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Abstract: Thermal infrared imagery provides temperature information on target objects, and has been
widely applied in non-destructive testing. However, thermal infrared imagery is not always able to
display detailed textures of inspected objects, which hampers the understanding of geometric entities
consisting of temperature information. Although some commercial software has been developed
for 3D thermal model displays, the software requires the use of expensive specific thermal infrared
sensors. This study proposes a cost-effective method for 3D thermal model reconstruction based on
image-based modeling. Two smart phones and a low-cost thermal infrared camera are employed
to acquire visible images and thermal images, respectively, that are fused for 3D thermal model
reconstruction. The experiment results demonstrate that the proposed method is able to effectively
reconstruct a 3D thermal model which extremely approximates its corresponding entity. The total
computational time for the 3D thermal model reconstruction is intensive while generating dense
points required for the creation of a geometric entity. Future work will improve the efficiency of the
proposed method in order to expand its potential applications to in-time monitoring.
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1. Introduction

Currently, three-dimensional (3D) mapping techniques fall into two categories: active or passive
mapping techniques. Active mapping techniques, such as laser scanning, directly and quickly acquire
an enormous point cloud dataset with high spatial precision. Coupled with visible images, a 3D
model with true color information can then be reconstructed. Passive mapping techniques, such
as image-based modeling (IBM) [1,2], use image datasets with multiple fields of view (FOV) to
reconstruct 3D models, so these techniques usually require certain imaging conditions, including high
spatial resolution, a high percentage of imaging lap, accurate camera calibration, and precise camera
positioning [3].

Laser scanning can directly provide an enormous point cloud dataset to reconstruct precise 3D
models, but requires a high degree of training and is very costly. A light detection and ranging
(LiDAR) instrument coupled with a thermal camera has also been applied to 3D thermal model
reconstruction [4]. Despite the spatial data acquired by LiDAR instruments having high spatial
precision, a LiDAR-based 3D thermal model reconstruction method is still impractical due to its
prohibitively high instrument cost. Unlike laser scanning and LiDAR, IBM adopts an indirect
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method to derive a dataset of transfer parameters, as well as equations for 3D model reconstruction.
Furthermore, IBM needs no knowledge about the interior orientation elements of cameras before
3D model reconstruction, and is a low-cost spatial information acquisition technique. With IBM, an
effective extraction of conjugate features from adjacent images is necessary. Lowe (2004) [5] indicated
that scale-invariant feature transform (SIFT) has invariance to image rotation and scale, and is robust
across a substantial range of affine distortion, the addition of noise and change in illumination; thus,
it would be useful in key point feature selection. Based on the conjugate features, structure from
motion (SFM) can derive the interior orientation elements of a camera in order to reconstruct the
3D model without preprocessing camera calibration [6]. However, the procedure from SIFT to SFM
usually requires a central processing unit (CPU) with powerful computation efficiency. In order to
address this issue, Wu (2013) [7] ran bundler reconstructions on a PC with an Intel Xenon 5680 3.33 Ghz
CPU (24 cores), 12GB RAM, and an nVidia GTX 480 Graphics Processing Unit (GPU). Jancosek and
Pajdla (2014) [8] noted that SFM and multiview-stereo (MVS) have become the most popular methods
for obtaining input points with visibility information in 3D model reconstruction.

A thermal camera can detect the spectral radiances of objects under a certain temperature,
based on the blackbody radiation theory. The detected spectral radiances are usually displayed as
digital numbers (DN) obtained by a conversion of radiation level to electric signal. Thus, a thermal
image usually consists of numerous DN values, and records temperature information in the two
dimensions of rows and columns. Temperature information can be directly extracted from the thermal
image, but geometric information, such as edges, feature points and others, cannot; this hampers the
understanding of geometric entities consisting of temperature information. Therefore, fusion of visible
images with thermal images is helpful for 3D thermal model reconstruction.

Recently, integrations of multisource remote sensing data have been widely applied to
environmental monitoring [9–11], building inspection [12–15], heritage preservation [16,17], and
non-destructive testing [17–23]. A 3D thermal model cannot be successfully reconstructed without
considering the geometric information in thermal images, thus limiting the above applications. IBM is
a computer vision technique for effectively integrating multisource image data into a unique 3D model.
Lagüela et al., 2012 [24] used image fusion and image matching techniques to combine thermographic
and metric information to obtain 3D thermal models. Several studies also presented the fusion systems
for multiple sensors—including 3D laser scanner, RGB camera, and thermal camera—to generate
3D thermal models [17,25–28]. Therefore, image fusion is an important pre-processing for multiple
sensors-based 3D thermal model reconstruction.

With the popularization of smart mobile devices, carried nonmetric sensors have been widely
applied in the collection of spatial data due to their convenience, low-cost, and availability [29–31]. This
study aims to reconstruct 3D thermal models by fusing visible images with thermal images, in which
geometric and corresponding temperature information are involved, for the scenes of different scales.
The reconstructed 3D thermal models will better display stereo-temperature information compared
to conventional thermal images. Building envelop inspection of green buildings, for instance, used
3D thermal models to test the insulation of energy [32–34] and to assess the failure of external wall
tiles [35]. In this paper, a cost-effective sensor on smart phones for 3D thermal model reconstruction
based on IBM is proposed, and the performances, including model quality and computational time,
of the 3D thermal model reconstruction are discussed.

2. Experimental Equipment

This study used two smart phones (iPhone SE) and a low-cost thermal camera (FLIR ONE for
iOS) to acquire visible images and thermal IR images, respectively. The iPhone SE specifications are
12 million pixels (3000 pixels in the row direction and 4000 pixels in the column direction) and a focal
length of 4.15 mm. The FLIR ONE specifications are 76,800 pixels (240 pixels in the row direction
and 320 pixels in the column direction), a focal length of 3 mm, and a range of detected temperature
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between −20 and 120 ◦C (±3 ◦C or ±5%). The FLIR ONE also carries a visible light lens with the same
number of pixels and focal length as the thermal one.

Figure 1 shows the arrangement of the experimental sensors. Two smart phones were used to
acquire stereopairs of visible images with high spatial resolution. The FLIR ONE was arranged between
the two smart phones to acquire the thermal infrared (IR) images. Thus, an alignment arrangement
of the three sensors on a theodolite ensures that the exterior orientation elements of the sensors are
known. Moreover, the shifts among the lenses are fixed, which facilitates the geometric calibration for
the acquired images.
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Figure 1. Arrangement of experimental equipment.

3. Methodology

Figure 2 shows the proposed 3D thermal model reconstruction method. The first stage is to
acquire the visible and thermal IR images. Next, the acquired images are calibrated by geometric
translation and image registration using normalized cross correlation (NCC) [36]. The geometric
translation addresses the shift between the visible and thermal IR lenses on the FLIR ONE. The image
registration matches the visible images of the FLIR ONE with those of the iPhone SE. In the final
stage, the visible images of the iPhone SE are used to reconstruct a 3D model by the conventional IBM
technique, and the geometric translated thermal IR images are textured onto the reconstructed 3D
model to produce a 3D thermal model.

3.1. Image Calibration

Generally, a baseline between two photographs with stereoscopic viewing must be fixed so that
the shift between the two camera stations is known a priori in order to produce a good geometric
calibration. In addition to the known baseline, the correct interior orientation elements of the
experimental equipment are also required. However, acquiring the correct interior orientation elements
from a manufacturer calibration is extremely difficult due to the limited budget. In this research,
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several algorithms, such as NCC and three-step search (TSS) [37]—encoded in the C++ and OpenCV
programming languages—were tested for image calibration.Sensors 2018, 18, x FOR PEER REVIEW  4 of 18 
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Figure 2. Scheme of proposed method for 3D thermal model reconstruction.

3.1.1. Normalization of Sensed Temperature

The FLIR ONE offers relative sensed scenes rather than absolute temperature information, so that
a certain DN value among different thermal IR images can stand for different sensed temperatures.
In this paper, a normalization technique is presented to appropriately adjust the obtained DN values
in order to achieve consistency in sensed temperature. The normalization equations are as follows

DNmin = [(255− 0)/(Tmax − Tmin)]× (TL − 10.0) (1)

DNmax = [(255− 0)/(Tmax − Tmin)]× (TH − 10.0) (2)

DNa −DNmin

DNb − 0
=

DNa −DNmax

DNb − 255
(3)
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DNa =
DNb(DNmax −DNmin) + 255DNmin

255
(4)

where DNmax and DNmin are the normalized DN values of the highest and lowest sensed temperatures,
respectively. DNb and DNa express the DN values before and after the normalization, respectively.
TH and TL are the highest and lowest sensed temperatures before the normalization, respectively, and
Tmax and Tmin are the highest and lowest sensed temperatures after the normalization, respectively.
As the thermal IR images are 8-bit images, the sensed temperature information can be expressed as the
DN values between 0 (corresponding to Tmin) and 255 (corresponding to Tmax).

3.1.2. Geometric Translation

Due to the shift between the thermal IR and visible lenses on the FLIR ONE, an image mapping
result could have the phenomenon of relief displacement. In other words, relief displacement is zero
for one lens at the nadir point but not zero for the other one at the off-nadir point [38]. To ensure
that the percentage of end lap is fixed, a unity object distance among the acquired images is also
needed. Consequently, the amount of relief displacement can be calculated prior to the 3D model
reconstruction. A calibration template, shown in Figure 3, is employed to acquire 10 pairs of thermal
IR and visible images for the geometric translation, where firstly the centers of the circles on the
calibration template are detected by OpenCV and secondly a root mean square error (RMSE) of the
coordinates of the detected circular centers between the thermal IR and visible images is calculated.
According to RMSE, the circular centers between the thermal IR and visible images can be translated
to the consistent positions.
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3.1.3. Image Registration

Image registration matches the visible images of the FLIR ONE with those of the iPhone SEs.
Because the visible images of the FLIR ONE and iPhone SE differ in size, an image resampling process
is necessary before image registration. Thus, the iPhone SE images need to be down-sampled so to
have the same spatial resolution as those captured by the FLIR ONE. The percentage of down-sampling
affects the image registration performance. The actual focal lengths of the FLIR ONE and iPhone SE
are 3 mm (f1) and 4.15 mm (f2), respectively, and have a relationship with object distance (d) and size
of object (l) as

f1

l1
=

f2

l2
=

d
l

(5){
l1 = P1 × S1

l2 = P2 × S2
(6)
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where P1 and P2, and S1 and S2 represent the pixel numbers, and the sizes of charge-coupled devices
(CCD) of the FLIR ONE and iPhone SE, respectively. Thus, l1 and l2 express the sizes of CCD arrays of
the FLIR ONE and iPhone SE, respectively. According to Equation (5), if S1 and S2 are known, a certain
percentage of down-sampling exists between P1 and P2. In order to obtain an optimal percentage
of down-sampling, the percentages of down-sampling from 8% to 50% were tested. The optimal
percentage of down-sampling leads to an image registration result with the least RMSE.

NCC is a common image registration technique as

NCC Index =
1
n ∑

x,y

(
f(x, y)− f

)
(t(x, y)− t)

σfσt
(7)

where f(x,y) and t(x,y) represent the DN values of the registered image and the template image,
respectively. f and t and σf and σt are the means and the standard deviations of DN values of the
registered image and the template image, respectively. x and y are the numbers of pixels in the row and
column directions, respectively. The values of x and y are given as 320 and 240, respectively, because
of the 320 × 240 FLIR ONE thermal IR images (as registered images). Figure 4 is an illustration of
image registration using NCC. The k% is a percentage of down-sampling from the original image of
iPhone SE. The image region within the red frame is regarded as a template image with 320 × 240
pixels subset from the k% down-sampling iPhone SE image and from the upper left to the lower right
to calculate the NCC indices of all template images. The NCC index ranges between −1 and 1, and
means a high similarity between the registered image and template image while approaching 1.
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visible iPhone SE image. Spatial resolution: 4032 × 3204 ×k%; (b) template image. Spatial resolution:
320 × 240; (c) registered image. Visible FLIR ONE image. Spatial resolution: 320 × 240.

However, the computation complexity of NCC depends on the sizes of the processed images,
and the process is usually time-consuming. Li et al., 1994 [36] noted that TSS is an efficient algorithm
in processing an enormous imagery dataset, and thus could be frequently applied to film detection.
In this research, TSS was adopted to facilitate NCC in the image registration. In this research, TSS
starts the NCC-based search from the central pixel of a visual image of FLIR ONE with the search
radius S pixels. Thus, TSS searches eight pixels around the central one with a search radius of S
pixels. Of these eight searched pixels, the pixel with the least DN difference compared to the registered
image is selected to be a new search origin [39]. Then, the search radius is reduced by half, i.e., 0.5S
pixels, and repeats a similar search for several iterations until the search radius is equal to 1 pixel.
Finally, TSS assists NCC in efficiently finding a template image with the best match with the registered
image. The computational time and number of search pixels are significantly reduced. A full search
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of NCC requires x × y pixels whereas TSS with n iterations only needs 8n + 1 (or 9 + (n − 1) × 8)
pixels [40]. Figure 5 shows the TSS process setting S = 4 pixels for example, in which the green, blue,
and orange pixels are the selected pixels to be examined in similarity in the first, second, and third
iterations, respectively.Sensors 2018, 18, x FOR PEER REVIEW  7 of 18 
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3.2. 3D Thermal Model Reconstruction

A 3D thermal model reconstruction procedure includes extraction and matching of conjugate
features, structure from motion, production of dense point cloud, creation of geometric entity, and
temperature information texturing. The above steps are described below. Especially, extraction
and matching of conjugate features, and structure from motion were implemented by an open GUI
application, i.e., VisualSFM [41]. An open resource, i.e., Open MVS [42], was employed in production
of dense point cloud, and creation of geometric entity.

3.2.1. Extraction of Conjugate Features and Image Piecing

The conjugate feature extraction performance affects the creation of a geometric entity.
Scale-invariant feature transform (SIFT), a popular computer vision technique, offers image matching
with invariance of scale, rotation, and brightness [5]; therefore, SIFT can extract appropriate and
sufficient conjugate features from an enormous imagery dataset, and is useful in image piecing under
any imaging condition.

The first step of conjugate feature detection is to identify locations and scales that can be repeatably
assigned under differing views of the same object. Location detection is invariant to scale change of
an image that can be accomplished by searching for stable features across all possible scales, using a
scale-space kernel of Gaussian function
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G(x, y, σ) =
1

2πσ2 e
−(x2+ y2)

2σ2 (8)

Therefore, the scale space of the image is defined as a function, L(x, y, σ)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (9)

where I(x, y): the image, *: the convolution operation in x and y.
Next, a difference-of-Gaussian function convolved with the image was used to efficiently detect

stable conjugate feature locations in the scale space. The difference, D(x, y, σ), is expressed as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (10)

Lowe (2004) [5] used a Taylor expansion (up to the quadratic terms) of the scale-space function,
D(x, y, σ), shifted so that the origin is at the feature point x

D(x) = D +
∂DT

∂x
+ 0.5xT ∂2D

∂x2 x (11)

where D is a detected conjugate feature by the difference, x = (x, y, σ)T. The location of the extremum,
x̂, is determined by taking the derivative of Equation (11) with respect to x and x̂ is

x̂ =
∂2D−1

∂x2
∂D
∂x

= 0 (12)

If the offset x̂ is larger than 0.5 (the image pixel values assumed in the range [0,1]) in any dimension,
it means that the x̂ lies closer to a different feature point. In this case, the feature point is changed and
an interpolation performed instead of the point. The final offset is added to the location of the detected
conjugate feature D to obtain the interpolated estimation for the location of the x̂

D(x̂) = D + 0.5
∂DT

∂x
x̂ (13)

If a value of |D(x̂)| is less than 0.03, the detected feature D is discarded.

3.2.2. Structure from Motion (SFM)

Based on the conjugate features extracted by SIFT, the camera stations can be determined according
to the geometries of the epipolar planes; thus, a geometric relationship can be established to reconstruct
the 3D model for an imaged scene. Assuming existing one pair of images I and J; F(I) is defined as
set of conjugate features in image I, and conjugate feature in the set is defined as fi ∈ F(I) and the
correspondence of image J is defined as f j∈ F(J). Eventually, the Euclidean distance (the shortest
two conjugate features between two images) is searched and their correspondence is established. This
study define image J corresponds to the closest to the conjugate feature on the image I as fnn ∈ F( J)
as [43]

fnn = argmin f ′∈F(J)

∥∥∥∥ fi − f j

∥∥∥∥
2

(14)

The epipolar geometry of an image pair can be expressed in a 3 × 3 rank-2 matrix, so-called
fundamental matrix F, which describes the relative positions and orientations of the two sensors as
well as internal sensor settings such as zoom. Each pair of corresponding points (x, y)→ (x’, y’) in two
corresponding images must satisfy the epipolar constraint [44]

x′FxT = 0 (15)
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F ∼ K−1T [T]× RK′−1 (16)

where x = [xy 1], x’ = [x’y’ 1]. R is the rotation matrix, and K is the intrinsic sensor matrix as

K =

 k11 k12 k13

0 k22 k23

0 0 1

 (17)

In order to optimize the geometric relationship, a bundle adjustment—based on the derived
triangular points, which involve reconstructing 3D coordinates of the corresponding features by
detecting the motion tracking orientation of features, and camera stations—is employed in this study
to repeatedly implement the collinearly forward or backward intersections until the residual errors are
converged [45]. Eventually, all interior parameters can be modified through bundle adjustment [2].

In the bundle adjustment, this paper considered that a sensor exterior matrix includes the rotation
matrix R and a translation vector T. To reduce the parameters, an incremental rotation R(θ, n̂) is
defined as [43]

R(θ, n̂) = I + sinθ[n̂]× + (1− cosθ)[n̂]2×, ω = θn̂, [n̂]× =

 0 −n̂z n̂y

n̂z 0 −n̂z

−n̂y n̂z 0

 (18)

where θ is an angle of rotation respect to a three-vector unit axis, n̂. R(θ, n̂) is pre-multiplied by the
initial rotation matrix to compute the current rotation inside the global optimization. R(θ, n̂) is nearly
linear inω for small incremental rotations. A non-linear iterative optimization approach, such as the
Gauss–Newton iterative method [2], was adopted to minimize R(θ, n̂). Let θ → θ + δθ and f (θ) be
smaller. According to the Taylor series

f (θ + δθ) ≈ f (θ) + gTδθ +
1
2

δθT Hδθ (19)

where g is the gradient, and H is the Hessian matrix. Let df
dθ (θ + δθ) ≈ g + Hδθ ≈ 0

δθ = −H−1g (20)

Equation (20) can be rewritten in term of Jacobian J as Gauss-Newton or normal equations

(JTWJ)δθ = −JTW∆z (21)

Equation (21) was used to evaluate the minimum for well-parameterized bundle problems under
an outlier-free least squares [44]. Finally, the features derived by SFM were loaded in a custom
coordinate system according to the relative point positions.

3.2.3. Production of Dense Point Cloud

After the bundle adjustment, the optimized triangular points are obtained and assembled as a
point cloud. The preliminary point cloud is fairly sparse, so this study introduces a nearest-neighbor
field (NNF) algorithm [46] for the production of a dense point cloud. In NNF, the first step is to build
a few initial kernels based on several triangular points. Given triangular point a in image A and its
corresponding triangular point b in image B, the value of f (a) as offset is simply b − a. The following
step is to randomly move the kernels and simultaneously execute an imagery consistency test along
with the moving kernels. In order to improve the offsets of f : A→R2, a sequence of candidate offsets at
an exponentially decreasing distance from f was tested [46]

ui = f + wαiRi (22)
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where Ri is a uniform random in [−1, 1] × [−1, 1], w is a large maximum search radius, and α is a fixed
ratio between the kernels. Equation (22) was examined for i = 0, 1, 2, . . . until the current search radius
wαi is below 1 pixel. In this paper, w is the maximum image dimension, and α = 0.5, except where
noted. Note the kernels must be clamped to the bounds of B. The final step is to produce new points
within the kernels, which can pass the imagery consistency test, and to repeat the second through final
steps to improve the density of a point cloud.

3.2.4. Creation of Geometric Entity

Visual hull presented by Laurentini (1994) [47] is used to create the geometric 3D model. Visual
hull assumes the foreground object in an image can be separated from the background, thus the
original image can be segmented into a foreground/background binary image, called a ‘silhouette
image’. The foreground mask, known as a silhouette, is the 2D projection of the corresponding 3D
foreground object. Along with the camera viewing parameters, the silhouette defines a back-projected
generalized cone that contains the actual object, so-called a silhouette cone. Thus, the 2D projection is
obtained by an intersection of the intersected silhouette cones and the emitted rays from sensed object
to sensor.

In this research, Visual hull was adopted to derive the point cloud, i.e., foreground point cloud,
of a sensed object from the dense point cloud dataset. Coupled with the method of Delaunay
triangulation [48], a mesh of the sensed object can be built based on the foreground point cloud
to create the geometric entity.

3.2.5. Temperature Information Texturing

Using the image calibration described in Section 3.1, the relationship between the images acquired
by the FLIR ONE and iPhone SEs is established. Consequently, the thermal IR images can be directly
textured onto the surface of the created 3D model by the collinearity theory. The collinearity condition
equations for temperature information texturing are expressed as x = x0 − f1

[
m11(X−XL)+m12(Y−YL)+m13(Z−ZL)
m31(X−XL)+m32(Y−YL)+m33(Z−ZL)

]
y = y0 − f1

[
m21(X−XL)+m22(Y−YL)+m23(Z−ZL)
m31(X−XL)+m32(Y−YL)+m33(Z−ZL)

] , (23)

where (x, y) is the space coordinate of an object point in a thermal IR image plane; (x0, y0) is the
principal point of a thermal IR image; f 1 is the focal length of the FLIR ONE; (XL, YL, ZL) is the
coordinate, with respect to the entity coordinate system XYZ, of exposure station of a thermal IR image;
the m’s are functions of the rotation angles along the XYZ axes of the FLIR ONE.

4. Results and Discussion

4.1. Geometric Translation of Double Lenses of FLIR ONE

Based on the 10 pairs of thermal IR and visible images of the calibration template and an object
distance of 2 m, the geometric translations in the column and row directions were calculated in Table 1.
The average geometric translations in the column and row directions are 4.771 and −2.321 pixels,
respectively. According to the average geometric translations, the phenomenon of relief displacement
is effectively removed from the FLIR ONE thermal IR and visible images.
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Table 1. Calculation results of the geometric translation.

ID of Pair of Images Geometric Translation in the
Column Direction (Pixels)

Geometric Translation in the
Row Direction (Pixels)

IMG_L_1 3.579 −1.289
IMG_L_2 4.777 −1.095
IMG_L_3 6.805 −3.532
IMG_L_4 5.789 −3.193
IMG_L_5 3.153 −1.238
IMG_L_6 6.210 −2.764
IMG_L_7 4.446 −2.374
IMG_L_8 4.274 −2.737
IMG_L_9 4.498 −2.684

IMG_L_10 4.177 −2.305
Average 4.771 −2.321

4.2. Image Registration of Visible Images of FLIR ONE and iPhone SE Images

Down-sampling percentages from 8% to 50% were tested for the registration of the visible FLIR
ONE and iPhone SE images. It is worth noting that the spatial resolution of iPhone SE images is lower
than that of FLIR ONE images, if the down-sampling percentage is lower than 8%. Table 2 lists the
RMSE values of the image registration for different down-sampling percentages, and shows that 9%
down-sampling results in the best image registration. Consequently, this paper further tested the 9%
down-sampling with the centesimal percentages to derive the RMSE values of the image registration
(see Table 3). The experiment results indicate the best down-sampling percentage of 9.24%.

Table 2. RMSE of image registration varying with down sampling percentages.

Down Sampling Percentage RMSE (Pixels)

8% 15.712
9% 3.403
10% 9.560
20% 211.380
30% 427.958
40% 856.391
50% 1064.691

Table 3. RMSE of image registration under 9% down sampling with centesimal percentages.

Down Sampling Percentage RMSE (Pixels)

9.20% 2.818
9.22% 2.738
9.24% 1.846
9.26% 2.041
9.28% 2.564
9.30% 2.629
9.40% 2.831
9.60% 4.230
9.80% 6.712

Three scenes of the exterior wall of the departmental building of Civil Engineering and
Environmental Engineering at National Chung Hsing University (NCHU) (Taichung, Taiwan),
Taichung, Taiwan were imaged and provided for an image registration test, as shown in Figure 6.
Table 4 compares the performances of the image registration by NCC with and without assistance
from TSS. In addition, the computational times required by the Intel(R) Core(TM) i7-3610QM CPU
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are listed in Table 4. NCC without the assistance of TSS needs about 321 s to derive the NCC indices
of approximately between 0.95 and 0.96. Nevertheless, it is demonstrated that TSS can effectively
assist NCC in improving the NCC indices from 0.95 to 0.99, and simultaneously reduce computational
time significantly.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 

Table 2. RMSE of image registration varying with down sampling percentages. 

Down Sampling Percentage RMSE (Pixels) 
8% 15.712 
9% 3.403 
10% 9.560 
20% 211.380 
30% 427.958 
40% 856.391 
50% 1064.691 

Table 3. RMSE of image registration under 9% down sampling with centesimal percentages. 

Down Sampling Percentage RMSE (Pixels) 
9.20% 2.818 
9.22% 2.738 
9.24% 1.846 
9.26% 2.041 
9.28% 2.564 
9.30% 2.629 
9.40% 2.831 
9.60% 4.230 
9.80% 6.712 

Three scenes of the exterior wall of the departmental building of Civil Engineering and 
Environmental Engineering at National Chung Hsing University (NCHU) (Taichung, Taiwan), 
Taichung, Taiwan were imaged and provided for an image registration test, as shown in Figure 6. 
Table 4 compares the performances of the image registration by NCC with and without assistance 
from TSS. In addition, the computational times required by the Intel(R) Core(TM) i7-3610QM CPU 
are listed in Table 4. NCC without the assistance of TSS needs about 321 s to derive the NCC indices 
of approximately between 0.95 and 0.96. Nevertheless, it is demonstrated that TSS can effectively assist 
NCC in improving the NCC indices from 0.95 to 0.99, and simultaneously reduce computational time 
significantly. 

Case I 

  
 (a) (c) Sensors 2018, 18, x FOR PEER REVIEW  12 of 18 

Case II 

  
 (b) (d) 

Figure 6. Image registration of exterior wall of departmental building: (a,b) Visible image of FLIR 
ONE registered for that of iPhone SE; (c,d) Thermal IR image of FLIR ONE registered for visible 
image of iPhone SE. 

Table 4. NCC indices and computational time of image registration. 

Case 
NCC NCC + TSS  

NCC Index Computational Time (s) NCC Index Computational Time (s) 
I 0.955 321.188 0.977 1.676 
II 0.957 323.016 0.995 1.584 
III 0.963 321.089 0.991 1.721 

4.3. 3D Thermal Model Reconstruction 

This section discusses the 3D thermal model reconstruction performance of the proposed 
method for small, medium, and large-scale scenes and the computational time for each. A concrete 
sample for strength testing was selected as the small-scale 3D thermal model reconstruction scene 
(see Figure 7). The volume of the concrete sample was found to be 3662.5 and 3404.7 cm3 by the 
drainage method and the proposed method, respectively. Thus, the volume error of the 3D thermal 
model reconstruction is 7.04%. Additionally, conventional IBM was also used to determine the 
volume of the concrete sample. The determined volume and volume error are 3517.7 cm3 and 3.95%, 
respectively. In terms of 3D model reconstruction accuracy, the proposed method is slightly inferior 
to the conventional IBM, but the 3D model reconstructed by the proposed method contains 
temperature information. Consequently, the proposed method is demonstrated as an approximately 
cost-effective 3D thermal model reconstruction method, but the method still needs further 
development to improve volume accuracy of the 3D thermal model. 

A classroom in the departmental building was selected as the medium-scale 3D thermal model 
reconstruction scene (see Figure 8). The 3D thermal model shows that the detected temperature of 
the classroom is between 35° and 45°, and the precision of the temperature information is ±2°. The 
temperature information precision was estimated by a comparison of the normalized sensed 
temperatures of several feature points with their corresponding thermograms in situ. The 
temperature of the glass curtain wall is over 40°, which is significantly higher than that of the interior 
of the classroom. If the classroom is intended to be part of a green building policy, the performances 
of proposed energy efficiency strategies can be presented and compared using this 3D thermal model. 

Figure 6. Image registration of exterior wall of departmental building: (a,b) Visible image of FLIR ONE
registered for that of iPhone SE; (c,d) Thermal IR image of FLIR ONE registered for visible image of
iPhone SE.



Sensors 2018, 18, 2003 13 of 19

Table 4. NCC indices and computational time of image registration.

Case
NCC NCC + TSS

NCC Index Computational Time (s) NCC Index Computational Time (s)

I 0.955 321.188 0.977 1.676
II 0.957 323.016 0.995 1.584
III 0.963 321.089 0.991 1.721

4.3. 3D Thermal Model Reconstruction

This section discusses the 3D thermal model reconstruction performance of the proposed method
for small, medium, and large-scale scenes and the computational time for each. A concrete sample for
strength testing was selected as the small-scale 3D thermal model reconstruction scene (see Figure 7).
The volume of the concrete sample was found to be 3662.5 and 3404.7 cm3 by the drainage method and
the proposed method, respectively. Thus, the volume error of the 3D thermal model reconstruction
is 7.04%. Additionally, conventional IBM was also used to determine the volume of the concrete
sample. The determined volume and volume error are 3517.7 cm3 and 3.95%, respectively. In terms
of 3D model reconstruction accuracy, the proposed method is slightly inferior to the conventional
IBM, but the 3D model reconstructed by the proposed method contains temperature information.
Consequently, the proposed method is demonstrated as an approximately cost-effective 3D thermal
model reconstruction method, but the method still needs further development to improve volume
accuracy of the 3D thermal model.Sensors 2018, 18, x FOR PEER REVIEW  13 of 18 
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Figure 7. Model reconstruction of small scale scene: (a) 3D model of concrete sample; (b) 3D thermal
model of concrete sample.

A classroom in the departmental building was selected as the medium-scale 3D thermal model
reconstruction scene (see Figure 8). The 3D thermal model shows that the detected temperature
of the classroom is between 35◦ and 45◦, and the precision of the temperature information is ±2◦.
The temperature information precision was estimated by a comparison of the normalized sensed
temperatures of several feature points with their corresponding thermograms in situ. The temperature
of the glass curtain wall is over 40◦, which is significantly higher than that of the interior of the
classroom. If the classroom is intended to be part of a green building policy, the performances of
proposed energy efficiency strategies can be presented and compared using this 3D thermal model.
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Figure 8. Model reconstruction of medial scale scene: (a) visible image of classroom scene; (b) 3D
model of classroom scene; (c) 3D thermal model of classroom scene.

An exterior wall of the departmental building was selected as the large-scale 3D thermal model
reconstruction scene (see Figure 9). The temperature of the tile wall is higher than that of the window
glass. Moreover, the upper tile wall compared to the lower one seems to have a higher temperature.
Due to the shading of the floors, the corridors have a lower temperature than the tile wall. In the
winter of 2016, the departmental building experienced an extreme cold-front, causing several tiles to
detach from the exterior wall. The proposed method could, in the future, also provide multi-temporal
3D thermal models for exterior wall tests to pre-empt such deterioration.
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Figure 9. Model reconstruction of large scale scene: (a) 3D model of exterior wall of departmental
building; (b) 3D thermal model of exterior wall of departmental building.

In Figures 8 and 9, the sensed scenes, i.e., the classroom and the exterior wall, include the multiple
emissivities, which can vary with sensed wavelength, viewing angle, and temperature [49], of the
different materials, thus in the future the reconstructed 3D thermal models also can be applied to
inversely calculate the emissivity of a certain material if the sensed wavelength and viewing angle
are known.

4.4. Computational Time

Table 5 lists the number of processed images and the required computational time for each step of
the proposed scheme in Figure 2. The larger the scene, the longer the computational time requires;
however, the total computational time does not seem to increase with an increase of the number of
processed images. Table 5 indicates that the bottleneck step should be “creation of geometric entity”
due to its needs of computational time significantly more than other steps.

Table 5. Computational time of 3D thermal model reconstruction.

Step Small Scale Scene Medial Scale Scene Large Scale Scene

No.(I)
1 CT(s) 2 No.(I)

1 CT(s) 2 No.(I)
1 CT(s) 2

1. Image calibration

81

219

202

508

51

69
2. Extraction of conjugate features and image piecing 165 231 192
3. Structure from motion 486 1686 1091
4. Production of dense point cloud 912 167 2365
5. Creation of geometric entity 2650 31,453 36,323
6. Temperature information projection 131 311 373

Total 4563 34,356 40,413
1 Number of images; 2 Computational time.

Table 6 shows the qualities of the 3D models derived by structure from motion, production of
dense point cloud, and creation of geometric entity. The production of a dense point cloud could
produce a dozen times the number of points than by deriving structure from motion. Despite this,
there is no significant relationship between the numbers of the dense points and the silhouette cones.
In other words, only a portion of the dense points are useful in the creation of geometric entity, and
most of the dense points may be superfluous. Whelan et al., 2015 [50] also indicated that planar
segments have a simple shape which can be well described by points on the boundary of the segment.
Interior points only add redundancy to the surface representation and complicate the triangulation
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results. If the appropriate number of dense points required for the creation of a geometric entity can
be determined in advance, the computational time of the creation of a geometric entity should be
significantly reduced, thus reducing total computational time.

Table 6. Qualities of 3D models derived by structure from motion, production of dense point cloud,
and creation of geometric entity.

Scene Step No. of Points No. of Silhouette Cones

Small scale
Structure from motion 46,911 -

Production of dense point cloud 377,785 -
Creation of geometric entity - 753,627

Medial scale
Structure from motion 10,515 -

Production of dense point cloud 270,368 -
Creation of geometric entity - 540,022

Large scale
Structure from motion 735,440 -

Production of dense point cloud 13,587,715 -
Creation of geometric entity - 509,281

Tables 5 and 6 are noticed that the medial scale scene has the less number of points but needs the
more computational time in creation of geometric entity than the small scale one. According to the
implementation of Open MVS, 553 s of 2650 s and 70 s of 31,453 s were taken to derive the foreground
point cloud datasets of the concrete sample (small scale scene) and the classroom (medial scale scene),
respectively. Due to the more complicated surface textures of the classroom scene than the concrete
sample, Open MVS based on the foreground point cloud datasets took much more time to mesh the
classroom scene than the concrete sample.

5. Conclusions

This paper presents an IBM-based method for 3D thermal model reconstruction; two smart
phones and a low-cost thermal camera were employed to acquire visible images and thermal images,
respectively, that was fused for constructing 3D thermal models. In the IBM-based method, image
calibration, which includes geometric translation and image registration, is an important pre-processing
for 3D thermal model reconstruction. It was demonstrated that TSS can effectively assist NCC in
reducing the computational time required for image registration, and that the optimal percentage for
down-sampling the smartphone image size to that of the thermal camera is 9.24%.

A small scene, i.e., concrete sample, was tested to reconstruct its 3D thermal model, and the
obtained volume error of the 3D thermal model is 7.04%. A classroom within the departmental building
and an exterior wall of the departmental building were tested to reconstruct their 3D thermal models.
The normalized sensed temperatures of several feature points were compared with their corresponding
thermograms in situ and show a temperature precision of 2 ◦C in the 3D thermal models.

According to the required computational time of 3D thermal model reconstruction, the creation of
a geometric entity, one of the steps of 3D thermal model reconstruction, is the critical step. Moreover,
the production of superfluous points in the point cloud increases the computational time, reducing the
efficiency of 3D thermal model reconstruction. At present, it has been demonstrated that the proposed
method is approximately cost-effective in 3D thermal model reconstruction. If the appropriate number
of dense points required for the creation of a geometric entity can be determined in advance, the
computational time of 3D thermal model reconstruction can be significantly reduced. Future work,
such as removing redundant points from dense point cloud by the method of Whelan et al., 2015 [50],
will continue to improve the method in order to further reduce computational time and to offer better
model quality and in-time monitoring. Moreover, a metric scale associated with the detected objects
should also be considered in the further development of 3D thermal model reconstruction.
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