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Abstract: With the rapid development of indoor positioning technology, radio frequency identification
(RFID) technology has become the preferred solution due to its advantages of non-line-of-sight,
non-contact and rapid identification. However, the accuracy of existing RFID indoor positioning
algorithms is easily affected by the tag density and algorithm efficiency, and their environmental
robustness is not strong enough. In this paper, we have introduced an RFID positioning algorithm
based on the Glowworm Swarm Optimization (GSO) fused with semi-supervised online sequential
extreme learning machine (SOS-ELM), which is called the GSOS-ELM algorithm. The GSOS-ELM
algorithm automatically adjusts the regularization weights of the SOS-ELM algorithm through the
GSO algorithm, so that it can quickly obtain the optimal regularization weights under different
initial conditions; at the same time, the semi-supervised characteristics of the GSOS-ELM algorithm
can significantly reduce the number of labeled reference tags and reduce the cost of positioning
systems. In addition, the online learning phase of the GSOS-ELM algorithm can continuously
update the system to perceive changes in the environment and resist the environmental interference.
We have carried out experiments to study the influence factors and validate the performance,
both the simulation and testbed experiment results show that compared with other algorithms,
our proposed GSOS-ELM localization system can achieve more accurate positioning results and has
certain adaptability to the changes of the environment.

Keywords: radio frequency identification (RFID); indoor localization; Glowworm Swarm Optimization
(GSO); semi-supervised online sequential extreme learning machine (SOS-ELM)

1. Introduction

With the development of Internet of Things technology, people’s demand for applications
has grown rapidly. Among these technologies, wireless location-aware technologies have shown
great activity in both military and civilian applications. Wireless location-aware technologies and
services play a more and more important role in people’s daily life. In outdoor location awareness
technologies, Global Positioning System (GPS) [1] is the most famous and most representative of
location sensing technology and is widely used in military and civilian applications. The demand for
indoor location-aware applications is increasing, and there is great potential for indoor real-time and
dynamic location-awareness needs. Due to the advantages of non-line-of-sight, non-contact and rapid
identification, radio frequency identification (RFID) technology has become the preferred solution
to indoor location-aware applications. There are many kinds of location-aware algorithms using
RFID, such as Received Signal Strength Indication (RSSI) [2], Angle of Arrival (AOA) [3], Time of
Arrival (TOA) [4], Time Division of Arrival (TDOA) [5] and other distance-based RFID positioning
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methods, but these methods are sensitive to the environment nor their environmental robustness is
not strong enough.

At the same time, another kind of RFID positioning method based on scene analysis has attracted
a lot of research attention due to its higher adaptability to environment and lower cost. For example,
LANDMARC [6] is a classic RFID location-aware algorithm. The algorithm introduces the concept
of reference tags to assist the localization. Zhao et al. [7] propose the VIRE algorithm to improve the
LANDMARC algorithm by inserting virtual reference tags and introducing the concept of fuzzy maps.
Xu et al. [8] use Bayesian probability and k-nearest neighbor (KNN) to reduce the location fluctuation
and error caused by multipath and environmental interference in LANDMARC. In the scene-based
analysis method, the use of neural network methods for RFID positioning has also become another
research hotspot. Kung et al. [9] propose a passive RFID indoor positioning scheme that combines
LANDMARC scheme with a back propagation (BP) neural network. After LANDMARC location
perception, the BP neural network is further used to process location-aware results to obtain more
accurate location-aware results. Guo et al. [10] propose an algorithm using radial basis function neural
network (RBFNN) for RFID indoor location sensing. The RSSI values and RSSI difference (∆RSSI) are
used as the input of the RBFNN, and the positioning result was obtained. Gholoobi et al. [11] use
the weighted k-nearest neighbor (WKNN) method to process the captured signal and achieve indoor
localization. Mazan et al. [12] design a feed-forward artificial neural network (ANN) to process data
and produce estimated coordinates that denote the position of the user. Zou et al. [13] propose an RFID
positioning method using an extreme learning machine (ELM), which takes signal strength values as
input and coordinates as output. Yang et al [14] propose to use the online extreme learning machine
(OS-ELM) to locate the indoor manufacturing execution system. This algorithm uses the known labels
in the environment to learn and can adapt to changes in the environment over time, but it requires
more tags and higher system costs to reach high positioning accuracy.

In recent years, many studies use evolutionary algorithms to optimize artificial neural networks
(ANNs). The optimization of artificial neural networks mainly focuses on three aspects: optimizing
the initial weight of the network, optimizing and selecting the network structure and learning
algorithms for training. For example, Lin et al. [15] suggest five ANNs in parallel and use the genetic
algorithm (GA) [16] to optimize weight values of each network for RFID positioning. Wang et al. [17]
proposed a method using particle swarm optimization (PSO) [18] optimized BP neural network
for RFID indoor positioning. Kuo et al. [19] proposed an algorithm that uses immune-based
feed-forward neural network to learn the relationship between RSSI values and actual locations.
Krishnanand et al. [20,21] propose a new type of evolutionary algorithms called Glowworm Swarm
Optimization (GSO) algorithm to simulate the behavior of natural fireflies for feeding or courtship.
Xu et al. [22] employ the GSO algorithm to optimize the initial weights and biases of the BP neural
network. Wang et al. [23] improve the BP neural network using the adaptive-step-size glowworm
swarm optimization. Li et al. [24] propose a parallel ensemble learning algorithm based on improved
binary glowworm swarm optimization algorithm (IBGSO) and BP neural network. However, for the
ELM algorithm, since the weights of the input layer and the biases of the hidden layer are randomly
selected and will not be corrected in the training process, in the past ELM optimization research,
most studies use different forms of optimization algorithm to optimize the input weights and biases
of the ELM to obtain better and more stable models. For example, Zhu et al. [25] use the standard
differential evolution algorithm to select and optimize the ELM input weights and hidden layer
biases, which is called evolutionary extreme learning machine (E-ELM). Cao et al. [26] use a variety
of mutation strategies to improve the standard differential evolution algorithm and proposes an
improved version of the E-ELM algorithm, which is called self-adaptive evolutionary extreme learning
machine (SaE-ELM). The PSO-ELM fusion algorithm proposed by Xu et al. in literature [27] uses the
PSO algorithm to optimize the input weight of the ELM and the bias of the hidden layer. Han et al. [28]
have considered the complexity of the ELM model in the optimization, improved the PSO-ELM
algorithm, and proposed the ELM algorithm combining with an improved PSO method (IPSO-ELM).
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In this paper, we propose an RFID positioning algorithm based on the Glowworm Swarm
Optimization (GSO) and semi-supervised online sequential extreme learning machine (SOS-ELM),
which is called the GSOS-ELM algorithm. First, we use improved Gaussian filter algorithm to
preprocess the RFID data. Then, we use GSO algorithm to optimize the regularization coefficients
and train the initial model. Finally, we use the continuously arriving data to update the model
and process the user localization requests. The proposed algorithm can quickly obtain the optimal
regularization weights under different initial conditions; at the same time, the semi-supervised
characteristics can significantly reduce the number of labeled reference tags and reduce the cost.
In addition, the online learning phase can continuously update the system to resist the environmental
interference. The experimental results show that compared with other algorithms, the proposed
localization system can achieve more accurate positioning results and has certain adaptability to the
changes of the environment.

The rest of this article is organized as follows: section “Algorithms” introduces the principles of
the algorithms; section “Simulation Experiment” explains the algorithm simulation and the simulation
results; section “Experimental Evaluation” shows the experimental evaluation results in realistic
environment; and section “Conclusion” gives a conclusion of this article and explains our future work.

2. Algorithms

In this part, we will introduce the algorithms in detail. First of all, we will present the
semi-supervised online sequential extreme learning machine (SOS-ELM); then we will introduce the
glowworm swarm optimization (GSO) method; and finally we demonstrate our proposed RFID-based
indoor localization system using GSOS-ELM.

2.1. Semi-Supervised Online Sequential Extreme Learning Machine

To overcome the problems of traditional BP algorithm such as slow learning rate and local
minimum in the process of training single-hidden layer feedforward neural networks (SLFNs),
Huang et al. [29,30] proposed a simple SLFNs, which is called Extreme Learning Machine (ELM).
Its characteristic is that only the number of hidden layer nodes of a SLFNs needs to be set.
Without adjusting the input weight and the bias of the hidden element, the input weights of the
SLFNs and the offsets of the hidden layer neurons are randomly given in the ELM. The weight of the
output layer can be calculated by the Moore–Penrose generalized inverse of the hidden layer output
matrix. The results from ELM algorithm have better generalization performance and its learning speed
has been greatly improved compared to traditional neural networks. The basic principle of the ELM
algorithm is as follows:

Given a training set with N samples {(xi, yi)|i = 1, 2, . . . , N}, where xi ∈ Rn is the input space
and yi ∈ Rm is the output space. The output of the ELM model with L hidden layer nodes can be
expressed as:

f (xi) = h(xi)
T β =

L

∑
i=1

βiG(wi, bi, xi) = yi, i = 1, 2, . . . , N (1)

where βi = [βi1, βi2, . . . , βin]
T is the set of weights between the i-th hidden layer neuron and output

layer nodes, wi = [wi1, wi2, . . . , wim]
T is the set of weights connecting the input layer node and the i-th

hidden layer, bi is the bias term used, G(·) is the activation function.
The above model can be represented as a matrix:

Hβ = Y (2)

where H =

G(w1, b1, x1) · · · G(wL, bN , x1)
...

. . .
...

G(w1, b1, xN) · · · G(wL, bN , xN)


N×L

, β =

βT
1
...

βT
L


L×m

, Y =

YT
1
...

YT
N


N×m

.
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Weights wi and offsets bi are randomly generated in the model, without training and correction.
According to the Moore–Penrose generalized inverse theory [31], solving equations can yield β = H+,
where H+ is the Moore–Penrose generalized inverse of matrix H.

The most common method of solving the generalized inverse matrix H+ is the singular value
decomposition method [32]. This method can be used whether HT H is a singular matrix or
a nonsingular matrix, and its execution speed is also better than orthogonal iterations method.
The solution formula is as follows:

β =

{
(HT H)−1HTY), N > L
HT(HHT)−1Y, N < L

(3)

where N is the number of rows of matrix H, L is the number of columns of matrix H, that is, the number
of hidden layer nodes.

At the same time, to improve the stability of the ELM solution, Huang et al. [33] introduce the
structural risk as a regularization term, added the L2 regularization term to the objective function of the
ELM, give a ridge regularization version of the ELM algorithm. They convert the original optimization
problem to optimization problem:

min
β

(
1
2
‖Hβ−Y‖2 +

C1

2
‖β‖2) (4)

where C1 is the L2 regularization parameter used to adjust the ratio of structural risk and empirical
risk to prevent overfitting. Solving Equation (4) results in Equation (5):

β∗ =

{
(HT H + IL×L

C1
)−1HTY, N > L

HT(HHT + IN×N
C1

)−1Y, N < L
(5)

where N is the number of rows of matrix H, L is the number of columns of matrix H, and IL×L and
IN×N are identity matrices.

To solve the problems of excessive training capacity and long training time when training data is
large, Liang et al. [34] improved the batch learning ELM algorithm and proposed an online sequential
learning ELM algorithm (OS-ELM). The incremental approach learns new knowledge from data
that arrives one by one or from chunk by chunk, and after the current data training is completed,
the original data can be discarded. Furthermore, to solve the problem of labeled samples shortage,
Huang et al. [35] propose a semi-supervised extreme learning machine (SS-ELM) for semi-supervised
learning, which reduces the number of labeled samples and uses unlabeled samples to avoid the high
cost of sample labels.

Jia et al. [36] comprehensively consider the merits of empirical risk and structural risk in
SS-ELM algorithm and the advantage of incremental learning in OS-ELM algorithm, proposed
a semi-supervised online sequential extreme learning machine (SOS-ELM), which maintains
generalization ability to take online learning at the same time. The description of the SOS-ELM
algorithm is as follows:

Given a data set containing the labeled samples {(xi, yi)|xi ∈ Rn, yi ∈ Rm, i = 1, 2, . . . , Nl} and
the unlabeled sample {x′i |x′i ∈ Rn, i = 1, 2, . . . , Nu}, the number of hidden neurons is L, the activation
function is g(x), the hyperparameters C1, C2 correspond to the L2 regularization term and the
regularization term of the manifold respectively, J is a diagonal matrix, [Jii] = Ei, i = 1, 2, . . . , l,
the remaining elements are 0, Ei is the penalty factor, and is set to 1 when used to solve the regression
problem. The specific steps of the SOS-ELM algorithm are described in Procedure 1.
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Procedure 1 Semi-Supervised Online Sequential Extreme Learning Machine

Initialization phase: Let the training initial data set size be N0, then the initialized data set is
{(xi, yi) or x′i |i = 1, 2, . . . , N0}.
Step 1.1: Randomly generate the hidden layer weights wi and offsets bi.
Step 1.2: Record the labeled sample nl and unlabeled sample nu, calculate the similarity matrix of
the sample:

W = [wij]u×u (6)

where wij is the similarity between sample i and sample j, wij = wji.
Step 1.3: Calculate the initial diagonal matrix J0 and the Laplacian matrix Lℵ0 :

Lℵ0 = Dℵ0 −Wℵ0 (7)

where Dℵ0 is a diagonal matrix, the i-th diagonal element is ∑u
j=1 wij.

Step 1.4: Calculate the initial output weight:

β0 = P0HT
0 J0Y0 (8)

where P0 = (C1 I + HT
0 J0H0 + C2HT

0 Lℵ0 H0)
−1

Step 1.5: Let k = 0.
Online learning phase: The (k + 1)-th new data block arrives:

Step 2.1: Record the labeled samples nl and unlabeled samples nu, calculate the diagonal matrix
Jk+1 and Laplacian matrix Lℵk+1

.
Step 2.2: Calculate Pk+1 and output weight βk+1:

Pk+1 = Pk − Pk HT
k+1(C1 I + (Jk+1 + C2Lℵk+1

)HT
k+1Pk HT

k+1)
−1(Jk+1 + C2Lℵk+1

)Hk+1Pk (9)

βk+1 = βk + Pk+1HT
k+1(Jk+1Yk+1 − (Jk+1 + C2Lℵk+1

)Hk+1βk) (10)

Step 2.3: Let k = k + 1, return to Step 2.1.

2.2. Glowworm Swarm Optimization Method

The Glowworm Swarm Optimization (GSO) algorithm simulates the glow behavior of the firefly
in nature, uses its luminescence properties to find partners based on its search area, and moves to a
firefly with a superior position in the neighborhood structure to achieve evolution.

The relative brightness of the firefly is I = I0 × e−γrij , where I0 is the maximum fluorescent
intensity of the firefly, i.e., the fluorescence intensity of itself (r = 0), which is related to the objective
function value; γ is the light intensity absorption coefficient, to reflect the fact that fluorescence
gradually decreases with distance increases and absorption of the media; rij is the spatial distance
between fireflies i and j.

The degree of attraction of fireflies is β = β0 × e−γr2
ij , where β0 is the maximum degree of

attraction, that is, the degree of attraction at the light source (r = 0).
The position of the firefly i being attracted to the firefly j is updated by xi = xi + β× (xj − xi) +

α× (rand− 1/2), where xi, xj are the spatial positions of the fireflies i and j; α is the constant step
length factor on [0, 1]; rand is a random factor that follows uniform distribution on [0, 1].

The specific steps of the GSO algorithm are described as Procedure 2.
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Procedure 2 Glowworm Swarm Optimization Method

Step 1: Initialize the basic parameters: set the number of fireflies m, the maximum attraction β0,
the light absorption coefficient γ, the step length factor α, the maximum number of iterations maxT
or the search accuracy ε.
Step 2: Randomly initialize the position of the firefly and calculate the target value of the firefly as
its maximum fluorescent intensity I0.
Step 3: Calculate the relative brightness I and the attractiveness β of the firefly in the population
and determine the direction of movement of the firefly based on the relative brightness:

I = I0 × e−γrij (11)

β = β0 × e−γr2
ij (12)

where γ is the light intensity absorption coefficient and rij is the spatial distance between fireflies
i and j.
Step 4: Update the spatial position of the firefly:

xi = xi + β× (xj − xi) + α× (rand− 1/2) (13)

where xi, xj are the spatial positions of the fireflies i and j; α is the constant step length factor on
[0, 1]; rand is a random factor that follows uniform distribution on [0, 1].
Step 5: Randomly disturb the firefly at the best position.
Step 6: Recalculate the firefly’s brightness Inew based on the location of the updated firefly.
Step 7: When the search accuracy is satisfied, or the maximum number of searches is reached,
skip to Step 8; otherwise, increase the number of searches by 1 and skip to Step 3 for the next search.
Step 8: Output global extreme points and optimal individual values.

2.3. RFID-Based Indoor Localization System

Based on the semi-supervised online sequential extreme learning machine (SOS-ELM)
and Glowworm Swarm Optimization (GSO) method, this paper proposes an RFID indoor
localization algorithm that combines GSO algorithm and SOS-ELM algorithm, which is called the
GSOS-ELM algorithm.

The framework of the proposed system is shown in Figure 1. The system includes n readers,
l reference tag with known position, u reference tags with unknown positions, the signal strength of
the i-th reader reading the tag is RSSIi, the first l elements of diagonal matrix J are set to 1 and the
following u elements are 0.

The specific steps of the GSOS-ELM system are described as Procedure 3, it is divided into the
offline phase and the online phase.
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Procedure 3 Semi-Supervised Online Sequential Extreme Learning Machine

Offline phase:
Step 1.1: Preprocessing the data using an improved Gaussian filter algorithm:

(i): The i-th reader repeatedly reads the signal strength of the same tag for a total of N times, and records
the signal strength of the k-th read signal as RSSIik, k = 1, 2, . . . , N;

(ii): Calculate the variance δ2 of the RSSI value:

δ2 =
1

N − 1

N

∑
k=1

(RSSIik − A)2 (14)

where A = 1
N ∑N

k=1 RSSIik
(iii): For the k-th signal strength RSSIik, perform culling if |RSSIik − A| > 3δ, finally an RSSI set of size m

is obtained, and the average value of the RSSI set is calculated as the average signal strength:

RSSIl =
1
m

m

∑
k=1

RSSIik (15)

Step 1.2: Determine the number of hidden neurons of the GSOS-ELM algorithm, the activation function g(x),
the regularization coefficients C1 and C2, and generate hidden layer weights wi and offsets bi;
Step 1.3: The initial data set size is N0, record the labeled sample nl and the unlabeled sample nu, calculate the
similarity matrix Wℵ0 of the sample:

Wℵ0 = [wij]u×u (16)

where wij is the similarity between sample i and sample j, the measure formula is:

wij = e−‖xi−xj‖2
/(2δ2) (17)

Step 1.4: Calculate the initial Laplacian matrix Lℵ0 :

Lℵ0 = Dℵ0 −Wℵ0 (18)

where Dℵ0 is a diagonal matrix, the i-th diagonal element is ∑u
j=1 wij.

Step 1.5: Calculate the initial output weight β0t = P0HT
0 J0Y0, where P0 = (C1 I + HT

0 J0H0 + C2HT
0 Lℵ0 H0), J0 is

a diagonal matrix, [Jii] = 1, i = 1, 2, . . . , l, the remaining elements are 0, get the output matrix Ŷ of the labeled
sample and the real value Y;
Step 1.6: Optimize the regularization coefficients C1 and C2 according to the specific steps in Procedure 2, the
fitness function is:

f itness =
1

∑l
i=1

∥∥∥Ŷl −Yi

∥∥∥ (19)

Step 1.7: The optimized initial output weight β0 is output to online learning phase and online working phase.
Online phase: The online phase includes online learning phase and online working phase, they can be performed

parallel.
Online learning phase: The k + 1 new data block arrives:
Step 2.1.1: Record the labeled samples nl and unlabeled samples nu, use improved Gaussian filter to process
the data and calculate the Laplacian matrix Lℵk+1

.
Step 2.1.2: Calculate Pk+1 and output weight βk+1:

Pk+1 = Pk − Pk HT
k+1(C1 I + (Jk+1 + C2Lℵk+1

)HT
k+1Pk HT

k+1)
−1(Jk+1 + C2Lℵk+1

)Hk+1Pk (20)

βk+1 = βk + Pk+1HT
k+1(Jk+1Yk+1 − (Jk+1 + C2Lℵk+1

)Hk+1βk) (21)

Step 2.1.3: Let k = k + 1, return to Step 2.1.1.
Online working phase:
Step 2.2.1: The user requests positioning from the server through the client and sends the signal strength RSSI
information at the unknown location to the server.
Step 2.2.2: The server uses the RSSI information sent from the client as input to the current GSOS-ELM model
to estimate the positioning result and send it back to the client.
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Real-time RFID signal (RSSI) and location 
dataset

Offline Phase

Online Phase

Preprocess the data using improved 
Gaussian filter algorithm

Train the initial GSOS-ELM based 
localization model

Use GSO algorithm to 
optimize the 

regularization coefficients

Online Learning Phase Online Working Phase

k+1 new data block 
arrives

Update the GSOS-
ELM model

User request 
localization

Output position 
result

Data preproce Data preproce

Figure 1. The Framework of RFID Localization System Using GSOS-ELM.

3. Simulation Experiment

As shown in Figure 2, we have performed a simulation experiment on the MATLAB platform and
simulated a 6 m × 7.2 m area, the reference readers are placed in the corners and the edges, and the
RFID tags are distributed in the region. The objective of our simulation experiment is to analyze
the impact factors and compare the localization effect in different environments. The experimental
configurations are as follows: (1) operating systems: Windows 10 x64 v1803; (2) CPU: Intel(R) Core(TM)
i3-4160 @ 3.60 GHz; (3) memory: 4 GB; and (4) software: MATLAB R2015b.

7.2 m

6 m

Reader Tags

Figure 2. Simulation Experiment Layout.
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In the simulation experiment, we use the log-normal path loss model to model the attenuation of
the signal in the indoor environment with distance:

PL(d) = PL(d0) + 10n log10
d
d0

+ Xδ (22)

where d0 is the reference distance, n is the path loss factor, d is the distance between the sender and the
receiver of the signal, and Xδ is zero mean Gaussian random variable with standard deviation of δ.

The RSSI value of RFID can be expressed by Equation (23):

RSSI(d) = Pt + Gt − PL(d) (23)

where Pt is the transmit power, and Gt denotes the antenna gain of transmit node.
Since the Gt is fixed, combine Equations (22) and (23), we can get Equation (24):

RSSI(d) = RSSI(d0)− 10n log10
d
d0

+ Xδ (24)

where d0 is the reference distance and n is the path loss factor. According to the analysis in [37,38],
we set RSSI(d0) = −45 dBm, n = 2, δ = 2 in the simulation experiment.

The experimental error is defined as the Euclidean distance between the estimated target tag
position (xe, ye) and the actual target tag position (xt, yt), the i-th error result is denoted as ρi:

ρi =
√
((xe − xt)2 + (ye − yt)2) (25)

The average error of the system is ρi = ∑n
i=1 ρi/n, where n is the number of target tags in the

positioning process.
We set the number of hidden layer nodes of the GSOS-ELM model to L = 100 and the activation

function g(x) to sigmoid. We use the k-fold cross-validation to evaluate the performances. The samples
are randomly split into k subsets equally; then, the subsets are divided into two sets, the testing set with
only one subset and the training set with the reset (k− 1) subsets; and here we set k = 10. After the
division of training set and testing set, we further divide the samples into two groups, one group with
labels, the rest are unlabeled.

3.1. Influence Factors

The main factors influencing the positioning result include the density of reference tags (∆),
the number of reference readers (N), the proportion of labeled samples (%), the data preprocessing,
and the placement of the reference tags. In the following sections, we will analyze the impact of each
factor respectively.

3.1.1. Density of Reference Tags

In this experiment, we set the number of readers to N = 8 and the proportion of labeled samples
to 40%. We divide the reference tag density into 1.0 m, 0.8 m, 0.5 m and 0.3 m.

As shown in Figure 3, when the reference tag density changes from 1.0 m to 0.8 m and 0.5 m,
the positioning error decreases significantly, but when the density of reference tags is changed from
0.5 m to 0.3 m, the positioning error does not change much. Because the number of reference tags in
the unit area increases as the density of the reference tag increases, thereby reducing the positioning
error and obtaining a more accurate positioning result; but when the reference tags reach to a relative
high density (here is 0.3 m), it may contain redundant information compared to relatively low density
situation (0.5 m) and do not increase the accuracy significantly.
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Figure 3. The Influence of Density of Reference Tags.

3.1.2. The Number of Readers

In this experiment, we set the density of reference tags to ∆ = 0.5 m and the proportion of labeled
samples to 40%. As shown in Figure 2, we place reference readers in the corners and the edges of the
system; the number of reference readers is 4, 6, 8 and 12 respectively.

As shown in Figure 4, the positioning error of the system decreases as the number of reference
readers increases. When the number of reader increases from 4 to 6 and from 6 to 8, the localization
accuracy improves noticeably, but when the number of reference readers increases to a certain degree
and provides duplicate data, it does not change much on the positioning error, and the increasing in
the number of readers will obviously increase the cost of the entire positioning system.

4 6 8 12
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Figure 4. The Influence of the Number of Readers.

3.1.3. The Proportion of Labeled Samples

In this experiment, we analyze the influence of the labeled samples proportion to the GSOS-ELM
algorithm. We set the number of readers to N = 8 and the density of reference tags to ∆ = 0.5 m.
The proportion of labeled samples is 20%, 40%, 60%, and 80%, respectively.

As shown in Figure 5, the performance of the positioning system increases most significantly
when the proportion of the labeled samples increases from 20% to 40%, but the positioning error does
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not change much as 40% is increased to 60% and 80%. Because when the labeled samples at a low
proportion, the increasing of labeled information will significantly improve the non-regularization
term of PSOS-ELM algorithm and reduce positioning error; but when the proportion of labeled
samples reaches a high degree, the more labeled samples and less unlabeled samples may balance the
non-regularization term and regularization term, and the localization accuracy does not change much.

20 40 60 80
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Figure 5. The Influence of Proportion of Labeled Samples.

3.1.4. Preprocessing and Reference Tags Placement

In this experiment, we study the influence of the improved Gaussian preprocessing and the
reference tags placement method on the positioning effect of the algorithm. We set the number of
readers to N = 8, the density of reference tags to ∆ = 0.5 m and the proportion of labeled samples to
40%. The reference tags placement method changes without changing the total number of reference
tags, which are squares, rectangles, and equilateral triangles.

As shown in Table 1, the performance of the GSOS-ELM algorithm in positioning has been
improved by the pre-processing process. The average error has been improved from 0.6439 m to
0.5774 m, and the standard deviation has decreased from 0.7395 m to 0.6496 m. As shown in Table 2,
the placement of the reference tag also has a certain impact on the GSOS-ELM algorithm, when the tag
is placed in a rectangular manner, the performance of the algorithm is reduced significantly compared
to square and equilateral triangle manner. At the same time, the equilateral triangle placement method
has a certain improvement to the square placement method, and the average error decreases from
0.6568 m to 0.5774 m.

Table 1. The Influence of Preprocessing.

Preprocessing Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

Without preprocessing 0.1076 2.1157 0.6439 0.7395
With preprocessing 0.0973 1.8447 0.5774 0.6496

Table 2. The Influence of Label Placement.

Reference Tags Placement Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

Square 0.1064 2.2497 0.6568 0.6832
Rectangle 0.1634 2.7769 0.9795 0.8645

Equilateral triangle 0.0973 1.8447 0.5774 0.6496
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3.2. Comparison with Other Methods

According to the results from Section 3.1, we set the default condition to: the density of the
reference tag is ∆ = 0.5 m, the number of readers is N = 8, the proportion of labeled samples is 40%
and the placement of the reference tags is equilateral triangle.

In this section, we compare the proposed GSOS-ELM algorithm with the NN-Based algorithm
proposed in [9], the FA-OSELM algorithm proposed in [39], and the NMDS algorithm proposed in [40].
The NN-Based algorithm uses a BP neural network to enhance the LANDMARC algorithm [6]; the
FA-OSELM algorithm uses incremental data to update the original model to a transferred model; and
the NMDS algorithm combines nonmetric multidimensional scaling algorithm and fingerprinting
algorithm to archive localization. We implement these algorithms and perform experiments in the
same simulated space. The parameters setting for these methods is described in Table 3.

Table 3. Parameters Setting for Proposed Method and Compared Methods.

Method Parameters Setting

GSOS-ELM Activation function: sigmoid, L = 100
NN-Based Activation function: sigmoid, L = 100, number of neighbors k = 4
FA-OSELM Activation function: RBF, L = 350, regularization factor C = 2−6

NMDS Goodness fit threshold ε = 10−4, maximum number of iterations kmax = 200

The comparison results are shown in Table 4. The proposed GSOS-ELM algorithm has certain
advantages over other algorithms in terms of average error and stability. Compared with the NN-Based
algorithm, FA-OSELM algorithm, and NMDS algorithm, the average error of our proposed GSOS-ELM
algorithm improves by 13.46%, 16.56% and 11.94%, respectively. Also, we can learn that the max error
is higher at 1.8447 m, this is because when the target tag falls into the edges and corners, the decrease
in the reference tags leads to the increase in the error. For the average execution time of algorithms,
as shown in Table 5, both GSOS-ELM and FA-OSELM reach a better efficiency than NN-Based method
and NMDS method. GSOS-ELM takes 17.6613 s and FA-OSELM requires 15.0384 s in average execution
time, hence GSOS-ELM is slightly slower than FA-OSELM. GSOS-ELM reduces the average execution
time to 21.03% of NN-Based and 40.41% of NMDS.

Table 4. Comparison Result under Simulation Environment.

Method Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

GSOS-ELM 0.0973 1.8447 0.5774 0.6496
NN-Based 0.1103 2.4829 0.6672 0.8574
FA-OSELM 0.0935 2.3341 0.6920 0.7933

NMDS 0.1104 2.0745 0.6557 0.7202

Table 5. Comparison of Average Execution Time under Simulation Environment.

Method GSOS-ELM NN-Based FA-OSELM NMDS

Average Execution Time (s) 17.6613 83.9932 15.0384 37.2103

At the same time, as shown in Figure 6, to verify the adaptability of the GSOS-ELM positioning
algorithm in the environment, we move some labeled reference tags during the experiment to observe
the average error of the positioning system. The specific steps to process the dynamic changes are
shown in Figure 7, when the localization environment changes and the new data blocks arrive, we use
improved Gaussian filter algorithm mentioned in Procedure 3 to preprocess the data and update the
initial PSOS-ELM.
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Figure 6. The Dynamic Changes to the Simulation Environment.
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Figure 7. The Steps to Process the Dynamic Changes.

As shown in Table 6, after moving the reference tags, the average error of the GSOS-ELM
algorithm increases from 0.5774 m to 0.6428 m, and the increasing rate is 11.33%. At the same time,
the average error increasing rate of the FA-OSELM algorithm using the online learning method is
12.69%. However, the average error of the NN-Based and NMDS algorithms without online learning
phase raise significantly, with the increasing rates of 28.25% and 25.55%, respectively.

Table 6. Comparison Result under Dynamic Simulation Environment.

Method Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

GSOS-ELM 0.0997 2.0408 0.6428 0.7155
NN-Based 0.1246 2.6368 0.8557 0.9149
FA-OSELM 0.1041 2.4076 0.7798 0.8581

NMDS 0.1227 2.3718 0.8232 0.8061

4. Experimental Evaluation

4.1. Experiment Setting

To further demonstrate the appropriateness of the proposed method under static and dynamics
environments compared to the other methods, we have conducted several realistic experiments in
Guangzhou Research Institute of O-M-E Technology.

The reader model we used is Alien ALR-9900+ [41], the main working frequency is 920 MHz,
the maximum power strength is 30.7 dBm. We use two kinds of antennas, their model are Alien
ALR-8696-C [42] (8.5 dBic gain) and ALR-9611-CR [43] (6 dBic gain). Our experiment setting is
shown in Figures 8 and 9, we finish the experiments under a realistic environment with 4.00 m long
and 3.63 m wide, we place 8 antennas in the corners and edges and 20 passive RFID tags inside
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the area. The computer communicates with the ALR-9900+ reader via TCP/IP protocol. Same as
previous, the parameters setting is in Table 3, the proportion of labeled samples is 40%, and the 10-fold
cross-validation is adopted to evaluate the performances.

Figure 8. Experimental Setup in Realistic Environment.

4 m

3.6 m

Tags

Antenna

Figure 9. Realistic Experiment Layout.

4.2. Experiment Results

As shown in Table 7, the proposed GSOS-ELM algorithm has certain improvement in average
error and standard deviation. The average error of our proposed GSOS-ELM method overcomes
by a rate of 15.18%, 18.07% and 12.45% over NN-Based method, FA-OSELM method and NMDS
method, respectively. We can also find that the maximum localization error is significantly higher at
1.2489 m, it is due to the reduced reference tags when target tag is in the edges and corners, leading to
the higher localization error. The comparison of average execution time is shown in Table 8, we can
learn that GSOS-ELM and FA-OSELM take less average execution time than NN-Based method and
NMDS method, while GSOS-ELM requires 9.7748 s and FA-OSELM is 1.3017 s faster. The average
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execution time of GSOS-ELM method is 5.73 times less than NN-Based method and 2.58 times less
than NMDS method.

Table 7. Comparison Results under Realistic Environment.

Method Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

GSOS-ELM 0.0872 1.2489 0.4302 0.4837
NN-Based 0.0974 1.6307 0.5072 0.5704
FA-OSELM 0.0892 1.5513 0.5251 0.5481

NMDS 0.0992 1.4877 0.4914 0.5113

Table 8. Comparison of Average Execution Time under Realistic Environment.

Method GSOS-ELM NN-Based FA-OSELM NMDS

Average Execution Time (s) 9.7748 56.0564 8.4731 21.8764

At the same time, as shown in Figure 10, we move some labeled reference tags to checkout the
adaptability of the algorithms in realistic environment.

Figure 10. The Dynamic Changes to the Realistic Environment.

The comparison results are in Table 9, after moving the reference tag, the average error of
proposed GSOS-ELM algorithm raises from 0.4302 m up to 0.4851 m, with an increasing rate of 12.76%.
Meanwhile, the average error raising rate of the FA-OSELM algorithm with the online learning phase
is 13.54%, with not much differences. However, the average error of the NN-Based and NMDS
algorithms raise significantly, with the rates of 30.78% and 28.14%, respectively. The experimental
results show that adopting online learning method can improve the adaptability of the algorithm in
the environment.

Table 9. Comparison Result under Dynamic Realistic Environment.

Method Min Error (m) Max Error (m) Average Error (m) Standard Deviation (m)

GSOS-ELM 0.0882 1.3258 0.4851 0.5204
NN-Based 0.0993 1.7434 0.6633 0.6620
FA-OSELM 0.0931 1.6041 0.5962 0.5685

NMDS 0.1064 1.5381 0.6297 0.5828

5. Conclusions

This paper proposes an RFID positioning algorithm, which is called the GSOS-ELM algorithm.
It is a fusion semi-supervised online sequential extreme learning machine (SOS-ELM) based on the
Glowworm Swarm Optimization (GSO), aiming at improving the disadvantages of the existing RFID
indoor positioning algorithms, which are susceptible to the tag density and algorithm efficiency,
and lack of environmental adaptability. The GSOS-ELM algorithm uses the semi-supervised method
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to reduce the number of labeled reference tags and the cost of positioning systems; and we use the
GSO method to adjusts the regularization weights of the SOS-ELM algorithm, so that it can quickly
obtain the optimal regularization weights under different initial conditions. In addition, the online
learning phase of the GSOS-ELM algorithm can continuously update the system to perceive changes
in the environment and resist the environmental interference.

In the simulation section, we have studied the influence factors of the GSOS-ELM algorithm,
including the reference tag density, the number of reference readers, the proportion of labeled samples,
data preprocessing and the placement of reference tags. The results show that increasing the proportion
of labeled samples, the density of readers and reference tags can increase the localization accuracy,
but the rate of increase gradually decreases and the cost of the system raises. Besides, we have given
simulation experiment to compare GSOS-ELM method with the other methods and carried out testbed
experiment to evaluate our proposed method. Both the simulation and the testbed experiment results
have shown that, compared with other algorithms, our proposed algorithm has certain advantages in
average error; and the smaller increase in localization errors shows that it has certain adaptability to
the changes of the environment.

However, the proposed method does not solve the problem that the localization error is higher
when the target tag falls into the edges and corners. Our further work will focus on solving this
problem and analyzing how the environment and the location of the antennas affect the level of
electromagnetic radiation.
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