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Abstract: To address the problem of low accuracy for the regular filter algorithm in SINS/DVL
integrated navigation, a square-root unscented information filter (SR-UIF) is presented in this paper.
The proposed method: (1) adopts the state probability approximation instead of the Taylor model
linearization in EKF algorithm to improve the accuracy of filtering estimation; (2) selects the most
suitable parameter form at each filtering stage to simply the calculation complexity; (3) transforms the
square root to ensure the symmetry and positive definiteness of the covariance matrix or information
matrix, and then to enhance the stability of the filter. The simulation results indicate that the estimation
accuracy of SR-UIF is higher than that of EKF, and similar to UKF; meanwhile the computational
complexity of SR-UIF is lower than that of UKE.

Keywords: SINS/DVL integrated navigation; unscented information filter; square root; state
probability approximation; most suitable parameter form

1. Introduction

Most underwater or surface navigation applications employ a Strapdown Inertial Navigation
System (SINS) as their main navigation sensor, since SINS is a standalone system that can provide
all of the required navigation data: position, velocity and orientation [1-3]. However, even with
high precision SINS, the navigation solutions drift in time due to measurement errors of its inertial
sensors. The Doppler velocity log (DVL) is a good acoustic-based device in marine applications,
which can provide three-dimensional velocities to mitigate the errors of marine SINS [4-6]. Therefore,
the integrated SINS and DVL navigation system is a common navigation method for underwater
or surface navigation during long voyages [7-9]. The SINS system error model is nonlinear, and a
nonlinear filtering algorithm is generally used for state estimation. The earliest nonlinear filtering
method used in engineering was the Extend Kalman Filter (EKF) algorithm [10,11]. Its core idea is
to approximate a linear expansion of the current nonlinear state equation (namely a Taylor series
expansion, truncating high-order terms, retaining first-order terms) to apply the rules of EKF. However,
the EKF algorithm is only applicable to weakly nonlinear systems. The stronger the nonlinearity of the
estimated object is, the larger the estimation error will be, and it will even cause filter divergence.

Some scholars have proposed a probabilistic approximation of the nonlinear filtering construction
idea [12], that is, using a deterministic sampling method to replace the Taylor series expansion
linearization of the system model in EKF algorithm, and to approach the mean and variance of the
Gauss state distribution by utilizing deterministic sampling points through a nonlinear system equation
transformation propagation. The Unscented Kalman Filter (UKF) algorithm proposed by Uhlman
is the first nonlinear algorithm to practice this idea [13-15]. It adopts an Unscented Transformation
(UT) to obtain 2n + 1 Sigma sampling points with different weights, and uses the abovementioned
Sigma sampling points to generate new points after transforming the nonlinear system equation
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for estimating the mean and the variance of the system states at the next moment. The theoretical
deduction proves that the estimation accuracy of UKF algorithm can reach the third-order terms of
Taylor series expansion for the nonlinear system [16-18].

The information filtering algorithm realizes a state estimation by transforming information
parameters (including information matrix and information vector) [19,20]. It is equivalent to a
series of Kalman filter algorithms which pass the moment parameters (covariance matrix and state
vector) [21,22]. The whole filtering process can be divided into two processes: time updating and
measurement updating. The time updating process involves the calculation of marginal probability,
and the retrieval of the moment parameter form is relatively simple. The measurement updating
process involves conditional probability, and the information parameter form is more effective.
Therefore, in order to optimize the performance of the algorithm, the Square-Root Unscented
Information Filter (SR-UIF) algorithm is proposed in this paper, which is applied to a nonlinear
integrated SINS/DVL navigation system. This algorithm adopts the form of moment parameters in
the process of time updating according the characteristic of the parameter form, respectively, the form
of information parameters in the process of measurement updating; and ensures the symmetry and
positive definite of the information matrix or covariance matrix by propagating their square root,
and alleviates the problems such as divergence and data precision degradation caused by rounding
errors in the filtering process.

The remainder of this paper is organized as follows: Section 2 studies the duality of Gaussian
distribution; Section 3 focuses on the theoretical derivation of the SR-UIF algorithm; Section 4 briefly
introduces the SINS/DVL model used in this paper; Section 5 verifies our findings through simulations
and the conclusions are given in Section 6.

2. Duality of a Gaussian Distribution

We set X as the state vector of the integrated navigation system, which obeys a Gaussian
distribution of multi-dimensional random variables, namely p(X) ~ N(X, P), X is its mean value and
P is its variance. Through the expansion of the Gauss distribution index term, it can be obtained that:

)

where Y is the information matrix, and y is the information vector. It is usually called X and P as
the moment parameter form, y and Y as the information parameter form, and their transformation

relations are:
Yy=pP! )
y =YX = P-1X

From Equations (1) and (2), the information parameter form is also an expression of the Gaussian
distribution, which is equivalent to the representation of the moment parameter form, and the two
forms can be converted to each other. These are collectively referred to as the duality of the Gaussian
distribution. The whole filtering process can be divided into time updating and measurement updating:

(1) the time updating process involves the calculation of marginal probability:

p(Xe/ U, 25 = [ (X, X1 /U, 2 i
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(2) The measurement updating process involves the calculation of conditional probability:

_ Zi/ Xi)p( X /UL, ZET)
X, /U 7 = p(Zye/ X
o ) [ 0(Zi/Xi)p(Xpe/UFY, Z51)dX

Suppose that X and Z satisfy the Gauss distribution as follows:

Pxx Pxz _ N-1 7x
Pzx Pzz vz

The condition probability and marginal probability of the moment parameter form and
information parameter are as shown in Table 1 below. It can be seen when using the moment
parameters and information parameters to calculate the marginal probability and conditional

p(XJ)—N([ ol

2z

| Yxx Yxz
| Yzx Yzz

probability, the two equivalent expressions have completely different calculation characteristics. It is
relatively simple to calculate the marginal probability in the moment parameter form. On the contrary,
when calculating conditional probability, it is relatively effective to calculate the conditional probability
in the information parameter form.

Table 1. Expressions for the condition probability and marginal probability of the different form.

Parameter Form Marginal Probability Conditional Probability
£ = %x %= f%x+ PxzP; 5(Z — %7)
Moment parameter -
P=Pxx P = Pxx — PxzP; 7Pz x
. 9=9x —YxzYz 0z 7=9x—YxzZ
Information parameter 1
Y =Yxx—YxzY;7Yzx P=Yxx

3. Square-Root Unscented Information Filter (SR-UIF) Algorithm

Square-Root Unscented Information Filter (SR-UIF) algorithm is a nonlinear filtering algorithm
based on probabilistic approximation, which has the same structure as the well known UKF
algorithm. It adopts an Unscented Transformation (UT) to obtain 2n + 1 Sigma sampling points
with different weights, and uses the abovementioned Sigma sampling points to generate new points
after transforming the nonlinear system equation for estimating the mean and the variance of the
system states at the next moment. However, compared with the UKF algorithm, the SR-UIF algorithm
selects the most suitable expression form at each filtering stage, that is, using the moment parameter
form in the time updating, using the information parameter form in the measurement updating,
for simplifying the computational complexity. Meanwhile, SR-UIF algorithm ensures the symmetry
and positive definiteness of the information matrix or covariance matrix by propagating their square
root, for improving the stability of the algorithm.

The discretized integrated navigation system model is:

Xi = f(Xi-1) + Gr-1Wg1 3)
Z, = h(Xy) + Vi

The following is analyzed for the implementation steps of SR-UIF algorithm. First, it is assumed
that the initial filter estimation state is as follows:

{ Xo = E[Xo]

4
Py = E[(Xp — X0)(Xo — X0)'] @
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Combined with the duality of Gaussian distribution, the initial information parameters can

be obtained: X
Yo = YoXo

Y, =P = {E[(Xo —Xp)(Xo — ?A(O)T}}il ©

3.1. Time Updating

The calculating of the edge probabilities involved in the time updating is simpler by using the
moment parameter form. Therefore, the mean and variance are applied as the iterative factors in the
time updating process of SR-UIF algorithm. The specific process is as follow:

(1) Decompose the covariance matrix P;_; at k — 1 time by using the Cholesky algorithm:
P =S5, (6)

where Sy_1 is the Cholesky factor of the covariance matrix Py_;, and is the lower triangular matrix.
(2) Calculate the Sigma point sets and their weights according to the Unscented Transformation (UT):

gl': ngk[l}llwlzwinzwf:z(nli_i_;() /izlrzi"'lzn

where 7 is the system dimension; « is a free parameter; W}" is the weighted value corresponding
to each Sigma point, W7 is the weighted value corresponding to variance matrix, and satisfies
YW = Y W' = 1; [1]; indicates the i column or line of identity matrix [1]. Further, the state
sample points at k time can be obtained as follows:

Xik—1= Sk—18i + X1 (8)

(3) One-step state prediction augmented sample points X?,k\k—l can be obtained through a
nonlinear transformation:
X1 = F(Xig—1) )

L

Then their mean and covariance matrix at k time are

m
g1 = ) Wi (10)
i=0
m
T o o1
Pjk1 =) WiXFiu 1 X i — Be/k—1%eio1 + Qe (11)
i=0

where Q. _; is the variance matrix of system noise.

3.2. Measurement Updating

As it is relatively simple to calculate the conditional probabilities by utilizing the information
parameter form, the information vector and information matrix are applied as the iterative factors
in the measurement updating process of SR-UIF algorithm, for achieving the optimal design of the
algorithm. According to the theoretically deduced knowledge in the Appendix, it can be seen that the
update equation of the information matrix and the information vector at k time:

{ Yo = Y1+ I (12)

Ve = U1 + ik
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where Y /r_1 is the one-step prediction information matrix, and Yy x_1 = P /lk—1 5 Uxjp_q 1s the
one-step prediction information vector, and §; ;1 = Yi/x—1%k/k—1; Ix and iy are the contributions of
the information matrix and the information parameters, respectively, and:

7 T
I = (Yesko1Przi/k—1) Ry (Yesk—1Przi/k—1)

. _1 A T N (13)
ir = (Ye/k-1Przi/k—1) Ry (Zk — h(%&/k-1) + sz,k/k_ﬂ/k/kq)

R, is the variance matrix of measurement noise, Py k1 is the cross-covariance matrix between
x and z.

It can be seen from Equation (13) that the measurement update states require the known Py, j k1.
Now the specific solution process of P, ;/¢_1 is given as follows:

(1) Decompose the covariance matrix Py /,_1 by using the Cholesky algorithm again,
P/k-1 = Sk/k—15 k1 (14)

where Sy /i_1 is the Cholesky factor of the covariance matrix Py /;_1, and is the lower triangular
matrix.
(2) Calculates the one-step prediction state sample points:

Xikk—1 = Skjk—18i + X1 (15)

(3) One-step measurement prediction augmented sample points can be obtained through nonlinear

transformation:
Zijk—1 = h<Xi,k\k—1> (16)
then their mean at k time is: .
Bt = ) WI'Zigpen 17)
i=0
and the cross-covariance matrix is:
- T T
Peoksk-1= ) WiXi 1 Zijeo1 — B/k-12k/k-1 (18)
i=0

In order to facilitate the experiment recording and observation, the filtering finally needs to
transform the information parameter form into the moment parameter form. However, the state
quantities involved in the inversion of large information matrix are undoubtedly huge, which makes
the algorithm difficult to process. For this, this paper utilizes the Cholesky decomposition to deal with
it, that is, firstly:

Yo = LiL] (19)

where L is the Cholesky factor of the information matrix Y.

Since the Cholesky factor Ly is a lower triangular matrix and its upper half elements are all zero,
the computational complexity of the inverse operation of Ly is much less than that of ¥; when both
L; and Y, are the same dimension. It can realize the optimization design of the algorithm for using
Cholesky factor L to solve the state vector estimate at k time:

y= L) f (20)

where f is the forward vector of Cholesky, and f = L, 19,
Equation (6) shows that the covariance matrix P; needs to be decomposed during the next time
updating process, and Equation (19) has been decomposed to the information matrix ¥; at the next
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moment, which is a duplicate calculation. In view of this, the paper applies Equation (19) instead
of Equation (6) to achieve further reduce the amount of the filtering calculation according to the
transformation relation between P, and Y;. The specific operation is as follows:

(1)  According to the transformation relation between P, and ¥;, the equation relationship between
S; and Ly is:

Le= (5Z)471 (21)
Ll =s.!

(2) Then Ly is used to instead of Sy in Equation (7) for iteration:
-1
Xik = (L;z ) Gi + Xk (22)

3.3. Summary

Based on the above analysis, the frame diagram of SR-UIF algorithm is shown in the following
Figure 1.

) . .\ e
Time Updating [ X, :(LLI) 151 vy )
E X:k\kfl =f(X) j
[ B =S X ] { Py = Y W (X s = % ) X s = %) + 0, }
= i—0

Measurement Updating [ X =8, 4k j
ikt = Oxgasi F X

Zi,k\k—] = h(Xi,Mk—])

n

s ¢

L1 = ZW‘ Z, 1
i=0

{P\z.k\k—l = Z W,'C(Xi,k\kA - &:Hk—l)(zi,k\k—] - éi.k\k—l)r}
i=0

[ik = (Yk\kfll,x:,k\kfl )RI;I (zk —h (’A‘k\k—l ) + Px;k\k—lj’mk—l )j {I’t = (Yk\kfva:,kV«fl )Ril (YkaIvaWl )T}

[ Vi = Vo Ty j [ I}k:YAv,H*Ik

N

[ %=(L) f ]

Figure 1. Frame diagram of SR-UIF algorithm.
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4. Nonlinear SINS/DVL Integrated Navigation Model

Set the local geographic coordinate frame ¢t as the navigation frame of SINS, the error propagation
equation about misalignment angles ¢’ are constructed as:

.t
¢ = 0w, +dwl — (W, + why) x @' + Che® (23)

where ¢, b, and i denote the Earth, body, and inertial frames, respectively; CZ is the attitude

transformation matrix from the body coordinate frame b to frame t; €’ is constant gyro drift in

body frame; w!, is the earth rotational angular rate in frame t, and dw!, is its calculation error; w!, is

the rotational angular rate from frame t to frame e in frame t, and éwy, is it calculation error.
Meanwhile, the vector expression of velocity equation is:

50 =f x ¢ — (2!, + why) x 60" — (20w!, + dwly) x v + CLV? (24)

where 6! is the velocity error vector; f is the specific force measured by the accelerometer in frame ¢;
V" is the errors of accelerometers in body frame.
Ignoring the height channel, the equations describing position errors are two equations as follow:

. 5vy
oL | _ R+ F (25)
oA 90x_goc [, + 2% sec L tan LSL
R+h R+h

where 4L and JA are the latitude and longitude error, respectively.

In this paper, a four-beam phased array DVL is used. The measurement error includes the velocity
offset error 0V, drift angle error JA, and calibration coefficient error 6C. Assuming that 6C is a random
constant, 6V; and A are represented by the first-order Markov process, the error equations of DVL are
expressed as:

6V = —PadVy + wy
OA = —BASA 4wy (26)
5C=0

where ﬁ;l, [57\1 are expressed as the correlation time of DVL velocity offset error and bias angle error,
respectively; w; and wy are their Gauss white noise.

The system vector is defined as X = { 0L OA ve vy @ @n @u OVy; A OC r ,
and the model of the system state equation is applied in this paper:

X = f(X) + GW (27)

where W = [ 0 0 wge way 0 0 0 wy wp O } ! is the process noise sequence; the specific
expressions of and refer to Equations (23)—(26).

Assuming that the DVL measurement is the ground velocity V, then the components of V] in the
east and north directions are:

{ V1= (1+6C)(Vy+ 8V) sin(Kg + ¢y + 5A) o

Vi, = (14 6C)(Vy + 0Vy) cos(Ky + ¢ + 0A)

where ¢, is the azimuth misalignment angle; K; is the heading angle added to the drift angle.
The Taylor series expansion is performed on x = K, for Equation (28):

{ Vi, = Vo4 Vi(¢u + 0A) + 6Vysin Ky + 6CV, 29)

Vi, = Vi = Ve(pu +0A) + 6Vycos Ky + 6CVy
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Meanwhile, the computing velocity of SINS can be expressed as:

V,, = Ve 4V,
{ se e e (30)

V., = Vy + 6V,

The difference between the SINS computing velocity and the DVL measurement velocity is taken
as the measurement vectors, namely

5Ve =0V, — Vn((Pu + 5A) — 5Vd sinK; — oCV, (31)
0V, =0V + Ve(¢pu + 6A) — 6V cos Ky — 6CV,
Then the measurement equation is set up as follows:
Z=HX+V (32)

T
where the measurement noise is taken as V = [ Ve Un } ; H is the measurement matrix, and

001000 —V, —sink; -V, -V,
000100 V., —cosK; V. -V,

5. Results

In the simulation experiments, two classical motion models are designed: uniform linear motion
and uniform circular motion. First of all, the accuracy of position and velocity for purely inertial
navigation, filtering with the SR-UIF algorithm, UKF algorithm, and EKF algorithm are compared and
analyzed in these two modes of motion. Then, the computational complexity of SR-UIF algorithm and
UKEF algorithm are also compared and analyzed, which is determined by the average time consumed
by a once filtering operation and the total elapsed time of each simulation experiment. Finally,
the filtering performance of 1 h off-line data is used to further analyze the performance advantages of
SR-UITF algorithm in terms of estimation accuracy and computational complexity. Finally, the filtering
performance of 1 h off-line data is used to further analyze the performance advantages of SR-UIF
algorithm in terms of estimation accuracy and computational complexity.

5.1. Simulation Analysis

Set the simulation conditions: initial latitude ¢ = 45.7796°, and initial longitude Ay = 126.6705°;
initial position error §L = A = 100/ R rad, initial velocity error 0.01 m/s; initial misalignment angles
Pe0 = Pno = Puo = 1°; the gyro constant drifts along three axes of body frame are 0.01° /h with white
noise 0.005° /h; the accelerometer biases along three axes of body frame are 1 x 10~# g with white
noise 0.5 x 10~* g; for DVL, the velocity offset error 6V; = 0.01 m/s, the drift angle error /A = 1,
the calibration coefficient error JC = 0.001, the correlation time of DVL velocity offset error and bias
angle error ﬁ;l = 5min, ,Bgl = 15 min. The measurement data are obtained from IMU at a rate of
100 Hz and from DVL at a rate of 1 Hz. The filtering period is 1 s and the simulation time is 6284 s.

The initial parameters are set as:

N T
on[oooooooooo}
PO:diag{ (100/R)*> (100/R)*> (0.1m/s)®> (0.1m/s)® (1°)2 (1°)2 (1°)%> (0.005m/s)® (1) (0.001)2}
Qy=diag{ 0 0 (50ug)® (50ug)® (0.005°/h)> (0.005°/h)* (0.005°/h)* qoVy qéA O |

Ry = diag{ (001m/s)? (0.01m/s)* }
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where g6V, = (0.005m/s)?(1 — e 2PT), g6 A = (1) (1 — e~ 2aT).

5.1.1. Uniform Linear Motion

The system is in uniform linear motion at 10 m/s with an initial heading angle of 45°, and the
simulation time is 24 h. Figures 2-5 show the position and velocity estimation error curves for purely
inertial navigation, filtering with EKF, UKF, SR-UIF. Table 2 gives the estimation error values.
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T
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Figure 2. Estimation error curves for purely SINS, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 3. Estimation error curves after EKF, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 4. Estimation error curves after UKF, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 5. Estimation error curves after SR-UIF, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.

Table 2. Comparison of position and velocity errors for purely inertial navigation, filtering with EKF,
UKE, SR-UIF in uniform linear motion.

Filtering Maximum Latitude = Maximum Longitude Maximum East Maximum North
Method Error (deg) Error (deg) Velocity Error (m/s)  Velocity Error (m/s)
purely SINS 0.1518 0.1981 1.801 —2.517
EKF 9.294 x10~3 1.194 x 1072 0.03296 0.03177
UKF 3.211 x 1073 8.888 x 1073 0.0326 0.03048

SR-UIF 3211 x 1073 8.879 x 1073 0.0326 0.03048
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From the above simulation results in the uniform linear motion, it can be seen that:

(1) The position and velocity errors for purely inertial navigation output diverge with time.
The maximum latitude error and longitude error after 24 h are 0.1518° and 0.1981°, meaning
16,888 m and 23,000 m. Meanwhile, the maximum east velocity error and north velocity error
reach 1.801 m/s and —2.517 m/s, respectively.

(2) The position estimation errors in SINS/DVL integrated navigation are suppressed after filtering.
The maximum latitude error and longitude error after EKF filtering are 9.294 x 10730 and
1.194 x 10~2°, meaning 720 m and 1322 m. The position estimation accuracy of UKF and SR-UIF
algorithm is approximately the same, both higher than that of EKF algorithm. Specifically,
the maximum latitude error and longitude error after SR-UIF filtering are 3.211 x 10~ and
8.879 x 10~2°, meaning 249 m and 986 m.

(3) The velocity estimation errors in SINS/DVL integrated navigation are also suppressed after
filtering. The maximum velocity error can be maintained in 10~2 order of magnitude, and the
velocity estimation accuracy of UKF or SR-UIF algorithm is slightly higher than that of EKF.

5.1.2. Uniform Circular Motion

The system has a radius of 10 km, a velocity of 10 m/s, an angular rate of w = 1073 rad/s,
and performs a uniform circular motion counterclockwise. The simulation results are shown in the
following figure. Figures 6-9 show the position and velocity estimation error curves for purely inertial
navigation, filtering with EKF, UKF, SR-UIFE. Table 3 gives the estimation error values.

Table 3. Comparison of position and velocity errors for purely inertial navigation, filtering with EKF,
UKE, SR-UITF in uniform circular motion.

Filtering Maximum Latitude = Maximum Longitude Maximum East Maximum North
Method Error (deg) Error (deg) Velocity Error (m/s)  Velocity Error (m/s)
purely SINS 0.2792 —0.2703 —7.544 12.88
EKF —3.594 x 10~4 —5.332 x 1074 0.0178 0.2058
UKF 9.561 x 107> 1.3254 x 107> —0.003045 0.003076
SR-UIF 9.561 x 1072 1.3235 x 107> —0.003043 0.003071
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Figure 6. Estimation error curves for purely SINS, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 7. Estimation error curves after EKF, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 8. Estimation error curves for purely SINS, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.
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Figure 9. Estimation error curves after EKF, where X axis represents simulation time, and Y axis
represents: (a) latitude error; (b) longitude error; (c) east velocity error; (d) north velocity error.

From the above simulation results, it can be seen that:

Compared to the uniform linear motion, the uniform circular motion is more complex. Then the
accuracy of pure inertial navigation is lower in the uniform circular motion for a short time,
of which the maximum latitude error and longitude error are 0.2792° and —0.2684°, meaning
31,056 m and 30,302 m; and the maximum east velocity error and north velocity error reach
—7.477 m/s and 12.88 m/s, respectively.

The position accuracy is obviously improved after filtering, the maximum latitude error and
longitude error after EKF filtering are —3.594 x 1040 and —5.332 x 10~*, meaning 28 m and
59 m. The position estimation accuracy of UKF and SR-UIF algorithm is approximately the
same, which can be controlled within the same order of magnitude and both higher than that of
EKF algorithm.

The velocity error can converge to a small range. The maximum velocity error after EKF filtering
can be maintained in 10~2 order of magnitude, and the initial filtering stage has obvious oscillatory
process. The velocity estimation accuracy of UKF and SR-UIF algorithm advance by an order of
magnitude compared to that of EKF, which can be maintained in 103 order of magnitude and
the entire filtering process is smooth.

5.1.3. Performance Analysis

In order to analyze the superiority of SR-UIF algorithm performance, the simulation effect diagram

of the time consumed by once filtering operation with SR-UIF and UKF in uniform linear motion or
uniform circular motion is given in Figure 10.

We simulate multiple uniform linear motion and uniform circular motion experiments to calculate

the average time consumed by once filtering operation with SR-UIF and UKEF, and the total elapsed
time of each simulation experiment. The results are shown in the following Table 4.
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Figure 10. Time comparison consumed by once filtering operation with SR-UIF and UKF: (a) in uniform
linear motion; (b) in uniform circular motion, where X axis represents simulation iterative step, and Y
axis represents the time consumed by once filtering operation.

Table 4. Comparison of the average time consumed by once filtering operation, and the total
elapsed time of each simulation experiment with UKF, SR-UIF in uniform linear motion or uniform

circular motion.

Uniform Linear Motion (24 h) Uniform Circular Motion (1.67 h)
Average Time Total Elapsed Average Time Total Elapsed
Filtering Method Consumed by Time of Each Consumed by Time of Each
Once Filtering Simulation Once Filtering Simulation
Operation (s) Experiment (s) Operation (s) Experiment (s)
UKF 6.413 x 1074 55.40832 6.396 x 1074 4.0083732
SR-UIF 6.212 x 1074 53.67168 6.195 x 104 3.8824065

From the above simulation results, it can be seen that whether the system is in a uniform linear
motion or a uniform circular motion, the average time consumed by once filtering operation and the
total elapsed time of each simulation experiment with SR-UIF algorithm are slightly smaller than with
the UKF algorithm, which indicates that in view of the face that SR-UIF algorithm adopts the most
suitable parameter form in each filtering stage, the computation amount of filtering is less than that of
UKEF algorithm.

5.2. Measured Data Analysis

Based on a ship-borne experiment using laboratory fiber optic gyro (FOG) strapdown inertial
navigation equipment and a RDI Workhorse-type DVL instrument, the accuracy of the SR-UIF
algorithm is analyzed. Figure 11 shows the velocity and position error curves of SINS/DVL integrated
navigation system using SR-UIF algorithm and EKF algorithm. It can be seen that in the one-hour
data analysis process, the latitude error and longitude error only reach —1.5 x 107%? and —1 x 104
with SR-UIF algorithm, while these errors reach —2.8 x 107%? and —2.3 x 10~%° with EKF algorithm.
Meanwhile, the velocity error with SR-UIF algorithm has converged to within 0.02 m/sand remains
stable, while within 0.1 m/s with EKF algorithm. The above results show that the positioning accuracy
and velocity accuracy of SR-UIF algorithm are higher than that of EKF algorithm.
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Figure 11. Error curves of SINS/DVL integrated navigation system with SR-UIF and EKF, where X
axis represents simulation time, and Y axis represents: (a) latitude error; (b) longitude error; (c) east

velocity error; (d) north velocity error.

The estimation accuracy and the time consumed for data analysis of SR-UIF algorithm and UKF
algorithm are given below in different data collection time, as shown in Tables 5-7.

Table 5. Performance comparison of SR-UIF and UKF in one hour collection data.

Filterin Maximum Maximum Maximum East Maximum Total Elapsed
Metho:ig Latitude Longitude Velocity Error ~ North Velocity ~ Time of Data
Error (deg) Error (deg) (m/s) Error (m/s) Analysis (s)
UKF —2.707 x 107° 1.081 x 10~ —0.02059 0.05312 1.841076
SR-UIF —2.693 x 1074 9.264 x 107> —0.02052 0.05304 1.834968

Table 6. Performance comparison of SR-UIF algorithm and UKF algorithm in one three collection data.

Filterin Maximum Maximum Maximum East Maximum Total Elapsed
Methoc% Latitude Longitude Velocity Error  North Velocity =~ Time of Data
Error (deg) Error (deg) (m/s) Error (m/s) Analysis (s)
UKF —1.055 x 1073 1.103 x 1073 0.02574 0.05312 3.294395
SR-UIF —9.494 x 1074 1.0843 x 1073 0.02569 0.05304 3.267851

Table 7. Performance comparison of SR-UIF algorithm and UKF algorithm in one five collection data.

Filterin Maximum Maximum Maximum East Maximum Total Elapsed
Metho g Latitude Longitude Velocity Error ~ North Velocity =~ Time of Data
Error (deg) Error (deg) (m/s) Error (m/s) Analysis (s)
UKF —1.888 x 1073 1.501 x 1073 —0.03409 0.05312 4.7329875
SR-UIF 1795 x 1072 1.446 x 1073 —0.03272 0.05304 4.7236778

As can be seen from the data in Tables 5-7, the positioning accuracy and velocity accuracy of the
SR-UIF algorithm are nearly identical as with the UKF algorithm, but for the total elapsed time in the
same collection time, the SR-UIF algorithm is significantly lower than the UKF algorithm.

5.3. Discussion

The simulation results and the measured data analysis results show that:
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(1) The position and velocity estimation accuracy of the nonlinear filtering based on the probabilistic
approximation (such as UKF algorithm and SR-UIF algorithm) is higher than that of EKF
algorithm based on the model Taylor series expansion.

(2) SR-UIF algorithm and UKF algorithm are different expressions of the same filtering algorithm
based on the probabilistic approximation, and they are equivalent in the filtering estimation value
due to the duality of Gaussian distribution. The difference is that SR-UIF algorithm adopts the
most suitable parameter form in each filtering stage, making its computational complexity lower
than that of UKF algorithm. The simulation results are reflected that the average time consumed
by once filtering operation and the total elapsed time of each experiment with SR-UIF algorithm
are slightly smaller than UKF algorithm.

6. Conclusions and Future Works

In this paper, a square-root unscented information filter (SR-UIF) algorithm is applied to a
SINS/DVL integrated navigation system. It is shown that: (1) the algorithm based on probability
approximation has a relatively high estimation accuracy, and (2) the performance advantage of the
algorithm is optimized by utilizing the most suitable parameter form in each filtering stage, and 3)
using the square root of the variance matrix as the iterative factor to ensure the symmetry and positive
definite of the information matrix or covariance matrix and thereby enhance the stability of the
filtering. Finally, the simulation experiments show that: (1) the positioning and velocity measurement
accuracy of SR-UIF algorithm are obviously higher than that of EKF algorithm, equaling to that of UKF
algorithm; (2) and the computational complexity of SR-UIF algorithm is slightly lower than that of
UKEF algorithm. The simulation results provide a good theoretical basis and solution for popularizing
the application of SINS/DVL integrated navigation filtering algorithm.

What we touched on in this paper is just the beginning, and there are many places where SR-UIF
algorithm can wait for mining applications. The SR-UIF algorithm adopts the form of moment
parameters in the process of time updating and the form of information parameters in the process of
measurement updating, which makes it convenient to realize distributed or decentralized design of
measurement data structure. The potential benefits of this data structure are: (1) improving the fault
tolerance of the algorithm by detecting the accuracy of data measured from different sensors; (2) fusing
the time unsynchronized measurement information by processing the distributed data. At the same
time, the application scene of SR-UIF algorithm can also be transferred from underwater navigation of
SINS/DVL to the cooperative navigation system on the ground or in the air, which will also become a
direction of the future SR-UIF extension application.
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Appendix A

A. Verify that the update variance of the information matrix at k 4- 1 time is:
Y = Yispo1 + I (A1)

_ T
where I = (Yi/k-1Przi/k—1) R (Y sk—1Pazisi—1) ' -
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Proof. The approximate estimate form of the covariance matrix Py based on the linear minimum
variance is:
-1 T
Py = Piji—1 = Pz i1 Poy g1 Prz /i1 (A2)

Perform inverse calculations on both sides of Equation (A2),
p.l=(p P | R 1) o
kK — k/k=1 7 Lxzk/k=1% 27 k/k—1" xz,k/k—1

According to the matrix inversion formula, it can be obtained:

-1
-1 —1 T

P = (Pk/k—l Pk 1Py /i1 P xz,k/k—l) (43)

_p1 1 T 1 T 1

= Piji1 T Prjp1Przjese—1 (Pzz,k/k—l - sz,k/kflPk/k—lprk/kfl)sz,k/kflpk/k—l

Simultaneously it exits:
& * «T T
Py k-1 = 'Zo MXi,k\k—lzi,k\k—l = Xk/k=1%k/k—1
1=
i * +«T T
Prje1 = 'Zo Win,k\kAXi,k\kﬂ = X/k-1% o1 T Qe—1
1=l

Since X, Z and W are not related to each other, then
T —1
Py ksk1Prc1Przk/i
n " T 5 oT & " T N oT o « T 5 5T
= <I_§1 WiZik e 1 Xikm 1~ Zk/k—lxk/kq) ’ (i; WXk 1 Xk = Rk 1 + Qk—l) ’ <I_§1 WiXi/e1Zisk _xk/kflzk/k—l>
=|wezr,, xT (xT xr xe ozt WE, Z* xT x:T xe “xe zT
- 171,k /k—14%,k/k—1 1,k/k—1 1,k/k—1 1k/k—1“1k/k=1| " m=mk/k—1mk/k—1 mk/k—1 mk/k—1 mk/k—1"mk/k—1
N oT T -1 1, 5T
7Zk/k71xk/k—l(xk/k—l) (Fi/k=1)" Rie/r—1Ze /51

m

— WEZ* T 2 2T

= ‘21 1Ziksk—1Ziksk—1 — Ek/k=12k k1
i=

While
m
T s ST
Pk = Y WiZiy k1 Zikse1 — 2k/k—12k/k-1 + Re
iz
then,
T 1
Pooisk—1— Pryisk—1Prjk1Przk/k-1 = Ri (Ad)

Substitute Equation (A4) into Equation (A3), and due to P, =y, and P /1k—1 =Y} /k_1, itcanbe
get:
1 T
Vi =Y 1 + (Yese1Przk/k-1) R (Yesko1Przisk-1)

O

Appendix B

B. Verify that the update variance of the information vector at k + 1 time is:
Ui = Yeye—1 Tk (A5)

where i = (Yie/k—1Przi/i—1) R, (vk + sz,k/k—lyk/k—l)'
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Proof. The approximate estimate form of the gain matrix Ky based on the linear minimum variance is:

_ -1 —1
Ki = Py jesk—1P /1 = Y /i 1Py, k/k=1P e /kq (A6)
Meanwhile the state vector estimate is:

X = Reyk1 + Kie(Zye — 2rji-1)

4 . (A7)
= %/k-1+ Vi 1 Przise—1P ik 1 (Zk — Zrsk-1)
Multiply Yy /x_; on both sides of Equation (A2), namely
Yk 1% = Yese 18k + Pozi/k—1 P i1 (Zk — Zrgi—1) (A8)

Substitute Equation (A1) into Equation (A8), it can be obtained:

N N —1 ~
(Y — L)% = Yijea%k/k—1 + Pyzgese—1P g i 1 (Zk — Zkjk-1)
Due to Yy /i _1&k/k-1 = Ji k1 and Vi & = 3, then

D = D L&+ Pooie P 1 (2 — 2i)
. T, _ .
= k-1 + Yise1Przisk—1) Ry (Yk/kflpxz,k/k—l) X+ Pyz,k/k—lpzz}k/k,l(zk = Z/k-1)

N T, _ s
= Dse1 + (Yepe 1Pk )R (Yigko1Pazisi1) %+ (Yigk 1 Przisi 1) P e (Zi — 2rsk1)

1

= Oisp1 + Yeyko1Przi/i—1) R | (Yiyk—1Przj/k-1) (xk/k—] + Y;:/k,lpyz,k/kflp;%k/k,l(Zk - 2k/kq)) +RkP;Z}k/k,1(Zk - 2}«/1&1)}

( )

( )
= 9iske1 + Veye1Przirk—1) Ry [(Yk/k 1Peoisi-1) &+ R o ke 1(Zk*2k/k—l)}

( )R (
= Dsier + (Ve Preisi )BT (Vi Pacirin) "Ssie1 + [ (Yoo P ) Yoy Yo Pt + Ry P2h s 1 (Ze = 21000) |
( )

— 1 T —1 —1 2
= Tse1 + Ve Pre 1) Ry [sz k/k=19k/k-1 [sz,k/k—lPk/k—lPXZ,k/k—l +Rk} P ke (Zk 7Zk/k—1>]

According to Equation (A8), further simplification can be obtained:

A A -1 T N
U = Desk1 + Yk 1Przpri—1) Ry [sz,k/kflyk/k—l + vk}

O
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