Vc = Va/Ta (1)

where Va denotes the area of natural vegetation coverage, and Ta represents the total area of the study
region. In addition, land cover (LC) was obtained from the fine classification of natural vegetation and
was coded by numbers 1 to 7 for different land-covered regions in ArcGIS software.

Based on MODIS images, NDVI can be obtained by:

NDVI =
(ρNIR − ρR)

(ρNIR + ρR)
(2)
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where ρNIR is the reflectivity of the near-infrared band, and ρR is the reflectivity of the red band.
Furthermore, LST can be retrieved from MODIS data with the method described in [32]. To reduce the
number of fire-influencing variables, the dryness index TVDI was used instead, and its relationship
with NDVI and LST can be written as:

TVDI =
(LST − Tmin)

(Tmax − Tmin)
(3)

where Tmin = a1 + b1(NDVI) is the minimum surface temperature and defines the wet edge, Tmax =

a2 + b2(NDVI) is the maximum surface temperature and defines the dry edge, a1 and a2 are the
intercepts for the wet and dry edges, respectively, b1 and b2 are the slopes for the wet and dry edges,
respectively. In addition, we estimated FMC from MODIS images with the method similar to that
described in [33], and derived LF using the burned areas maps that were generated with the historical
wildfire data.

Table 2. Variables used to model wildfire occurrence in high-voltage power line corridors.

Variable Variable Description (Unit)

Dynamic category:

Vc Natural vegetation coverage (percent)
TVDI Temperature vegetation dryness index
FMC Fuel moisture content (percent)

LF Number of years since the last fire event
Ws Wind speed (km/hour)
PPA Percentage of precipitation anomaly (percent)

Static category:

LC

Land cover types:
Code 1—Tree
Code 2—Shrub
Code 3—Herbaceous
Code 4—Mixed vegetation: tree and shrub
Code 5—Mixed vegetation: shrub and herbaceous
Code 6—Water body
Code 7—Bare land

Ts Terrain slope (percent)
Dc Distance to the nearest cropland (km)
Dh Distance to the nearest man-made structures (km)

Climate parameter Ws was directly obtained from the meteorological data, and Percentage of
precipitation anomaly (PPA) was achieved by:

PPA =
(Rc − Rh)

Rh
(4)

where Rc denotes the currently observed precipitation, and Rh denotes the historic average
precipitation. In addition, Ts was calculated from the DEM by using ArcGIS software, and Dc and Dh
were estimated from the vector map. During the estimation of variable Dh, we only considered
residential houses and graveyards based on the analysis of the causes of historical wildfires in
high-voltage PLCs.

Examples of the real values of several input variables that were obtained in Hubei Province are
shown in Figure 3.
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Figure 3. Examples of the real values of several input variables obtained in Hubei Province. (a) TVDI
distribution in 1 October 2014; (b) FMC distribution in 1 October 2014; (c) average wind speed in
10 June 2014; (d) average precipitation in 10 June 2014; and (e) terrain slope.

3.2. Analysis of Wildfire Occurrence Probability

The longitude, latitude, and occurrence time of historical ignition points in high-voltage PLCs
were first obtained from MODIS images or gathered from the electrical department. In addition to
the ignition points, the historical wildfire data also included the unburned points that were randomly
selected from the same PLC at the same time. It should be noted that the number of unburned points
is the same as that of historical ignition points. Then, the historical wildfire data were divided into two
subsets that were used for training and validation, respectively. Here, one subset was used for model
development and inner validation, and another subset was used for independent validation to test the
model’s predictive capabilities under new conditions.

The logistic regression model used in the risk assessment of wildfire occurrence in high-voltage
PLCs can be described as:

η f ire =
1

(1 + e−κ)
(5)

κ = κ0 + κ1x1 + · · ·+ κ10x10 (6)

where η f ire denotes the wildfire occurrence probability and varies from 0 to 1 in an S-shaped curve,
xi(i = 1, · · · , 10) represent the independent fire-influencing variables, κ0 is a constant, κi(i = 1, · · · , 10)
are the coefficients reflecting the contribution of the independent variable xi to the η f ire. In practical
operation, x1 denotes Vc, x2 denotes TVDI, x3 denotes FMC, x4 denotes LF, x5 denotes Ws, x6 denotes
PPA, x7 denotes LC, x8 denotes Ts, x9 denotes Dc, and x10 denotes Dh. The parameters κi(i =

0, 1, · · · , 10) were estimated by the training data, and the weight of each variable can be interpreted
by the exponential function eκi . In addition, the human factors considered in our research show a
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strong seasonality. For example, the Spring Festival occurs between January and February every year
in China, the Qingming Festival occurs between March and April, and the crop straws are always
burned in March, April, October, and November. Therefore, Equation (6) can be further divided as:

κhi = κ0 + κ1x1 + · · ·+ κ10x10 (7)

κnh = κ0 + κ1x1 + · · ·+ κ8x8 (8)

where κhi denotes the fitting equations during the aforementioned months in which the wildfire
occurrence may be caused by human activities, and κnh denotes the fitting equations during the rest of
the year. After the logistic regression analysis, according to the demands of the power management
department, the wildfire occurrence risk in high-voltage PLCs was equally divided into four classes to
represent the risk levels, where the fourth class represents the highest risk of fire occurrence (0.75–1.00),
and the first class represents the lowest risk of fire occurrence (0–0.25).

4. Risk Assessment of Line Tripping

Similar to the steps in the risk assessment of wildfire occurrence, when assessing the risk of
line tripping, we first calculated the value of each influencing variable that has been introduced in
Section 2. Then, the historical line tripping data were pre-processed and used for training to estimate
the weight of each variable. Furthermore, the logistic regression approach was employed to calculate
the probability of line tripping when a wildfire occurs inside or near a high-voltage PLC. Finally, we
considered the wildfire risk and the probability of line tripping caused by wildfires together to assess
the risk of line tripping in high-voltage PLCs.

4.1. Influencing Variables of Line Tripping Caused by Wildfires

Eight influencing variables were used to model the line tripping when a wildfire occurs inside or
near the high-voltage PLC. In addition to the five variables Vc, Vt, FMC, Ws, and Ts that have been
analyzed in Section 2, three new variables were also employed, which include the daily temperature
Td, the distance Dp between power lines, and the distance Dg between the power line and the ground.
In practice, the value of Td was directly obtained from the observed meteorological data, and the
values of Dp and Dg were provided by the electrical department.

4.2. Estimation of the Probability of Line Tripping Caused by Wildfires

Similar to the pre-processing of historical wildfire data, we first acquired the longitude, latitude,
and occurrence time of historical line tripping events caused by wildfires from the electrical department,
and then randomly selected the same number of normal points from the same high-voltage PLC at
the same time to form the historical data of line tripping. Subsequently, the historical data of line
tripping were partitioned into two subsets that were used for training and validation, respectively.
Here, one subset was used for model development and inner validation, and another subset was used
for independent validation to test the model’s predictive capabilities under new conditions.

The logistic regression model used in the estimation of the probability of line tripping can be
described as:

ηp_lt =
1(

1 + e−}) (9)

} = }0 + }1y1 + · · ·+ }8y8 (10)

where the sigmoid function ηp_lt denotes the probability of line tripping when a wildfire occurs inside
or near the high-voltage PLC, yi(i = 1, · · · , 8) represent the independent variables influencing the line
tripping, }0 is the intercept of the model, and }i(i = 1, · · · , 8) are the coefficients of input variables and
can be estimated by the training data. In practical operation, y1 denotes Vc, y2 denotes Vt, y3 denotes
FMC, y4 denotes Vs, y5 denotes Td, y6 denotes Ts, y7 denotes Dp, and y8 denotes Dg. Following
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the logistic regression analysis, to meet the demands of the power management department, the
probability of line tripping was equally divided into four classes to represent the probability levels in
the case of a wildfire occurrence inside or near the high-voltage PLC, where the fourth class represents
the highest probability of line tripping (0.75–1.00), and the first class represents the lowest probability
of line tripping (0–0.25). Furthermore, the risk assessment of line tripping ηr_lt was achieved by
considering the wildfire occurrence risk and the probability of line tripping when a wildfire occurs
inside or near the high-voltage PLC together, where ηr_lt is given by:

ηr_lt = η f ire × ηp_lt. (11)

Finally, in terms of the demands of the power management department, the risk of line tripping
caused by wildfires in high-voltage PLCs was equally divided into four classes to represent the risk
levels, similar to that of wildfire occurrence described in Section 3. Moreover, the risk map of line
tripping was plotted with ArcGIS software for a good visualization.

5. Experimental Results and Discussion

The buffer zones along the ultra- and extra-high-voltage PLCs in Hubei Province were chosen as
the study area in our experiments, as shown in Figure 4. In the first experiment, a total of 350 historical
ignition points recoded along the PLCs from 2008 to 2014 in the whole Hubei Province were used.
Here, 200 historical ignition points were derived from the MODIS data as described in Section 2, and
the rest of the historical ignition points were estimated from the data that were purchased from the
State Grid Hubei Electric Power Co. Ltd. (Wuhan, China) (www.hb.sgcc.com.cn). In addition, seventy
percent of the historical wildfire data were randomly selected for training, and the remaining data
were used for inner validation.
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Figure 4. Map of Hubei Province and the distribution of ultra- and extra-high-voltage power line
corridors shown in blue.

Based on the above historical wildfire data, the obtained logistic regression models are shown
as follows:

κhi = 6.21 + 0.43x1 + 0.56x2 + 0.52x3 + 0.12x4 − 0.05x5 + 0.48x6 + 0.41x7 − 0.03x8 + 0.87x9 + 1.26x10 (12)

κnh = 5.07 + 0.49x1 + 0.82x2 + 0.71x3 + 0.14x4 − 0.03x5 + 0.66x6 + 0.57x7 − 0.04x8. (13)

As described by Zhang et al. [10], if a coefficient in the logistic regression model is positive, this
means the event is more likely to occur, otherwise the odds of the event will decrease. According to

www.hb.sgcc.com.cn
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Equations (12) and (13), one can find that the most significant factor was Dh during these months in
which the wildfire occurrence may be caused by human activities, and the factor Dc also had a large
contribution. During the rest of the year, the factor TVDI played the most important role in the wildfire
occurrence. In contrast, the factors Ws and Ts had much lower contributions in our research.

To test the model’s predictive capabilities under new conditions, 56 ignition points recorded
from 2015 to 2016 were used for independent validation. Figure 5 shows a comparison between the
predictive results provided by the developed model and the actual wildfire accidents that occurred
in Xianning (29.50◦ N, 114.19◦ E) in 2015, where the buffer zones along the high-voltage PLCs were
divided into a total of 67 segmentations. Since the historical wildfire accidents recorded from 2008 to
2014 mostly occurred between January and April and between October and December, we provide the
comparison results in these months.Sensors 2018, 18, 1941 12 of 16 
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As shown in Figure 5, a higher risk of wildfire occurrence can be found between January and April
and between October and December because of the drought conditions and human activities. This
result is consistent with the statistical characteristics of historical wildfire occurrence. Furthermore,
most of the actual ignition points are located at the segmentations having the highest risk of wildfire
occurrence, except for one ignition point that is located at the segment having the risk level of 0.5–0.75.
This result is because the probability of wildfire occurrence was predicted for each month rather
than each day. Hence, the vegetation characteristics and the weather conditions may vary daily. In
addition, we can see from Figure 5 that the line segment located at the right-hand side shows a very
high risk throughout the observed period due to the high vegetation density. In contrast, the line
segment located at the upper left side shows a low risk during the observed period because this region
mainly consists of water bodies. Therefore, it can be found that the predictive results of wildfire
occurrence in high-voltage PLCs provided by the developed model are in good agreement with the
actual wildfire accidents.

To further evaluate the prediction accuracy of the proposed model when it was applied to the risk
assessment of wildfire occurrence, the cumulative frequency was adopted and calculated by counting
the number of real ignition points that fall within each risk level generated by the proposed model.
Table 3 shows the final results. One can see that 92.86% (i.e., 52/56) of actual ignition points fall within
the highest risk of fire occurrence (0.75–1.00). Moreover, a false alarm rate of 13.33% (i.e., 8/(52 + 8))
were obtained. It should be noted that a wildfire will not occur in the case of no ignition source,
although the fire risk is very high. In addition, one can find that the false alarm given in Table 3 is
lower than that shown in Figure 5, because the probability of wildfire occurrence given in Table 3 was
predicted for each day rather than each month.

Table 3. The cumulative frequency used to account for the number of real ignition points that fall
within each risk level, and the false alarm rate used to account for the case where a higher risk of fire
occurrence was predicted but no actual fire occurred.

Risk Level Cumulative Frequency False Alarm Rate

0.75–1.00 52 13.33%
0.50–0.75 4 /
0.25–0.50 0 /

0–0.25 0 /

In the second experiment, a total of 30 historical line tripping events, which were caused by
wildfires in high-voltage PLCs and recoded from 2008 to 2014 in the whole Hubei Province, were used.
Here, all historical line tripping data were also purchased from the State Grid Hubei Electric Power Co.
Ltd. (www.hb.sgcc.com.cn). Furthermore, eighty percent of the historical tripping data were randomly
selected for training, and the remaining data were used for inner validation. According to the above
historical wildfire data, the obtained logistic regression model is shown as follows:

} = 5.42 + 0.47y1 + 0.49y2 + 0.45y3 − 0.02y4 + 0.55y5 − 0.05y6 + 1.33y7 + 1.17y8. (14)

From Equation (14), one can see that the most significant factor was Dp, and the factor Dg also had
a large contribution. In addition, factors Vc, Vt, FMC, and Td had similar contributions. In contrast,
Ws and Ts had much lower contributions.

In addition, 16 actual line tripping events, which were caused by wildfires and recorded from
2015 to 2016, were used for independent validation. It is worth noting that since there was no historical
tripping event corresponding to these experimental datasets shown in Figure 5, a different place was
chosen for following analysis. Figure 6 shows a comparison between the predictive results provided by
the developed model and actual line tripping events that occurred in Huanggang (30.27◦ N, 114.52◦ E)

www.hb.sgcc.com.cn
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on the first day of each month in 2015, where the buffer zones along the high-voltage PLCs were
divided into a total of seven segmentations.
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Figure 6. A comparison between the predictive results provided by the developed model and the
actual line tripping events that occurred in Huanggang (30.27◦ N, 114.52◦ E) on the first day of each
month in 2015, where the black star denotes the location of an actual line tripping event.

As shown in Figure 6, a higher risk of line tripping can be found in January, April, October, and
November. This result is almost consistent with the statistical characteristics of historical line tripping
events, except for February, March, and December because strong precipitation during the above
three months decreased the risk of wildfire occurrence and, hence, the risk of line tripping caused by
wildfires. Furthermore, the location of an actual line tripping event was located in the segment having
the highest risk of line tripping. However, we should note that the line tripping did not occur at the
segment having the highest risk of line tripping in April, although a wildfire occurrence was found.
In addition, it can be seen from Figure 6 that the line segment located in the middle position always
shows a very high risk throughout the observed period due to the high tree cover. In contrast, the
line segment located at the upper right side shows a low risk during the observed period, because
this region mainly consists of bare lands. Therefore, it can be found that the predictive results of line
tripping caused by wildfires in high-voltage PLCs are consistent with the actual line tripping events.

To further evaluate the prediction accuracy of the proposed model when it was applied in the
risk assessment of line tripping, the cumulative frequency was adopted and calculated by counting
the number of real tripping events that fall within each risk level generated by the proposed model.
Table 4 shows the final results. One can see that 93.75% (i.e., 15/16) of actual tripping events fall within
the highest risk of line tripping (0.75–1.00). Moreover, a false alarm rate of 16.67% (i.e., 3/(15 + 3)) can
be obtained. It should be noted that a line tripping caused by wildfires may not occur if there is no
ignition source or some actions described in [15,30] are taken by the power system operator, although
the risk level of line tripping is very high.
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Table 4. The cumulative frequency used to account for the number of real tripping events that fall
within each risk level, and the false alarm rate used to account for the case where a higher risk of line
tripping was predicted but no actual line tripping occurred.

Risk Level Cumulative Frequency False Alarm Rate

0.75–1.00 15 16.67%
0.50–0.75 1 /
0.25–0.50 0 /

0–0.25 0 /

6. Conclusions

This paper presented a novel model developed to assess the risk of line tripping caused by
wildfire occurrence in high-voltage PLCs. The experimental results have preliminarily demonstrated
the reliability of this model when it is applied to assess the risk of wildfire occurrence and the
resulting line tripping in high-voltage PLCs. Therefore, it can be used for providing some useful
suggestions to the electrical department, such as removing vegetation from the regions with a high
risk. In future work, due to the high dependence of wildfire occurrence and line tripping on the type
and height of vegetation, we will use multi-temporal and multi-source remote-sensing data to better
classify the vegetation in high-voltage PLCs, such as light detection and ranging (LIDAR) data [34,35].
At the same time, the vegetation biomass will be included in the risk assessment of wildfire occurrence,
as recommended by Sannier et al. [36]. Furthermore, more historical line tripping events caused by
wildfires will be gathered for training and validation, and other methods such as the artificial neural
network will be used to obtain the risk levels. In addition, the probability of wildfire occurrence and
the resulting line tripping will be estimated for a time interval shorter than a day to improve the
predictive accuracy of the risk assessment. Also, we will adjust the parameters of the developed model,
and apply it to perform the risk assessment of wildfire occurrence and line tripping for high-voltage
PLCs in other Chinese provinces.
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