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Abstract: The present study investigates an algorithm for the calculation of 3D joint angles based
on inertial measurement units (IMUs), omitting magnetometer data. Validity, test-retest reliability,
and long-term stability are evaluated in reference to an optical motion capture (OMC) system.
Twenty-eight healthy subjects performed a 6 min walk test. Three-dimensional joint kinematics of
the lower extremity was recorded simultaneously by means of seven IMUs and an OptiTrack OMC
system. To evaluate the performance, the root mean squared error (RMSE), mean range of motion
error (ROME), coefficient of multiple correlations (CMC), Bland-Altman (BA) analysis, and intraclass
correlation coefficient (ICC) were calculated. For all joints, the RMSE was lower than 2.40◦, and the
ROME was lower than 1.60◦. The CMC revealed good to excellent waveform similarity. Reliability
was moderate to excellent with ICC values of 0.52–0.99 for all joints. Error measures did not increase
over time. When considering soft tissue artefacts, RMSE and ROME increased by an average of
2.2◦ ± 1.5◦ and 2.9◦ ± 1.7◦. This study revealed an excellent correspondence of a magnetometer-free
IMU system with an OMC system when excluding soft tissue artefacts.
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1. Introduction

Marker-based optical motion capture (OMC) systems are commonly used in clinical movement
analysis [1] and are therefore considered the gold standard. However, despite high resolutions and
sub-millimeter accuracy, the application of OMC is expensive, time-consuming, and restricted to a
laboratory environment. Therefore, body-worn inertial measurement units (IMUs) present a mobile
alternative [1]. IMUs incorporate 3D accelerometers, 3D gyroscopes, and, typically, 3D magnetometers,
measuring 3D linear acceleration, 3D angular velocity, and 3D magnetic field, respectively. Using
sensor fusion algorithms, e.g., variations of the Kalman filter or optimization based methods [2], it is
possible to estimate the IMUs’ orientation in reference to a global coordinate system [3]. Combining
more IMUs attached to linked body segments, it is possible to estimate the joint kinematics of the
specified segments [1,4,5].

There are drawbacks concerning IMU systems that have to be addressed when measuring human
motion. First, IMU-based orientation estimation suffers from drift due to the integration of noisy
gyroscope measurements [6]. This is particularly challenging when omitting magnetometer data,
which provide a global heading reference and can therefore be used to compensate for drift in the
transversal plane [2].
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Second, the incorporation of magnetometer measurements is typically based on the assumption
of a homogeneous magnetic field, which is often violated [7]. There are efforts to develop methods for
handling magnetic disturbances [8,9] or completely omit magnetometer data [4,10–12]. Concerning the
latter, El-Gohary and McNames [11] present an unscented Kalman filter based approach for estimating
the joint angles of a three segment kinematic chain using three IMUs. The kinematic model represents
a human arm with stationary shoulder joint position but considers only two rotational degrees of
freedom (DOFs) in each joint, including the shoulder, to match the DOFs of the industrial robot arm,
which was used for validation in a 15-min trial. For drift reduction, they propose gyroscope and
accelerometer bias estimation, limited joint ranges of motion, and zero velocity updates. Seel et al. [4]
present a magnetometer-free method for calculating the angles around one dominant axis of one joint
using two IMUs. In [4] they consider the knee and ankle flexion/extension angles during walking.
The method was evaluated with one transfemoral amputee during repeated 10 m walking trials.
Fasel et al. [12] focus on the validation of functional calibration and segment orientation estimation
methods adapted for outdoor activities with highly dynamic movements. They recorded and analyzed
120 s of skiing on an indoor skiing carpet with nine IMUs on shanks, thighs, lower back, sternum,
upper back, and head. They first estimate the orientation of each IMU separately from the acceleration
and angular velocity measurements and then propose a drift correction method for adjacent segments
using similar principles as in [4] (i.e., the acceleration vector in the joint position should be identical
in the global frame, no matter from which IMU, preceding or following, it was predicted). The drift
reduction method is detailed in [13]. The current study investigates a slightly modified version of a
previously published sensor fusion algorithm for real-time lower body joint kinematics estimation
with seven IMUs on pelvis, thighs, shanks, and feet [14]. In this study, the method was extended with
accelerometer bias estimation as in [11], and magnetometer data was completely omitted. In contrast
to [11], the method uses a so-called free segments biomechanical model (with six DOFs per segment),
which was shown to outperform the kinematic chain model with respect to the influence of model
calibration errors and the dependence on undisturbed magnetometer information on simulated and
real data from one test person in [2]. In contrast to the magnetometer-free method in [4], the proposed
method is not restricted to joint movements with one dominant axis of rotation. In contrast to [12],
the segment kinematics are all estimated jointly by fusing the IMU measurements with information
from the biomechanical model and environmental constraints (i.e., ground contacts), which results
in a built-in drift reduction for the joint angles (cf. Sections 3.4 and 4.4). Moreover, in contrast to the
previously mentioned methods, [14] also provides global segment position estimates, though this
study focuses on the estimated orientations.

Researchers use simple IMU set ups to calculate spatio-temporal gait parameters [15,16]. However,
the measurement of 3D joint angles based on IMUs is still subject to extensive development and lacks
in adequate validity and reliability studies.

Various authors tried to fill this gap [17–20]. Robert-Lachaine et al. [17] examined a commercially
available IMU system, capturing ergonomic lifting and carrying tasks over a time period of 32 min.
Zhang and Novak [18] evaluated the IMU derived joint angles of ten subjects during gait.
Ferrari et al. [19] compared IMU system based joint kinematics with OMC system derived joint
kinematics during a ten meter walk using identical coordinate frames and rigid marker clusters.
Al-Amri et al. [20] validated the IMU based joint kinematics of gait, squat, and a jumping task of
27 subjects. Nevertheless, most studies are expandable in terms of the measurement and evaluation
protocol. Despite the long-time measurement, Robert-Lachaine et al. [17] did not report results of
different time sections of their records. Bergamini et al. [21] examined the global drift of two IMUs
attached to the wrist and sacrum during 180 s of level walking. They found a global drift, mainly in
the transversal plane.

Other authors used coordinate frames inconsistent between IMU and OMC systems [12,18,20].
Kainz et al. [22] demonstrated the high impact of coordinate system differences on the accuracy of the
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calculated joint kinematics. Hence, it was a special objective of this study to evaluate the pure technical
error between the OMC and IMU system using consistent coordinate frames.

Further, the number of subjects examined rarely exceeds 10 [18,19]. Additionally, most of these
studies used marker clusters rigidly fixed to the IMUs for optical joint angle calculation. Thus, both
systems suffer from the same amount of soft tissue artefacts (STA), minimizing the error between the
systems due to different positioning. Few studies used marker sets attached to anatomical landmarks
for the validation rather than marker sets rigidly fixed to the IMUs, therefore taking into account errors
due to STA [4,12,20,23]. Al-Amri et al. [20] mainly investigates the reliability of a commercial IMU
system, but they did not report detailed results for the validity, especially concerning the frontal and
transversal plane joint angles. Nüesch et al. [23] also evaluated a commercial IMU system delivering
only sagittal plane joint angles. Seel et al. [4] highlighted the impact of STA on the joint angle data
by comparing error measures of the human leg and the prosthesis of one transfemoral amputee.
As mentioned above, they also focused on one dominant axis of rotation. In contrast, the present work
highlights the amount of errors linked to STA for the complete 3D joint angles of the lower body.

The aim of this study was to fill the mentioned gaps concerning the study design and evaluate a
previously published sensor fusion algorithm without using magnetometer information. The main
target was to evaluate the validity and test-retest reliability of the estimated 3D joint kinematics.
A second objective of the analysis was to examine drift in the estimated kinematics, when measuring
over an extended time period (>1 min). Additionally, a specific concern was to highlight the effects of
STA on IMU-derived data.

2. Materials and Methods

2.1. Subjects and Data Acquisition

Twenty-eight healthy subjects (15 females, 13 males; age 24 ± 2.70 years; 70 ± 12.70 kg and
1.76 ± 0.09 m in height) participated in the study. Each of the subjects performed two test sessions on
two days (6.75 ± 2.26 days in between). A test session consisted of one static neutral zero position
(n-pose) sequence and a 6 min walk test [24]. The study was approved by the ethical committee of
the Technische Universität Kaiserslautern (TUK) and meets the criteria of the declaration of Helsinki.
After receiving all relevant study information, the participants signed an informed consent to the study
including a permission to publish data.

On both test days lower extremity 3D kinematics was simultaneously captured using twelve
OptiTrack Prime 13 cameras (NaturalPoint, Inc., Corvallis, OR, USA) and seven XSens MTw Awinda
(Xsens Technologies BV, Enschede, The Netherlands) IMUs.

IMUs were activated at least 20 min before measurement start. A static trial was performed before
each subject was instrumented, with the sensors lying still for a period of at least 10 s, to estimate and
subtract the gyroscope bias. These steps were conducted in accordance with the recommendations of
Bergamini et al. [21].

Thirty-two retroreflective markers were attached to anatomical landmarks (AL) according to
Leardini et al. [25] and the OptiTrack recommendations. Each IMU was secured in matched 3D printed
boxes to which four markers were rigidly attached. These markers were used for unique identification
in the optical point cloud as well as for orientation estimation. Using the OptiTrack Software, the origin
of the boxes was moved to the center of the attached sensor casing. These box/sensor compounds
were fixed to the body segments using straps and double-sided adhesive tape. IMUs were attached on
the right and left dorsum of the foot approximately atop the base of metatarsal II-IV, on the right and
left lateral aspect of the shank, due to better visibility, on the right and left lateral aspect of the lower
third of the thigh and between the Spinae Iliacae Posteriores Superiores approximately atop the sacral
base (Figure 1).
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Figure 1. Instrumentation of one exemplary subject. Marker set and rigid marker clusters. 

Inertial and optical data were simultaneously recorded at 60 Hz using XSens MVN Biomech 
(Version 4.3.7) and OptiTrack Motive (Version 1.10.0) which were hardware synchronized using a 
standard 5 V TTL signal. The alignment orientations between the IMUs and the rigid boxes were 
calculated using the method described in [7]. The biomechanical model according to Cappozzo et al. [26] 
and the IMU-to-segment calibrations were extracted from the OMC data of the n-pose sequence. The 
joint centers were also calculated from the OMC data during the n-pose sequence according to the 
definitions of Visual3D (C-Motion, Inc, Germantown, MD, USA), a widely used software tool for 3D 
biomechanics research. The first OMC frame of each walking sequence was used as initialization for the 
IMU-based kinematics estimation. Both systems used the same biomechanical model. 

The inertial data was processed with an iterated extended Kalman filter (IEKF) approach based 
on [14] while omitting magnetometer information. The gyroscope biases were extracted from a static 
sequence (see above), while the accelerometer biases were estimated in the IEKF along with the 
kinematics estimation using the model described in [11,27]. The same sequence was processed twice: 
initially to obtain a converged estimate of the acceleration bias, which was then used as initial guess 
in the second run. The estimated segment orientations were used to derive relative joint orientations. 
These were decomposed into joint angles using Euler angle decomposition [28]. The sensor fusion 
method is detailed in Appendix A. 

To minimize STA, the OMC-based joint angles were derived from marker clusters on the rigid 
boxes (condition 1). For secondary analyses the joint angles were calculated based on the markers 
attached to the anatomical landmarks (condition 2). Initial contact (IC) was detected based on the left 
and right heel marker [29]. Turning phases in the 6 min walk tests were omitted. In order to 
investigate drift behavior, 10 left and right steps (one trial) were identified at three sections, i.e., 
beginning (A), middle (B), and end (C) of the test. All joint angle curves were normalized to 100 
percent gait cycle (GC). 

2.2. Statistical Analysis 

To evaluate the IMU system, the root mean squared error (RMSE) and range of motion error 
(ROME), as well as 95% confidence interval (CI) were calculated for hip, knee, ankle joint, and the 
global pelvis orientation per section per GC. Further, Bland-Altman analysis (BA) was conducted to 
evaluate the limits of agreement (LoA) between the mean joint angle waveforms over all 28 subjects 
for both systems, considering only the normalized GC of section A. The results of the BA analysis are 
presented in the form 0.0°–0.0° ± 0.0°–0.0°. The first two numbers indicate the minimum and 
maximum of the mean differences between the systems. The last two numbers indicate the 

Figure 1. Instrumentation of one exemplary subject. Marker set and rigid marker clusters.

Inertial and optical data were simultaneously recorded at 60 Hz using XSens MVN Biomech (Version
4.3.7) and OptiTrack Motive (Version 1.10.0) which were hardware synchronized using a standard
5 V TTL signal. The alignment orientations between the IMUs and the rigid boxes were calculated
using the method described in [7]. The biomechanical model according to Cappozzo et al. [26] and the
IMU-to-segment calibrations were extracted from the OMC data of the n-pose sequence. The joint centers
were also calculated from the OMC data during the n-pose sequence according to the definitions of
Visual3D (C-Motion, Inc, Germantown, MD, USA), a widely used software tool for 3D biomechanics
research. The first OMC frame of each walking sequence was used as initialization for the IMU-based
kinematics estimation. Both systems used the same biomechanical model.

The inertial data was processed with an iterated extended Kalman filter (IEKF) approach based
on [14] while omitting magnetometer information. The gyroscope biases were extracted from a static
sequence (see above), while the accelerometer biases were estimated in the IEKF along with the
kinematics estimation using the model described in [11,27]. The same sequence was processed twice:
initially to obtain a converged estimate of the acceleration bias, which was then used as initial guess in
the second run. The estimated segment orientations were used to derive relative joint orientations.
These were decomposed into joint angles using Euler angle decomposition [28]. The sensor fusion
method is detailed in Appendix A.

To minimize STA, the OMC-based joint angles were derived from marker clusters on the rigid
boxes (condition 1). For secondary analyses the joint angles were calculated based on the markers
attached to the anatomical landmarks (condition 2). Initial contact (IC) was detected based on the left
and right heel marker [29]. Turning phases in the 6 min walk tests were omitted. In order to investigate
drift behavior, 10 left and right steps (one trial) were identified at three sections, i.e., beginning
(A), middle (B), and end (C) of the test. All joint angle curves were normalized to 100 percent gait
cycle (GC).

2.2. Statistical Analysis

To evaluate the IMU system, the root mean squared error (RMSE) and range of motion error
(ROME), as well as 95% confidence interval (CI) were calculated for hip, knee, ankle joint, and the
global pelvis orientation per section per GC. Further, Bland-Altman analysis (BA) was conducted to
evaluate the limits of agreement (LoA) between the mean joint angle waveforms over all 28 subjects
for both systems, considering only the normalized GC of section A. The results of the BA analysis
are presented in the form 0.0◦–0.0◦ ± 0.0◦–0.0◦. The first two numbers indicate the minimum and
maximum of the mean differences between the systems. The last two numbers indicate the minimum
and maximum of the limits of agreement (95% CI) of the two systems. The coefficient of multiple



Sensors 2018, 18, 1980 5 of 22

correlation (CMC) was calculated for each parameter per section per GC according to Ferrari et al. [30].
In [30] they showed that if a joint angle waveform reveals a similar ROM compared to the overall offset
between the two signals, the CMC can become a complex number. If that happened in the current
calculations for individual subjects, these results were not considered for further analysis. All these
calculations were conducted for both, condition 1 and condition 2.

A paired t-test was performed to identify significant differences in the RMSE and ROME of the
joint angles of all sections between condition 1 and condition 2. Alpha level was set a priori to 0.05.
The Chi-square goodness-of-fit test was carried out to check for normal distribution in the data.

For the evaluation of the test-retest reliability, the intraclass correlation coefficient (ICC) for
inter-day reliability was calculated for test day one and test day two for both systems for every joint
and section according to McGraw and Wong [31]. CMC and ICC values were rated according to Koo
and Li [32].

The global heading direction error of the pelvis in the transversal plane (pelvis rotation error) was
examined at minute 0, 1, 2, 3, 4, 5, and 6. In addition, the RMSE and the ROME of the joint angles
and pelvis flexion/obliquity were examined regarding potential linear trends over time. Therefore,
lines were fitted via linear least squares regression to the RMSE and ROME values of each GC for the
abovementioned angles and all test persons (Matlab function “fit” with “fittype = poly1”). The slopes
of the fitted lines were computed and plotted to evaluate potential trends. Processing of the joint
angles and statistics were conducted in Matlab 2015 (Mathworks Inc., Natick, MA, USA).

3. Results

3.1. Condition 1—Marker Clusters

RMSE and ROME for all parameters over all sections are shown in Table 1. RMSE and ROME
between the two systems revealed mean values lower than 2.40◦ and lower than 1.60◦ respectively in
all joints. The poorest outcome concerning the RMSE was evident in knee rotation (1.75◦–2.34◦) and
knee abduction for ROME (1.11◦–1.58◦). Figure 2a exemplary shows the left (LT) ankle flexion of a
representative subject.

Table 1. Mean root mean squared error (RMSE) and mean range of motion error (ROME) of condition
1 over all subjects ± standard deviation (SD); brackets contain 95% confidence interval (CI). A, B, C
indicate beginning, middle, and end of the 6 min walk test.

RMSE (deg) ± SD (95% CI) ROME (deg) ± SD (95% CI)

A B C A B C

LT Hip—Abduction 1.05 ± 0.42
(0.78–1.11)

1.14 ± 0.55
(0.75–1.17)

1.06 ± 0.45
(0.77–1.12)

0.54 ± 0.21
(0.43–0.59)

0.57 ± 0.29
(0.38–0.60)

0.57 ± 0.27
(0.44–0.64)

LT Hip—Rotation 1.94 ± 0.92
(1.49–2.20)

2.29 ± 1.36
(1.85–2.91)

2.25 ± 1.16
(1.80–2.70)

0.68 ± 0.27
(0.53–0.74)

0.70 ± 0.28
(0.55–0.77)

0.68 ± 0.28
(0.56–0.75)

LT Hip—Flexion 1.02 ± 0.35
(0.79–1.06)

0.99 ± 0.29
(0.83–1.06)

1.00 ± 0.32
(0.78–1.02)

0.93 ± 0.36
(0.71–1.00)

0.89 ± 0.36
(0.72–0.99)

0.85 ± 0.37
(0.70–0.99)

LT Knee—Abduction 1.59 ± 0.48
(1.22–1.59)

1.58 ± 0.50
(1.26–1.65)

1.57 ± 0.51
(1.31–1.71)

1.58 ± 0.79
(1.20–1.81)

1.54 ± 0.92
(0.97–1.68)

1.54 ± 0.83
(1.09–1.73)

LT Knee—Rotation 2.34 ± 1.08
(1.63–2.48)

2.34 ± 1.16
(1.43–2.33)

2.27 ± 1.10
(1.37–2.23)

1.09 ± 0.32
(0.92–1.16)

1.09 ± 0.39
(0.93–1.23)

1.16 ± 0.41
(0.98–1.30)

LT Knee—Flexion 1.47 ± 0.34
(1.25–1.51)

1.44 ± 0.31
(1.29–1.53)

1.41 ± 0.34
(1.17–1.44)

0.70 ± 0.27
(0.57–0.78)

0.67 ± 0.27
(0.51–0.72)

0.72 ± 0.33
(0.60–0.86)

LT Ankle—Abduction 1.61 ± 0.39
(1.42–1.73)

1.63 ± 0.36
(1.50–1.78)

1.62 ± 0.43
(1.35–1.68)

1.29 ± 0.51
(0.96–1.35)

1.43 ± 0.43
(1.29–1.62)

1.22 ± 0.39
(0.97–1.27)

LT Ankle—Rotation 2.16 ± 0.68
(1.80–2.33)

2.12 ± 0.65
(1.70–2.21)

2.13 ± 0.68
(1.69–2.19)

1.56 ± 0.57
(1.18–1.63)

1.51 ± 0.61
(1.13–1.59)

1.53 ± 0.45
(1.35–1.69)

LT Ankle—Flexion 1.55 ± 0.34
(1.46–1.72)

1.54 ± 0.36
(1.41–1.69)

1.61 ± 0.47
(1.35–1.72)

0.97 ± 0.38
(0.73–1.03)

0.98 ± 0.38
(0.73–1.02)

1.08 ± 0.44
(0.85–1.19)

RT Hip—Abduction 1.09 ± 0.54
(0.63–1.05)

1.09 ± 0.55
(0.68–1.11)

1.12 ± 0.54
(0.69–1.11)

0.56 ± 0.22
(0.42–0.59)

0.55 ± 0.26
(0.32–0.52)

0.53 ± 0.25
(0.38–0.57)
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Table 1. Cont.

RMSE (deg) ± SD (95% CI) ROME (deg) ± SD (95% CI)

A B C A B C

RT Hip—Rotation 1.64 ± 1.00
(1.00–1.77)

1.78 ± 1.76
(0.68–2.04)

2.07 ± 1.72
(0.92–2.25)

0.65 ± 0.47
(0.40–0.76)

0.56 ± 0.19
(0.46–0.60)

0.51 ± 0.20
(0.42–0.57)

RT Hip—Flexion 0.98 ± 0.51
(0.68–1.07)

0.89 ± 0.30
(0.68–0.91)

0.86 ± 0.28
(0.69–0.91)

0.98 ± 1.26
(0.21–1.18)

0.73 ± 0.40
(0.52–0.83)

0.69 ± 0.43
(0.44–0.77)

RT Knee—Abduction 1.26 ± 0.51
(0.90–1.30)

1.26 ± 0.44
(1.08–1.43)

1.24 ± 0.48
(0.90–1.27)

1.11 ± 0.54
(0.79–1.21)

1.12 ± 0.59
(0.77–1.23)

1.19 ± 0.70
(0.69–1.23)

RT Knee—Rotation 1.75 ± 0.63
(1.38–1.87)

1.91 ± 0.72
(1.38–1.93)

1.93 ± 0.84
(1.49–2.14)

1.03 ± 0.57
(0.65–1.09)

0.90 ± 0.42
(0.67–1.00)

1.00 ± 0.45
(0.69–1.04)

RT Knee—Flexion 1.51 ± 0.43
(1.31–1.64)

1.40 ± 0.28
(1.28–1.50)

1.37 ± 0.27
(1.26–1.47)

0.76 ± 0.41
(0.43–0.75)

0.75 ± 0.30
(0.56–0.79)

0.71 ± 0.31
(0.47–0.71)

RT Ankle—Abduktion 1.33 ± 0.35
(1.09–1.36)

1.27 ± 0.33
(1.07–1.33)

1.30 ± 0.29
(1.13–1.35)

1.02 ± 0.48
(0.70–1.07)

1.08 ± 0.49
(0.79–1.06)

0.97 ± 0.35
(0.79–1.06)

RT Ankle—Rotation 1.52 ± 0.41
(1.27–1.59)

1.56 ± 0.46
(1.26–1.62)

1.63 ± 0.51
(1.29–1.68)

1.27 ± 0.57
(0.90–1.34)

1.18 ± 0.48
(0.89–1.27)

1.18 ± 0.48
(0.92–1.29)

RT Ankle—Flexion 1.60 ± 0.36
(1.43–1.71)

1.60 ± 0.38
(1.44–1.74)

1.60 ± 0.42
(1.32–1.65)

1.02 ± 0.37
(0.78–1.07)

0.97 ± 0.38
(0.78–1.07)

0.91 ± 0.38
(0.68–0.97)

Pelvis—Flexion 0.64 ± 0.18
(0.55–0.69)

0.62 ± 0.21
(0.52–0.68)

0.62 ± 0.21
(0.51–0.67)

0.32 ± 0.15
(0.22–0.34)

0.35 ± 0.20
(0.25–0.40)

0.33 ± 0.20
(0.25–0.41)

Pelvis—Obliquity 0.62 ± 0.16
(0.57–0.69)

0.61 ± 0.20
(0.51–0.67)

0.59 ± 0.18
(0.47–0.61)

0.31 ± 0.11
(0.23–0.32)

0.32 ± 0.12
(0.24–0.33)

0.33 ± 0.10
(0.28–0.36)

Pelvis—Rotation x x x 0.42 ± 0.15
(0.32–0.43)

0.47 ± 0.22
(0.35–0.52)

0.51 ± 0.29
(0.29–0.51)
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(0.78–1.07) 
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Figure 2. Left (LT) ankle flexion of a representative subject. Soft tissue artefacts (STA) error excluded 
(a) and included (b). At 60 to 100% Gait Cycle (GC) appears a typical offset between optical motion 
capture (OMC) and inertial measurement unit (IMU)-derived data. 

BA analysis revealed mean differences between the systems of −0.6°–0.6° ± 0.5°–1.3° for sagittal 
joint angles. The best outcome showed the global pelvis flexion with a bias 0.0° ± 0.3°. Frontal plane 
joint angles showed biases of −0.3°–0.1° ± 0.3°–0.8° and transversal plane joint angles revealed biases 
of −0.9°–1.4° ± 0.3°–0.7°. BA plots are shown in Appendix B (Figures A2 through A4). Figure 3 (upper 
row) shows the BA diagrams for the most affected joint angles of every plane. 

Figure 2. Left (LT) ankle flexion of a representative subject. Soft tissue artefacts (STA) error excluded
(a) and included (b). At 60 to 100% Gait Cycle (GC) appears a typical offset between optical motion
capture (OMC) and inertial measurement unit (IMU)-derived data.

BA analysis revealed mean differences between the systems of −0.6◦–0.6◦ ± 0.5◦–1.3◦ for sagittal
joint angles. The best outcome showed the global pelvis flexion with a bias 0.0◦ ± 0.3◦. Frontal plane
joint angles showed biases of −0.3◦–0.1◦ ± 0.3◦–0.8◦ and transversal plane joint angles revealed biases
of −0.9◦–1.4◦ ± 0.3◦–0.7◦. BA plots are shown in Appendix B (Figure A2 through Figure A4). Figure 3
(upper row) shows the BA diagrams for the most affected joint angles of every plane.
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Figure 3. Bland-Altman (BA) diagrams for the most affected joint angles of every plane. The plots
show the agreement between the 100% GC normalized joint angle waveforms of OMC and IMU system
(averaged over all 28 participants). A normalized joint angle waveform contains 100 data points,
which results in 100 data points in the BA diagrams. Upper row (a) shows condition 1, the lower row
(b) condition 2. The solid line indicates the mean difference. The dashed lines indicate the limits of
agreement (LoA) (95% CI of the mean difference).

The CMC showed very high waveform similarity for the joint angles in the sagittal plane with
mean values ranging from 0.99 to 1. Concerning the frontal and transversal plane, the CMC showed
slightly lower correspondence with mean values ranging from 0.88 to 0.99. All CMC values are
mapped in the box-and-whisker-plot in Figure 4a.

3.2. Condition 2—Skin Markers

Most error measures showed results inferior to condition 1, when considering STA.
RMSE and ROME for all joint angles over all sections are shown in Table 2. RMSE showed values

lower than 6.00◦ over all planes and joints. ROME showed values lower than 6.10◦ for hip, knee and
pelvis in all planes, and ankle joint in transversal and frontal plane. However, the movement in the
sagittal plane in the ankle joint revealed a ROME of up to 10.66◦. Figure 2b exemplary shows the LT
ankle flexion of a representative subject for condition 2.

Table 2. Mean RMSE and ROME of condition 2 over all subjects ± SD; brackets contain 95% CI. A, B, C
indicate beginning, middle and end of the 6 min walk test.

RMSE (deg) ± SD (95% CI) ROME (deg) ± SD (95% CI)

A B C A B C

LT Hip—Abduction 2.57 ± 0.88
(2.14–2.83)

2.69 ± 1.05
(2.11–2.92)

2.69 ± 1.03
(2.05–2.85)

4.91 ± 2.14
(3.74–5.40)

4.85 ± 2.24
(3.84–5.57)

4.94 ± 2.14
(3.93–5.58)

LT Hip—Rotation 5.37 ± 1.66
(4.36–5.64)

5.60 ± 2.16
(4.52–6.20)

5.54 ± 2.10
(4.37–6.00)

3.98 ± 2.63
(2.48–4.52)

4.17 ± 2.61
(3.27–5.29)

4.24 ± 2.82
(3.12–5.31)

LT Hip—Flexion 3.53 ± 3.37
(1.25–3.87)

3.64 ± 3.47
(1.39–4.08)

3.67 ± 3.53
(1.26–4.00)

1.67 ± 1.22
(0.88–1.82)

1.42 ± 0.94
(0.76–1.50)

1.42 ± 0.96
(0.71–1.45)
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Table 2. Cont.

RMSE (deg) ± SD (95% CI) ROME (deg) ± SD (95% CI)

A B C A B C

LT Knee—Abduction 4.19 ± 1.15
(3.63–4.53)

4.14 ± 1.22
(3.53–4.48)

4.13 ± 1.20
(3.45–4.38)

2.89 ± 1.74
(1.83–3.18)

2.76 ± 1.93
(1.68–3.18)

2.85 ± 1.98
(1.83–3.37)

LT Knee—Rotation 4.56 ± 1.33
(3.80–4.83)

4.70 ± 1.40
(4.02–5.11)

4.72 ± 1.44
(4.02–5.13)

3.53 ± 2.08
(2.11–3.72)

3.78 ± 2.05
(2.43–4.02)

3.69 ± 2.33
(2.00–3.81)

LT Knee—Flexion 2.38 ± 0.63
(2.16–2.64)

2.38 ± 0.61
(2.03–2.50)

2.40 ± 0.64
(2.05–2.55)

1.48 ± 1.07
(0.78–1.62)

1.58 ± 1.15
(0.87–1.76)

1.59 ± 1.14
(0.95–1.84)

LT Ankle—Abduction 2.92 ± 1.31
(1.93–2.95)

3.01 ± 1.41
(1.97–3.06)

3.00 ± 1.37
(1.91–2.97)

2.49 ± 1.40
(1.80–2.88)

2.52 ± 1.61
(1.32–2.57)

2.53 ± 1.47
(1.54–2.68)

LT Ankle—Rotation 3.28 ± 1.32
(2.38–3.41)

3.41 ± 1.37
(2.84–3.91)

3.45 ± 1.32
(2.85–3.87)

4.74 ± 2.25
(3.90–5.65)

5.02 ± 2.52
(3.75–5.70)

4.94 ± 2.56
(3.59–5.57)

LT Ankle—Flexion 5.30 ± 1.56
(4.52–5.73)

5.42 ± 1.61
(4.55–5.79)

5.48 ± 1.65
(4.60–5.88)

10.07 ± 2.18
(8.94–10.63)

10.63 ± 2.50
(9.51–11.44)

10.66 ± 2.65
(9.62–11.68)

RT Hip—Abduction 2.58 ± 0.64
(2.35–2.85)

2.62 ± 0.63
(2.34–2.83)

2.63 ± 0.65
(2.47–2.98)

4.80 ± 1.44
(4.41–5.53)

4.71 ± 1.48
(4.15–5.30)

4.68 ± 1.53
(4.05–5.24)

RT Hip—Rotation 5.01 ± 1.37
(4.44–5.51)

4.97 ± 1.26
(4.20–5.18)

5.01 ± 1.07
(4.60–5.43)

3.01 ± 1.83
(1.77–3.19)

2.93 ± 1.54
(1.98–3.17)

3.12 ± 1.50
(2.15–3.31)

RT Hip—Flexion 3.57 ± 3.23
(1.27–3.77)

3.76 ± 3.34
(1.54–4.13)

3.83 ± 3.33
(1.61–4.19)

1.48 ± 0.62
(1.00–1.49)

1.52 ± 0.77
(1.00–1.59)

1.53 ± 0.86
(1.10–1.76)

RT Knee—Abduction 3.83 ± 1.72
(2.52–3.85)

3.79 ± 1.69
(2.53–3.84)

3.72 ± 1.68
(2.45–3.75)

3.16 ± 1.66
(2.07–3.35)

3.21 ± 1.77
(2.27–3.65)

3.21 ± 1.86
(2.22–3.66)

RT Knee—Rotation 4.41 ± 1.01
(3.76–4.54)

4.48 ± 1.06
(3.71–4.53)

4.54 ± 1.22
(3.71–4.66)

4.14 ± 2.13
(3.05–4.69)

4.09 ± 1.85
(3.02–4.46)

4.12 ± 2.10
(3.37–5.00)

RT Knee—Flexion 2.59 ± 0.90
(2.00–2.70)

2.66 ± 0.90
(2.00–2.70)

2.65 ± 1.01
(1.99–2.77)

1.76 ± 1.05
(0.97–1.78)

1.67 ± 1.07
(1.05–1.89)

1.58 ± 1.10
(0.86–1.71)

RT Ankle—Abduktion 2.90 ± 1.62
(1.90–3.16)

2.97 ± 1.88
(1.59–3.05)

2.99 ± 1.97
(1.52–3.05)

2.10 ± 1.03
(1.46–2.26)

2.25 ± 1.10
(1.60–2.45)

2.05 ± 1.34
(1.10–2.15)

RT Ankle—Rotation 3.46 ± 1.10
(2.76–3.61)

3.58 ± 1.22
(2.68–3.63)

3.74 ± 1.30
(2.83–3.84)

5.78 ± 1.88
(4.96–6.42)

6.01 ± 2.13
(5.26–6.91)

6.03 ± 2.09
(5.36–6.98)

RT Ankle—Flexion 4.49 ± 1.27
(4.03–5.02)

4.50 ± 1.19
(4.09–5.01)

4.45 ± 1.30
(4.16–5.17)

9.08 ± 2.95
(8.15–10.43)

9.52 ± 2.71
(8.34–10.44)

9.49 ± 2.63
(8.27–10.31)

Pelvis—Flexion 1.69 ± 0.76
(1.17–1.76)

1.77 ± 0.79
(1.26–1.87)

1.81 ± 0.82
(1.28–1.91)

1.91 ± 1.11
(1.49–2.35)

1.98 ± 1.29
(1.47–2.47)

2.07 ± 1.34
(1.33–2.37)

Pelvis—Obliquity 2.52 ± 2.83
(0.68–2.88)

2.60 ± 3.02
(0.49–2.83)

2.57 ± 3.00
(0.51–2.83)

1.02 ± 0.60
(0.56–1.02)

1.02 ± 0.68
(0.48–1.01)

0.96 ± 0.65
(0.54–1.05)

Pelvis—Rotation x x x 1.40 ± 1.21
(0.51–1.44)

1.42 ± 1.26
(0.36–1.34)

1.38 ± 1.17
(0.55–1.45)

Concerning condition 2 BA analysis revealed mean differences inferior to condition 1. Sagittal
joint angles showed biases of −4.2◦–2.2◦ ± 1.6◦–5.6◦. Frontal angles showed biases of −3.0◦–1.0◦

± 0.8◦–4.5◦. Transversal angles showed biases of −2.8◦–2.4◦ ± 2.4◦–5.8◦. BA plots are shown in
Appendix B (Figures A5 through A6). Figure 3 (lower row) shows the BA diagrams for the most
affected joint angles of every plane.

CMC values in the sagittal plane were good to excellent with values ranging from 0.89 to 1. CMC
values of the transversal and frontal plane showed moderate to good results ranging from 0.53 to 0.90.
The hip joint in the transversal plane exhibited the poorest outcome (CMC = 0.53 – 0.67). All CMC
values are mapped in the box-and-whisker-plot in Figure 4b.

The paired t-test revealed significant differences between condition 1 and condition 2 of the RMSE
in all joint angles and sections. ROME showed significant differences between condition 1 and 2 in all
joint angles and sections excepting the right hip flexion of section A (p = 0.08). For detailed results see
Table 3.
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plane (0.52–0.93) and excellent values in the sagittal plane (0.94–0.99) (Table 4). The knee joint in the 
frontal and transversal plane, the pelvis in the frontal plane, and the hip joint in the transversal plane 

Figure 4. Mean coefficient of multiple correlation (CMC) values over all subjects of section A for
condition 1 (a) and condition 2 (b). Exemplary only the joint angles of the left lower extremity
are shown.

Table 3. Results of the paired t-test for RMSE and ROME of every joint and all three sections. Bold
values indicate non-significant differences between condition 1 and condition 2.

RMSE ROME

A B C A B C

p-Value p-Value p-Value p-Value p-Value p-Value

LT Hip—Abduction <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LT Hip—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LT Hip—Flexion <0.001 <0.001 <0.001 0.004 0.011 0.006
LT Knee—Abduction <0.001 <0.001 <0.001 0.002 <0.001 0.005
LT Knee—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LT Knee—Flexion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LT Ankle—Abduction <0.001 <0.001 <0.001 <0.001 0.001 <0.001
LT Ankle—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LT Ankle—Flexion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Hip—Abduction <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Hip—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Hip—Flexion <0.001 <0.001 <0.001 0.081 <0.001 <0.001
RT Knee—Abduction <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Knee—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Knee—Flexion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Ankle—Abduktion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Ankle—Rotation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RT Ankle—Flexion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Pelvis—Flexion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Pelvis—Obliquity 0.001 0.002 0.002 <0.001 <0.001 <0.001
Pelvis—Rotation x x x <0.001 <0.001 <0.001

3.3. Test-Retest Reliability

The ICC revealed moderate to excellent correlations over all joints in the frontal and transversal
plane (0.52–0.93) and excellent values in the sagittal plane (0.94–0.99) (Table 4). The knee joint in the
frontal and transversal plane, the pelvis in the frontal plane, and the hip joint in the transversal plane
showed the lowest values (0.52–0.76). This tendency consented with the results from ICC calculation
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of the optical system (0.63–0.83). However, overall ICC values of the OMC system (0.63–0.99) were
higher compared to the IMU system.

Table 4. Mean intraclass correlation coefficient (ICC) values for the IMU system over all subjects ± SD;
brackets contain 95% CI. A, B, C indicate beginning, middle, and end of the 6 min walk test.

ICC ± SD (95% CI)

A B C

LT Hip—Abduction 0.92 ± 0.07 (0.90–0.96) 0.91 ± 0.07 (0.91–0.96) 0.92 ± 0.06 (0.91–0.96)

LT Hip—Rotation 0.75 ± 0.20 (0.70–0.86) 0.76 ± 0.18 (0.73–0.87) 0.76 ± 0.16 (0.72–0.84)

LT Hip—Flexion 0.98 ± 0.01 (0.98–0.99) 0.99 ± 0.01 (0.98–0.99) 0.99 ± 0.01 (0.99–0.99)

LT Knee—Abduction 0.57 ± 0.26 (0.53–0.73) 0.58 ± 0.27 (0.54–0.75) 0.57 ± 0.30 (0.52–0.75)

LT Knee—Rotation 0.69 ± 0.13 (0.65–0.75) 0.71 ± 0.13 (0.64–0.74) 0.71 ± 0.12 (0.66–0.76)

LT Knee—Flexion 0.98 ± 0.01 (0.97–0.98) 0.98 ± 0.01 (0.98–0.99) 0.98 ± 0.01 (0.98–0.99)

LT Ankle—Abduction 0.79 ± 0.09 (0.75–0.81) 0.79 ± 0.10 (0.77–0.84) 0.80 ± 0.08 (0.78–0.84)

LT Ankle—Rotation 0.82 ± 0.06 (0.81–0.86) 0.84 ± 0.07 (0.82–0.88) 0.85 ± 0.05 (0.85–0.89)

LT Ankle—Flexion 0.94 ± 0.02 (0.94–0.96) 0.94 ± 0.03 (0.94–0.96) 0.94 ± 0.03 (0.94–0.96)

RT Hip—Abduction 0.93 ± 0.05 (0.92–0.97) 0.92 ± 0.06 (0.91–0.96) 0.91 ± 0.07 (0.91–0.97)

RT Hip—Rotation 0.76 ± 0.20 (0.75–0.90) 0.76 ± 0.20 (0.74–0.90) 0.75 ± 0.22 (0.75–0.92)

RT Hip—Flexion 0.99 ± 0.01 (0.98–0.99) 0.98 ± 0.01 (0.98–0.99) 0.98 ± 0.01 (0.98–0.99)

RT Knee—Abduction 0.56 ± 0.34 (0.56–0.83) 0.56 ± 0.35 (0.57–0.84) 0.56 ± 0.34 (0.52–0.78)

RT Knee—Rotation 0.69 ± 0.14 (0.67–0.78) 0.69 ± 0.14 (0.64–0.75) 0.68 ± 0.16 (0.64–0.76)

RT Knee—Flexion 0.98 ± 0.01 (0.98–0.99) 0.98 ± 0.01 (0.98–0.99) 0.98 ± 0.01 (0.98–0.99)

RT Ankle—Abduktion 0.76 ± 0.13 (0.75–0.85) 0.77 ± 0.13 (0.76–0.86) 0.76 ± 0.16 (0.75–0.87)

RT Ankle—Rotation 0.85 ± 0.05 (0.83–0.87) 0.86 ± 0.05 (0.85–0.89) 0.86 ± 0.06 (0.84–0.88)

RT Ankle—Flexion 0.94 ± 0.02 (0.94–0.95) 0.95 ± 0.02 (0.94–0.96) 0.95 ± 0.03 (0.93–0.96)

Pelvis—Flexion 0.90 ± 0.06 (0.89–0.94) 0.90 ± 0.07 (0.89–0.95) 0.90 ± 0.08 (0.90–0.96)

Pelvis—Obliquity 0.52 ± 0.19 (0.50–0.64) 0.52 ± 0.20 (0.51–0.67) 0.52 ± 0.23 (0.47–0.65)

Pelvis—Rotation 0.82 ± 0.12 (0.82–0.91) 0.81 ± 0.12 (0.79–0.88) 0.78 ± 0.15 (0.79–0.91)

3.4. Drift

The global heading direction of the pelvis in the transversal plane (pelvis rotation) drifted linearly
but not consistently between subjects (45◦ ± 58◦). Global heading errors after six minutes ranged from
0.21◦ up to 230◦ (Figure 5).

To analyze the drift in the joint angle data, changes in the RMSE and ROME of condition 2 over
time were evaluated through linear least squares regression (line fitting). The slopes of the fitted lines
of RMSE and ROME for all joint angles of the left side and global pelvis flexion and obliquity of all
test persons are shown in Figures 6 and 7. Consistent positive slopes (i.e., increasing RMSE/ROME
error values over time) would indicate a systematic drift over time. However, as visible in the figures,
the slopes of both RMSE and ROME over time reside above as well as below zero, so that there is no
clear trend over all test persons visible. Moreover, the slopes are in a range where the errors cannot be
distinguished from noise given disturbing effects such as STA.
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4. Discussion

This paper evaluated the performance of a sensor fusion algorithm for estimating 3D kinematics
from gyroscope and accelerometer data.

4.1. Condition 1—Marker Clusters

RMSE in the present examination outperformed the results of Robert-Lachaine et al. [17]
(1.90◦–7.30◦). Ferrari et al. [19] showed similar results for their “Off” calculation (−2◦–+2◦) and
for ROME (0.60◦–1.50◦).

The BA analysis revealed excellent agreement between the systems. Mean difference results were
similar to the results of Robert-Lachaine et al. [17]. They consent with the present findings of the
sagittal joint angles showing the best agreement and the transversal joint angles the poorest agreement
between the two systems. However, the limits found by Robert-Lachaine et al. [17] ranged from
2.8◦–7.0◦, compared to limits of 0.3◦–1.3◦ in the present findings.

CMC values showed excellent correspondence between the systems in the sagittal plane and
good to excellent correspondence in the frontal and transversal plane. These findings are in accordance
with Ferrari et al. [19] and outperform the results of Zhang et al. [18]. However, the former performed
an offset correction to increase waveform similarity and did not consider transversal and frontal
plane of the knee joint. Zhang et al. used different coordinate systems for joint angle calculation [18].
The findings of Robert-Lachaine et al. [17] showed better CMC values concerning knee rotation and
abduction (0.91 and 0.97). For ankle joint rotation and abduction, they report their lowest CMC
values (0.89 and 0.77). In this case, the current system achieved higher correspondence (0.96–0.98).
However, Robert-Lachaine et al. [17] do not report whether these results are mean values over the
entire time period of 32 min. Furthermore, Robert-Lachaine et al. [17] analyzed a complex combination
of movements rather than a standardized motion.

CMC values were lowest for knee abduction (0.88–0.93). The majority of literature reports lowest
CMC outcomes considering motion in the transversal and frontal planes [17–19]. However, during
walking, movements in these planes show smaller ranges of motion compared to the sagittal plane.
It has been shown that the CMC decreases as the amplitude of movement decreases [33]. This might
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also explain the rather good results of Robert-Lachaine et al. concerning the CMC of the knee in frontal
and transversal plane (0.91–0.97). In this study, subjects had to perform lifting and turning tasks which
could have led to increased ROM in the mentioned planes.

4.2. Condition 2—Skin Markers

As mentioned, most values of errors increased. This consented with the findings of Seel et al. [4]
who compared knee and ankle sagittal joint kinematics of the human leg and the transfemoral
prosthesis of an above-knee amputee. They found the errors on the human leg four times higher
than on the prosthesis. On average, RMSE and ROME increased by 2.20◦ ± 1.50◦ and 2.90◦ ± 1.70◦,
respectively. Nüesch et al. [23] reported RMSE of the sagittal plane for hip, knee, and ankle joint
(9.60◦, 7.60◦, 4.50◦). The present system revealed better results concerning the sagittal plane for hip
and knee (3.83◦, 2.66◦) and similar results for the ankle (5.48◦). However, Nüesch et al. [23] conducted
their examination on a treadmill, which could have affected IMU-derived data [14]. Fasel et al. [12]
found in their evaluation of skiing similar hip abduction ROME (−3.3◦ ± 4.1◦), slightly higher knee
abduction ROME (4.2◦ ± 5.5◦) and distinctively higher hip flexion ROME (−10.7◦ ± 4.3◦). Their
findings concerning knee flexion, hip and knee rotation showed better results for ROME around −0.1◦

and 0.5◦. However, note that Fasel et al. [12] investigated a different task, which limits comparability.
Further, they conducted their examination on an indoor skiing carpet, comparable to a treadmill,
therefore inviting the same considerations associated with Nüesch et al. [23]. Interestingly, ROME
of the ankle joint flexion increased from 1.61◦ in condition 1 to 10.66◦ in condition 2. In the IMU
system and when calculating joint angles based on marker clusters, the foot is assumed to be one rigid
segment. However, the foot is a complex organization of bony segments [34]. Skin markers attached to
anatomical landmarks on the foot are in fact placed on different segments rather than on one segment
only. This might explain the differences in the ankle flexion between IMU and OMC system.

BA analysis also showed increased biases compared to condition 1. The ankle flexion was the most
affected joint angle in the sagittal plane, the knee abduction the most affected joint angle in the frontal
plane and the hip rotation the most affected joint angle in the transversal plane (Figure 3). CMC values
decreased mostly for the transversal and frontal plane. This might be due to the increased uncertainty
concerning CMC and smaller ranges of motion [33]. However, the ankle joint flexion still presents
good to excellent values. Qualitative examination of the ankle flexion waveforms showed that there is
an excellent match between waveforms of the IMU system and the OMC system at about 10 to 50%
GC. However, at 60 to 100% GC an offset appeared (Figure 2b). This might explain the difference of
ROM, but still similar shape of waveform and good CMC values. Al-Amri et al. [20] showed a similar
shape of waveform for ankle flexion in their examination. No such differences were found between
the IMU system and the OMC system based on the marker clusters (Figure 2a). Al-Amri et al. [20]
examined in their recent study the validity of a commercial IMU system during one 8 m walk, taking
into account errors due to STA. They found excellent CMC values concerning the sagittal plane of all
three joints and the frontal plane of the hip joint but stated a poor outcome for the remaining joints
in the frontal and transversal plane. However, they did not report exact values of the CMC for the
frontal and transversal plane because results were complex numbers at times. In this study, CMC
values for some subjects also resulted in complex numbers. On average, 3 out of 28 subjects per joint
angle resulted in complex numbers. However, these subjects were ignored for the calculation of the
mean CMC values shown in Figure 4. Nevertheless, concerning the findings of Al-Amri et al. [20], R2

values indicated rather poor correlations for the joint angles in the transversal plane. That consents
with the present results, showing moderate CMC values in the hip joint angle of the transversal plane
(Figure 4b). Al-Amri et al. [20] used different biomechanical models for their analysis and stated
possible uncertainties in the optical data due to the marker protocol. Further, Fiorentino et al. [35]
showed that the 3D hip joint angles and ROM based on OMC systems are significantly influenced
by STA.
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4.3. Test-Retest Reliability

ICC values revealed moderate to excellent results for all joint angles. Knee abduction (0.56–0.58)
and pelvis obliquity (0.52) showed the lowest test-retest correlation. These results are in accordance
with Mills et al. [36]. However, the ICC calculation for the OMC system based on skin markers showed
overall better outcome. This fact might be explained by expert marker placement. The IMUs were
attached only approximately to the same spot on the segments. Furthermore, the IMUs were more
prone to STA than the skin markers due to the rigid boxes and positioning focused on better visibility.
These circumstances may have caused different amounts of errors on the two measurement days.
For both systems, values of measures of reproducibility were not high. A possible explanation is the
fact that inter-day variability of gait is considered higher than, for example, intra-day variability [36].

4.4. Drift

One difference of the current IMU system compared to the systems used in the referenced
studies is the omission of the magnetometer information. Favre et al. [10] measured the 3D knee
angle omitting magnetometer information and presented results with a mean error of 4.00◦ to 8.10◦.
They also introduced a functional calibration method to align the joint coordinate system. Note that
the present evaluation relates to the sensor fusion algorithm, while the calibration, as mentioned in
Section 2.1, was obtained from the OMC system. Thus, the results presented in this study can be
considered free of calibration errors.

However, omitting global heading direction information (obtained through undisturbed
magnetometer measurements) typically leads to drift [2,12]. In the present study, gait was measured
for six minutes. Robert-Lachaine et al. [17] analyzed ergonomic tasks over a period of 32 min. However,
they do not state results for different sections of their test procedure and thus give no hint as to whether
drift appeared in the kinematic data or not.

Fasel et al. [12] measured skiing for 120 s. They reported errors in their joint angle results
(based on individual per-IMU orientation estimates) due to drift and introduced methods for drift
reduction [13] based on adjacent segments as a second processing stage (cf. Section 1). On the contrary,
the present study revealed no systematic drift over all test persons, neither in the 3D joint angle data
nor in the global pelvis flexion/obliquity. This is due to including biomechanical constraints in terms
of connected segments and environmental constraints in terms of ground contacts directly into the
estimation. However, Fasel et al. [13] reported that mainly highly flexed joint angles were affected
from the drift. In their examination of skiing subjects reached distinctively higher peaks in hip and
knee flexion compared to the present study.

Bergamini et al. [21] examined the drift in the orientation obtained from two inertial sensors
mounted on wrist and pelvis during 180 s of gait. In the transversal plane, a drift of up to 40◦ was
measured. In the sagittal plane and frontal plane, drift was smaller with values up to approximately
5◦. The findings of Bergamini et al. [21] are comparable with this study’s results for drift in the global
heading direction estimate (investigated at the root segment, i.e., the pelvic rotation) measured at
values of up to 230◦. Note, inter-segment constraints do not provide corrective information concerning
the global heading direction, which explains the linear drift observed. Consequently, the global pelvic
rotation was neglected in the evaluation. However, the evaluation and interpretation of the ROM of
the pelvic rotation and its reproducibility were independent of the drift.

5. Conclusions

The present algorithm for the calculation of 3D joint angles based on gyroscope and accelerometer
data from seven IMUs mounted on the lower body shows good to excellent agreement when compared
to a common OMC system and excluding STA. However, in this study, the influence of STA was
shown. Especially the ankle joint was highly affected by these and further artefacts, e.g., a limited
biomechanical model. Further research has to be conducted to better compensate these effects.
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In terms of reliability, the results indicate that an OMC system combined with an experienced
examiner delivers a better outcome, particularly for knee abduction and rotation and the ankle joint.
Better placement of the shank sensor and smaller IMUs might improve overall reliability and sensitivity
to STA.

Systematic drift was observed only in the global transversal plane angle (investigated at the root
segment, i.e., the pelvis rotation). There was no systematic drift observed over all test persons in the
other kinematic parameters. However, in clinical gait analysis the ROM per GC is the more essential
criterion, which was also measured with satisfying accuracy for the pelvis rotation.

The current sensor fusion algorithm was not only shown to be comparable to other algorithms,
but also tends to outperform most algorithms examined so far in terms of its accuracy while being
magnetometer-independent. However, it has to be considered that this study focused on the evaluation
of the sensor fusion algorithm, while the IMU-to-segment calibration, the biomechanical model and
the initialization were obtained from the OMC system. Therefore, the next step consists of evaluating
the validated sensor fusion method in a setup, where all information was obtained purely from the
IMU system.

Nevertheless, this examination reveals promising results of a magnetometer–independent sensor
fusion algorithm that showed no systematic drift in the joint angle data. Therefore, a stand-alone
system incorporating this algorithm provides potential for applications in clinical gait analysis and
further implementations.
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Appendix A

The here presented sensor fusion method for segment kinematics estimation is a slightly modified
version of [14], which itself was based on [2]. Note that the contribution of [14] was the extension
of the best performing extended Kalman filter (EKF)-based segment orientation estimation method
of [2] with global translation estimation via ground contact estimation. For this study, the method
of [14] was used while omitting magnetometer measurements (i.e., skipping measurement updates
with the magnetometer data). Moreover, it was extended with online accelerometer bias estimation as
proposed in [11,27] and by using an IEKF instead of an EKF [37]. For the reader’s convenience,
the resulting method is detailed in the following. For further information, please refer to the
abovementioned publications.

Appendix A.1. Biomechanical Model

The biomechanical model is a stick-figure-like model with rigid segments. Each segment Si ∈ S
has an associated segment coordinate frame localized in the global position-less coordinate system
G. The latter has z pointing up (opposing gravity). The global six DOF pose of the i-th segment is
represented by the unit quaternion qGS (denoting the orientation between G and S) and the position
vector SG (denoting the position of frame S in G). Furthermore, each segment Si defines a set of points
PSi which are represented in the segment coordinate system and are used for joint definitions: a joint
Jk ∈ J defines which points from which segments are connected. Hence, a joint is a quadruple (i, k, j, l),
meaning that pk ∈ PSi is connected to pl ∈ PSj in the global frame. Additionally, each segment Si
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has an IMU Ii attached, with the rigid transformation
{

qSI , IS}
i. This transformation is referred to as

IMU-to-segment (I2S) calibration. The full model of the lower body is depicted in Figure A1.
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Figure A1. Biomechanical model of the lower body with segments (magenta lines), joint centers (red
spheres), four ground contact points on each foot (green spheres), IMU placement, and involved
coordinate frames. A technical coordinate system is associated to each IMU (I). The segment coordinate
systems (S) are drawn at the proximal ends of the segments. The six DoF transformations, each in terms
of an orientation (quaternion) qSI and a translation IS, between the IMU coordinate frames and the
associated segment coordinate frames are called IMU-to-segment calibrations. The symbol G denotes
the global coordinate system. The figure has been taken from [14].

Appendix A.2. Segment Kinematics Estimation Method

The goal is to estimate the segment kinematics by fusing information from the gyroscope
and accelerometer measurements with assumptions from a motion model as well as from the
biomechanical model. This is realized through an IEKF and an IMU-centered state-space model,
i.e., the IMU kinematics are estimated and the segment kinematics are derived from these using the
following equations:

qGS = qGI � qIS

SG = IG − R(qGS)IS,

where � denotes the quaternion multiplication, R(·) converts a quaternion to the corresponding
rotation matrix and the I2S calibration is assumed known. Note, in [2], the IMU-centered
state-space model outperformed the segment-centered state-space model for the considered tasks of
magnetometer-free human motion tracking, which justifies this choice.

Hence, the state contains the following IMU-centered kinematic parameters of all n segments of
the considered biomechanical model at time t:

xt =

({
qGI , ωGI

I , IG,
.
I

G
,

..
I

G
, ba

}n−1

i=0

)T

t

,

where qGI is the orientation of the IMU wrt. the global frame, ωGI
I is the rotational velocity of the

IMU relative to the global frame, expressed in the IMU frame, IG is the IMU position in the global
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frame, and
.
I

G
and

..
I

G
are the corresponding linear velocity and acceleration. The symbol ba denotes

the accelerometer bias, represented in the IMU frame.
The motion model (used in the IEKF time update) assumes constant angular velocity (with noise

in angular acceleration), constant linear acceleration (with noise in jerk) and a random walk for the
accelerometer bias. Hence, after T seconds, the prediction for the state variables is

xt+T =



qGI
i,t � exp

(
T
2 ωGI

I,i,t

)
ωGI

I,i,t + Tδ̂ω
t

IG
i,t + T

.
I

G
i,t +

T2

2

..
I

G
i,t

.
I

G
i,t + T

..
I

G
i,t

..
I

G
i,t + Tδ̂a

t
ba

i,t + δ̂b

...


,

where exp(·) is the quaternion exponential and δ̂ω ∼ N (0, Σ̂ω
), δ̂a ∼ N (0, Σ̂a

) and δ̂b ∼ N (0, Σ̂b
)

are Gaussian white process noises. The vertical dots indicate that these variables are given for each
IMU i ∈ {0, . . . , n− 1}.

The (implicitly formulated) measurement models for the inertial measurements, i.e., the
acceleration ya

i,t and the rotational velocity yω
i,t, are

0 = ya
i,t − ba

i,t − R
(

qGI
i,t

)T
[

..
I

G
i,t − gG

]
− δa

i ,

and
0 = yω

i,t − ωGI
I,i,t − δω

i ,

where (·)T is the matrix transpose, gG denotes acceleration due to gravity in the global system, and
δa ∼ N (0, Σa) as well as δω ∼ N (0, Σω) are Gaussian white measurement noises.

Biomechanical model constraints, i.e., the fact that segments are connected at the joints, are also
modeled as noisy measurements (hence, soft constraints), where the noises account for inaccuracies
of the assumed biomechanical model. Let joint (i, k, j, l) connect point pk ∈ PSi with pl ∈ PSj in the
global frame, the measurement model is

0 = pG
k − pG

l − δp

0 = SG
i + R

(
qGS

i
)

pSi
k −

[
SG

j + R
(

qGS
j

)
p

Sj
l

]
− δp

0 = SG
i + R

(
qGI

i � qIS
i
)

pSi
k −

[
SG

j + R
(

qGI
j � qIS

j

)
p

Sj
l

]
− δp

0 = IG
i + R

(
qGI

i � qIS
i
)[

pSi
k − IS

i

]
− IG

j − R
(

qGI
j � qIS

j

)[
p

Sj
l − IS

j

]
− δp,

where δp ∼ N (0, Σp) denotes Gaussian white measurement noise.
Environmental constraints in terms of ground contacts are also incorporated into the estimation

as noisy measurements. For this, in each time step, probabilistic ground contact estimations are carried
out in parallel to the kinematics estimation for a set of potential ground contact points Pc ⊂ ⋃n−1

i=0 PSi

(cf. Figure A1). For each of these points, ground contact probabilities are calculated, given the point
height and velocity as obtained from the kinematics estimation. Let pk ∈ PSi and also pk ∈ PC, then

uk =
(

pG
k

)
z
=
[

IG
i + R

(
qGI

i � qIS
i

)[
pk − IS

i

]]
z
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is the estimated global point height, and

yk =
.
I

G
i + R

(
qGI

i

)
S
(

ωGI
I,i

)[
R
(

qIS
i

)(
pk − IS

i

)]
is the estimated global point velocity. Here, S(·) denotes the skew-symmetric matrix of a vector.

For information fusion, a binary discrete Bayes filter [38] is used for each potential contact
point. Assuming the prediction being independent of the previous state, given a random variable
Xt = {x1 := contact | x2 := no contact} the Bayes filter simplifies to

p(Xt = x1) = ηp(Xt−1 = x1|uk)p(yk|Xt = x1),

with
η = (1− p(Xt−1 = x1|uk) + 2p(yk|Xt = x1)p(Xt−1 = x1|uk) + p(yk|Xt = x1))

−1.

The probabilities are obtained as follows:

p
(

Xt−1 = x1

∣∣∣uk) = 1− sig{0,5,0.9,60,0.05}(uk),

for the prediction, and
p
(

yk

∣∣∣Xt = x1) = 1− sig{0.5, 0.95, 0.9, 0.7}(yk),

as measurement using the sigmoid function

sig{c,m,s,o}(x) = c +
m
2

tanh(s(x− o)).

Here, the parameters for the sigmoid function were empirically determined. For each ground
contact point, these probabilities are calculated in every time step. If the largest ground contact
probability exceeds a threshold pth, then two soft constraints (in terms of measurement updates) are
applied to the corresponding point pk inside the kinematics estimation filter: a zero-velocity update

0 =
.
I

G
i + R

(
qGI

i

)
S
(

ωGI
I,i

)[
R
(

qIS
i

)(
pk − IS

i

)]
+ δ

.
p

and, to prevent a drift in height, a zero-plane update

0 =
[

IG
i + R

(
qGI

i � qIS
i

)[
pk − IS

i

]]
z
+ δz

with δ
.
p ∼ N

(
0, Σ

.
p
)

and δz ∼ N (0, Σz) being Gaussian white measurement noises. If the threshold
was not exceeded, a zero-plane update is applied to the lowest ground contact point only if this has
a negative height. Otherwise no additional measurement update is conducted. Obviously, in the
current state, the method assumes one plane. Table A1 contains all previously introduced noises
and parameters.

Table A1. Noise and parameter settings for the presented kinematics estimation method.

Parameter Σ̂ω Σ̂a Σ̂b Σω Σa Σp Σ
.
p Σz pth

Value 105 × I3×3 3× 105 × I3×3 10−8 × I3×3 10−3 × I3×3 10−2 × I3×3 10−4 × I3×3 10−2 × I3×3 10−5 0.7
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