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Abstract: Debonding defects are common and they are the main reason for the failure of hidden
frame supported glass curtain walls, which are widely used as an external enclosure and decorative
structure. In this paper, a debonding detection method for hidden frame supported glass curtain
walls is developed based on nonlinear ultrasonic modulation and piezoceramic transducers. First, the
excitation frequency was determined according to the response characteristics. Then, empirical
mode decomposition (EMD) was applied to extract the feature components. After discrete Fourier
transform (DFT), the nonlinear coefficients were calculated to evaluate the debonding defect. Finally,
the experimental setup was established and a series of experiments were carried out to verify
the feasibility and effectiveness of the nonlinear ultrasonic modulation method. The nonlinear
harmonics detection method was also investigated and it was compared with the nonlinear ultrasonic
modulation method. The detection effect at different temperatures and impact were studied.
The results showed that the nonlinear coefficient increases with the debonding length. The mean
squared error (MSE) of the nonlinear ultrasonic modulation method was improved by 41% compared
with the nonlinear harmonics method. The nonlinear ultrasonic modulation method can successfully
detect debonding defects in hidden frame supported glass curtain walls at different temperatures
and impact.

Keywords: hidden frame supported glass curtain wall; nonlinear ultrasonic modulation; debonding;
empirical mode decomposition

1. Introduction

The hidden frame supported glass curtain wall is widely used in the construction field due to
its dexterity, lightness, transparency and structural beauty. It provides all the required functions of
an external enclosure and decorative structure, which usually do not contribute to the load-bearing
ability. The glass plate of the hidden frame supported glass curtain wall is directly bonded to the
aluminum alloy subframe by silicone structural adhesive. With the increase in service life, problems
with the quality of the hidden frame supported glass curtain wall have attracted significant attention.
Because of the effects of long-term thermal stress and environmental aging, hidden frame supported
glass curtain walls inevitably suffer from defects such as cracks, bubbles, lamination and debonding
defects. In particular, debonding defects are very common in hidden frame supported glass curtain
walls. Once there is a debonding defect, it may cause the curtain wall glass to fall off, which may lead
to accidents and heavy property losses. Therefore, there is a great need to develop an effective method
for debonding detection in hidden frame supported glass curtain walls.
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Various methods have been proposed for debonding detection in hidden frame supported glass
curtain walls. The commonly used detection methods are suction cup and balloon methods which
apply exerted pressure on the glass by a suction cup or balloon to simulate wind load. The stress and
displacement are used to evaluate the quality of the glass curtain wall [1,2]. However, before testing,
the balloon or mechanical devices must by installed to apply the appropriate load which leads to low
efficiency [2,3]. Compared with the suction cup and balloon method, vibration testing methods have
greatly improved the detection process. For example, Chen et al. [4] detected and evaluated debonding
defects using an FFT power spectrum method. The contribution of the power spectrum peak to the
total power was used as an evaluation indicator of the length of the debonding. Gu et al. [5] developed
a dynamic identification method for hidden frame supported glass curtain walls, and the vibration
transmissibility was used as a damage identification index based on the Hilbert-Huang transform
(HHT). Nevertheless, it is necessary to impose an external impact on the glass curtain wall using the
vibration testing method. Once the glass curtain wall has been defective, the glass curtain wall is likely
to fall off during the detection process.

At the same time, various ultrasonic testing methods have been proposed for detecting debonding
defects, such as ultrasonic scanning and ultrasonic guided waves. For example, Liu et al. [6] detected
the debonding defects in thermal barrier coatings based on ultrasonic scanning technology, and the
amplitude and phase information were used to evaluate the debonding defect. Pärnänen et al. [7]
evaluated the debonding and impact damage by ultrasonic scanning to investigate the relationship
between debonding defects and the metal’s surface morphology. Park et al. [8] established a noncontact
test system through laser ultrasonic scanning technology to test debonding defects in composite
structures. However, the ultrasonic scanning method is highly dependent on the testing equipment
to realize the scanning function. Li et al. [9] proposed an ultrasonic guided waves test method for
concrete beams, and successfully tested and evaluated the debonding defects. Wu et al. [10] developed
an algorithm based on the smoothed pseudo Wigner-Ville distribution and time-frequency analysis to
detect and locate the debonding defect. Mustapha et al. [11,12] studied the sensitivity to debonding
defects in sandwich composite structures under different frequency excitation based on ultrasonic
guided wave technology. Also, some papers have evaluated interfacial adhesion using the ultrasonic
guided waves method. For example, Reis et al. [13] detected the adhesive bond strength of laminated
safety glass through energy velocity and attenuation of guided waves. Castaings [14] studied the
interfacial adhesive properties of the adhesive between two metallic plates using SH guided waves.
Cho et al. [15] characterized interfacial adhesive strength of brazed samples using lamb waves.

In general, the ultrasonic guided wave method has been effective for detecting large defects, but
there are few studies on small debonding defects, except for some simulation studies [16]. In the
meantime, the nonlinear ultrasonic guided wave method has attracted significant attention because it
has the advantage of sensitivity to small defects. Nonlinear ultrasonic guided wave methods can be
divided into the nonlinear harmonic and the nonlinear ultrasonic modulation method. For example,
Su [17] established a nonlinear ultrasonic testing system for the debonding detection of magnesium
alloys, and the results showed that the nonlinear coefficient was increased with the length of the
debonding. Yelve et al. [18] found that higher harmonics may be influenced by piezoelectric wafer
debonding which leads to incorrect results in damage detection using nonlinear harmonic techniques.
Guha et al. [19] analyzed the effect of different frequency on nonlinearity, which was caused by the
debonding between transducers and the aluminum plate. Scarselli et al. [20] evaluated the quality of
adhesion using nonlinear elastic wave spectroscopy, and nonlinear metrics was used to quantize the
nonlinearity based on higher order harmonics. Ciampa et al. [21] developed a nonlinear detection
method based on bispectral analysis which could evaluate the cracks and delaminations. However,
the detection result of nonlinear harmonic method is also affected by the instruments’ nonlinearity,
which means the results may not exactly reflect the state of the defects (contact nonlinearity). Unlike
the nonlinear harmonic method, the detection result of the nonlinear ultrasonic modulation method
is not affected by the instruments’ nonlinearity [22,23]. For instance, Liu et al. [24] proposed a laser
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nonlinear ultrasonic modulation testing system and successfully detected the debonding damage in a
wind turbine blade. Mandal et al. [25] analyzed the effect of different debonding lengths on a stiffened
aluminum through nonlinear wave modulation spectroscopy method. It was found that the relative
amplitude of the side-bands with respect to the carrier frequency amplitude is directly proportional
to the debonding lengths. The debonding size in the above literature exceeds 200 mm, and in most
related research work, it was more than 10 mm [9,26].

Additionally, a considerable amount of research has studied the detection of crack defects, which
are usually small, using the nonlinear ultrasonic modulation method, and it has been proved to be
effective. For example, Parsons et al. [27] studied the detection effect of nonlinear ultrasonic modulation
method with low-frequency excitation. Goursole et al. [28] combined nonlinear ultrasonic modulation
and time reversal methods to detect metal crack defects. Ryles et al. [29] detected small fatigue cracks
using nonlinear ultrasonic modulation and lamb waves. Hu et al. [30] studied the instantaneous
characteristics of nonlinear ultrasonic modulation for metallic structures. Despite those developments
in the nonlinear ultrasonic modulation testing method, there is still little research on debonding
detection in glass materials, especially for small size debonding defects.

Piezoceramics, especially the lead zirconate titanate (PZT) have been widely used as the transducer
in ultrasonic testing technology because of their excellent actuation [31–34] and sensing [35–38]
performance, and high bandwidth [39,40]. Nieuwenhuis et al. [41] investigated the operability of PZT
as the excitation and receive transducers through finite element simulation and a set of experiments.
Rajagopalan et al. [42] detected and located the damage of isotropic structures using a PZT array
which could excite and receive signals. Ruan et al. [43] successfully detected the damage on wind
turbine blades using piezoceramic transducers. Dziendzikowski et al. [44] realized structural health
monitoring of composites using a set of PZT transducers and compared the test performance of
surface mounted and embedded transducers. Zhu et al. [45] achieved rapid detection and location
determination of pipeline leakage using PZT sensors as the transducer. PZT wafers still maintain good
performance in glass material [46,47]. Therefore, PZT wafers were used as the actuation and sensing
transducer in this paper.

In hidden frame supported glass curtain walls, the debonding defect is the main failure mode,
often causing the glass in the curtain wall to fall off. It is necessary to develop an effective testing
method for the debonding detection of the hidden frame supported glass curtain wall. Ultrasonic
modulation detection method achieves damage detection by exciting two waves with different
frequencies. The component with the new frequency is produced by two different frequency waves
interacting with the damage, which means the detection result is mainly related to the contact
nonlinearity caused by the damage. At present, the debonding size investigated in most of the
related research is large, and there is little research on debonding detection for glass materials using
nonlinear ultrasonic modulation method [13–18]. In this paper, the nonlinear ultrasonic modulation
testing method is used to detect small debonding defects in hidden frame supported glass curtain
walls. This paper is organized as follows. First, it introduces the testing principle of the nonlinear
ultrasonic modulation and the feature extraction method. Second, it describes the experimental setup.
Then, the experimental results are presented, and the feasibility of the nonlinear ultrasonic modulation
is demonstrated. Finally, the paper concludes with a brief summary.

2. Mechanism and Methodology

2.1. Theoretical Fundamental of the Nonlinear Ultrasonic Modulation

When ultrasonic waves propagate in a nonlinear medium, there will be distortion and deformation
to the ultrasonic waves. When a single wave is propagated in the nonlinear medium, there will be
harmonics. When multiple waves are propagated in the nonlinear medium, there will be modulation
between different frequencies. The ultrasonic modulation detection method achieves damage detection
using the modulation phenomena between two excited waves and the medium. If there is a defect
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in the medium and two waves get together at the defect, there will be new frequency components.
The schematic illustration is shown in Figure 1. TH and TL are ultrasonic transducers that excite an
ultrasonic wave with different frequencies. R is the reception transducer. f1 and f2 are the frequency
of the excited two ultrasonic waves, respectively.Sensors 2018, 18, x FOR PEER REVIEW  4 of 18 
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Figure 1. Schematic illustration of nonlinear modulation testing method. 
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Figure 1. Schematic illustration of nonlinear modulation testing method.

In nonlinear acoustics, the relationship between stress and strain can be described by Hook’s law.
On the plate, the one-dimensional nonlinear elastic wave equation can be described as [48]:

∂2u
∂t2 − c2 ∂2u

∂x2 = c2β
∂u
∂x

∂2u
∂x2 , (1)

where u is the vibration displacement of particle, x is the distance of wave propagation, c is wave
velocity, β is the second-order nonlinear coefficient.

According to wave theory, the solution of the nonlinear Equation (1) can be written as:

u(x, t) = u(0) + βu(1), (2)

where u(1) is the displacement caused by nonlinear fluctuations. Assuming the nonlinear displacement
is proportional to the propagation distance, u(1) can be written as:

u(1) = xh(τ), (3)

where τ = t− x/c, h(τ) is an unknown function.
When two waves with different frequency are excitation signals and propagate through the plate,

as shown in Equation (4),
u(0)(x, t) = A01 cos(ω1t) + A02 cos(ω2t), (4)

Then, substituting Equation (4) into Equation (3) results in

u(x, t) = u(0) + βu(1)

= A01 cos ω1t + A02 cos ω2t + xβ{− A01
2k2

1
8 cos(2ω1)t

− A02
2k2

2
8 cos(2ω2)t +

A01 A02k1k2
4 [cos(ω1 −ω2)t− cos(ω1 + ω2)t]}

, (5)

where ω1 and ω2 are the frequency of the excitation signals, k1 and k2 are the wavenumbers of the
excitation signals.

This is abbreviated as:

u(x, t) = A01 cos ω1t + A02 cos ω2t + A11 cos(2ω1)t + A12 cos(2ω2)t
+A− cos(ω1 −ω2)t− A+ cos(ω1 + ω2)t

, (6)
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where A11 = −xβ
A01

2k2
1

8 , A12 = −xβ
A02

2k2
2

8 , A− = xβ A01 A02k1k2
4 , A+ = xβ A01 A02k1k2

4 .
In the frequency domain, from Equation (6), the response function includes not only the

fundamental frequency ω1 and ω2, but also the harmonics frequency 2ω1 and 2ω2, and the side-lobe
frequency ω1 −ω2 and ω1 + ω2.

From Equation (6), the nonlinear coefficient can be expressed as:{
β− = A−

A01 A02

β+ = A+
A01 A02

, (7)

where β− is the nonlinear coefficient of difference frequency and β+ is the nonlinear coefficient of the
sum frequency.

In the damage detection of the hidden frame supported glass curtain wall, the amplitude of the
side-lobe components increases with the nonlinear coefficient. Therefore, nonlinear coefficients can be
used to evaluate the damage of the hidden frame supported glass curtain wall.

2.2. Empirical Mode Decomposition (EMD)

Empirical mode decomposition (EMD) is an adaptive signal decomposition method, which is
widely used in non-stationary signal processing. EMD decomposes the signal according to its own
time-scale features without any preset basis functions. It decomposes complex signals into Intrinsic
Mode Function (IMF) which includes the local characteristic of different time scales. The essence of
EMD is to stabilize the original non-stationary signal [49].

Any signal can be decomposed into the sum of finite IMF by EMD. IMF must satisfy the following
two conditions. First, the difference between the number of extrema and zero crossings is less than or
equal to 1. Second, the mean value of the envelope determined by local maxima and local minima
must be equal to zero. The IMF meeting the above two conditions can be considered as a single
component and stable signal [50]. For a non-stationary multi-component signal, the specific process of
decomposing it into a series of IMF is as follows.

Step 1: For a given signal x(t), the local maxima and local minima are computed and upper and
lower envelop are obtained by connected them using a cubic spline respectively.

Step 2: The mean of the upper and lower envelop m1(t) is calculated and is subtracted from the
original signal x(t).

h1(t) = x(t)−m1(t), (8)

If h1(t) satisfies the conditions of the IMF definition, then h1(t) is the first IMF component, and
let h1 = h1(t). Otherwise, x(t) is replaced by h1(t) and the previous process is repeated k times until
the IMF conditions are met and let h1 = h1,k(t).

h1,j+1(t) = h1,j(t)−m1,j+1(t), j = 1, 2, . . . , k, (9)

Step 3: After the first IMF is found, the residue is calculated by subtracted h1 from the x(t).

r1 = x(t)− h1, (10)

Step 4: Take r1 as the new data, repeat step 1, step 2 and step 3, and get the nth IMF component
hn and nth residue rn, until the residue rn become too small or rn(t), a monotonic function.

Step 5: The original signal x(t) can be expressed as:

x(t) =
n

∑
i=1

hi + rn, (11)
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2.3. Discrete Fourier Transform (DFT)

Nonlinear coefficients can reflect the nonlinearity of the material, thus reflecting the damage
severity. In the debonding detection in the hidden frame supported glass curtain wall using nonlinear
ultrasonic modulation, the received signal contains excitation frequency, harmonic and side-lobe
frequency. Therefore, Discrete Fourier Transform (DFT) was used to convert received time-domain
signals into frequency-domain signals.

For a limited length series x(n), 0 ≤ n ≤ N − 1, DFT is defined as:

X(k) = DFT[x(n)] =


N−1
∑

n=0
x(n)Wkn

N , 0 ≤ k ≤ N − 1

0, else
, (12)

where WN = e−i(2π/N), n and k are discrete variable. It can be seen that the result after DFT is still a
limited length series.

In Equation (12), X(k) is a complex number. The amplitude spectrum was used to extract
nonlinear components.

Ak = A(k) = |X(k)|, (13)

The amplitude integral of frequency band was used to characterize the amplitude feature.

Ai =
∫ k2

k1

A(k)dk, (14)

2.4. Debonding Evaluation Using Nonlinear Ultrasonic Modulation Method

Generally, there is a lot of noise in the received signal, therefore signal preprocessing such as
high-pass filtering is needed. The debonding evaluation process of the hidden frame supported glass
curtain wall is shown in Figure 2.

Step 1 The sweep experiment of the hidden frame supported glass curtain wall was carried out.
Then the frequency response characteristics was obtained.

Step 2 The test frequency of the ultrasonic modulation experiment was determined according to the
frequency response characteristics.

Step 3 The experimental platform and test was established using ultrasonic modulation and
nonlinear harmonic methods.

Step 4 The receive signal was collected 10 times to reduce the experimental error, and then put
through the high-pass filter to reduce the noise.

Step 5 The IMF components were obtained after EMD. According to the IMF energy, the IMF component
containing the nonlinear damage information was selected as the characteristics component.

Step 6 The nonlinear coefficient of hidden frame supported glass curtain wall was calculated based
on the DFT.

Step 7 The results were compared with the ultrasonic nonlinear harmonics method to verify the
feasibility of the method.



Sensors 2018, 18, 2094 7 of 18
Sensors 2018, 18, x FOR PEER REVIEW  7 of 18 

 

Excite swept-frequency 
signal

Determine test frequency

Signal preprocessing

Extracting feature 
component

DFT

Calculating 
nonlinear coefficient
Ultrasonic modulation

Comparison with nonlinear 
harmonics method

Conclusion

EMD

 
Figure 2. The debonding evaluation process of the hidden frame supported glass curtain wall. 

3. Experimental Setup 

The nonlinear ultrasonic modulation testing system was established based on the theoretical 
research. The experimental system consisted of an Agilent 33522B function generator (Agilent 
Technologies, Ltd., Palo Alto, CA, USA), TREK2100HF amplifier (Trek, Inc., New York, NY, USA), 
HFVA-41 amplifier (Nanjing Buddha Science and Technology Industry Co., Ltd., Nanjing, China), 
and a PCI-20614 data acquisition card (Sichuan Tupu TT & C Technology Co., Ltd., Chengdu, China) 
embedded in the host, the high-performance PC. The physical diagram of the experimental system is 
shown in Figure 3. 

High-performance PC

Amplifier 1

Function 
generator

Amplifier 2

 
Figure 3. Experimental setup. 

Figure 2. The debonding evaluation process of the hidden frame supported glass curtain wall.

3. Experimental Setup

The nonlinear ultrasonic modulation testing system was established based on the theoretical
research. The experimental system consisted of an Agilent 33522B function generator (Agilent
Technologies, Ltd., Palo Alto, CA, USA), TREK2100HF amplifier (Trek, Inc., New York, NY, USA),
HFVA-41 amplifier (Nanjing Buddha Science and Technology Industry Co., Ltd., Nanjing, China),
and a PCI-20614 data acquisition card (Sichuan Tupu TT & C Technology Co., Ltd., Chengdu, China)
embedded in the host, the high-performance PC. The physical diagram of the experimental system is
shown in Figure 3.
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During the experiment, two sine waves with different frequency were excited at the same time
by the function generator. The generated two ultrasonic waves were amplified and were obtained
through amplifier 1 and amplifier 2. Then, the amplified signals drive the transducer TH and TL to
produce a sufficiently strong ultrasonic wave. The generated two ultrasonic waves propagate in the
medium, and if there is a defect, the nonlinear modulation phenomenon appears when two waves
meet at the defect. The transducer R receives the signal and it is transmitted to the high-performance
PC by a data acquisition card. The detailed experimental block diagram is shown in Figure 4.
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Figure 4. The experimental block diagram of the nonlinear ultrasonic modulation testing method.

The experimental object is a hidden frame supported glass curtain wall measuring 200 mm ×
200 mm × 24 mm. It is mainly composed of two glass plates and an adhesive structure. The two glass
plates are glued together with a structural silicone sealant. Three PZTs were bonded on the side of the
glass plate to excite and receive the signals. The sample of the hidden frame supported glass curtain
wall with PZTs is shown in Figure 5. It should be noted that three PZTs were distributed on the same
line. TH and TL are excitation transducers, and R is the reception transducer. The resonant frequency
of the PZTs is 2 MHz. The diameter is 8 mm and the thickness is 1 mm. The PZT transducers were
bonded to the glass plate using Leaftop 9903 AB glue. Leaftop 9903 AB glue has high shear and impact
resistance which ensures good bonding between the PZT transducers and the glass plate. The distance
between TH and TL is 20 mm, and the distance between TL and R is 100 mm.
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4. Experiments and Analyses

4.1. Experimental Process

The nonlinear ultrasonic modulation method is sensitive to contact nonlinearity which is mainly
caused by damage in material. However, the nonlinear effect cannot be completely zero for undamaged
material. Even for undamaged material, there will inevitably be a small amount of contact nonlinearity.
On the other hand, small debonding defects are the main research object. Therefore, to obtain a
stronger nonlinear effect and better detection results, a sweep experiment was carried out to obtain a
stronger response. The range of the sweep signal is from 0 kHz to 500 kHz. The sweep signal lasts for
1 s to make sure the response is sufficient, so that the obtained glass curtain wall frequency response
will be more accurate. Then, the transducers TH and TL are excited at the same time, and received
by transducer R. The sweep signal was a sine wave with an amplitude of 3 V. The sweep results are
shown in Figure 6.
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From Figure 6, the frequency response was more obvious from 100 kHz to 350 kHz, and the
amplitude of frequency response is the strongest at 278.2 kHz. The side-lobe frequency contains sum
frequency and difference frequency which can both be used to calculate the nonlinear coefficients
by Equation (7). Therefore, according to the sweep result, the frequencies of the excitation signal
were 108.6 kHz and 169.6 kHz, and the sum frequency was 278.2 kHz to acquire a strong response.
The amplitude of both the two excited sine signals was 3 V and lasted for 0.1 s. After the amplifier,
the signal was amplified 50 times to drive the transducer TH and TL. The sampling rate of the data
acquisition card is 2 MHz. The debonding defects were made by separating the glass plate from the
structural silicone sealant with a slender iron sheet. The slender iron sheet was carefully inserted into
the contact interface between the silicone structural adhesive and the glass plate, and then carefully
pulled out. Because the silicone structural adhesive is elastic, it will almost cling to the glass plate
when the slender iron sheet is pulled out. The thickness of the debonding defect can be ignored. Once a
group of experiments were completed, the length of the debonding was increased and the next group
of experiments were carried out. Five debonding states (0 mm, 3 mm, 6 mm, 9 mm, and 12 mm) were
investigated. Figure 7 shows the artificial defect with a 6 mm debonding. Although the transducer TH
and TL was close to the boundary, the nonlinear ultrasonic modulation method was mainly analyzed
in frequency-domain. Therefore, if the signal contains the sum frequency information, the reflected
wave also contains the sum frequency information, which has little effect on the result of the frequency
domain. In data acquisition, the reception signal was collected 10 times to reduce random errors and
increase the reliability of the measurement.
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Figure 7. Artificial defect with 6 mm debonding.

The received modulation signal under undamaged conditions is shown in Figure 8. The amplitude
of the side-lobe is very small compared with the fundamental signal. From the enlarged detail,
it can be seen that the received signal contains the fundamental frequency, harmonics, and side-lobe.
The amplitude of the harmonics was generally larger than the side-lobe, because the nonlinear
harmonics not only include the contact nonlinearity but also the instrument nonlinearity. In addition,
since the frequency response is the strongest at the sum frequency, the amplitude of sum frequency is
larger than the amplitude of difference frequency.
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4.2. Debonding Damage Evaluation Using Nonlinear Ultrasonic Modulation

In the preprocessing, a high-pass filter was used to remove noise from the collected signals.
The cutoff frequency of the high-pass filter was 50 kHz, and the gain of the high-pass filter was 1.
Then, the signals were decomposed into IMF components of different time scale and residue by EMD.
In total, 13 IMF components and residue were obtained. The energy of each IMF component was
calculated, and this is shown in Figure 9. It was found that the energy is concentrated in IMF1 and
IMF2. The energy of IMF1 and IMF2 accounts for 99.89% of the total energy. In other words, IMF1 and
IMF2 contain the main feature information. Therefore, IMF1 and IMF2 were used to reconstruct the
signal. The decomposed IMF1 and IMF2 components of the no damage signal are shown in Figure 10.
Taking into account the large amount of data, the IMF1 and IMF2 were locally amplified.

Then, the DFT was used to get the frequency-domain signal of the reconstructed signal, and the
nonlinear coefficients under different debonding states were calculated using Equations (7) and (14).
The variation curve of the nonlinear coefficient is shown in Figure 11. It can be seen that even if
there is no damage, there will still be less nonlinearity, but the nonlinear coefficient is small. When a
debonding defect occurs, the nonlinear coefficient increases gradually, but the growth rate of the
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nonlinear coefficient is different with the increase in the size of the debonding defect. When the
debonding defect is small, the growth rate is small, for example, when the debonding length is 3 mm
the minimum growth rate is 18.64%. When the debonding defect is large, the growth rate is also large,
for example, when the debonding length is 9 mm, the growth rate reaches the maximum of 64.77%.
When the debonding defect is 6 mm and 12 mm, the growth rate is more than 25%. The difference in
the nonlinear coefficient between a 3 mm debonding defect and no damage is very small. Debonding
detection with a small defect size is a challenge, and the accuracy of debonding defect evaluation
decreases with the decrease in the debonding size. In addition, the nonlinear coefficient reflects the
nonlinear effect that exists in the material. The ultrasonic modulation detection method is mainly
sensitive to the contact nonlinearity which is related to the debonding states. However, in the actual
detection, material with no damage also has weak contact nonlinearity. Therefore, it is necessary to
set a baseline for the nonlinear coefficient. When the nonlinear coefficient exceeds the baseline, it is
considered that there is a debonding defect, otherwise it is an unavoidable contact nonlinearity in
the material. Figure 11 reflects the relationship between the nonlinear coefficient and the debonding
state, and it is clear that the nonlinear coefficient increases with the debonding length. The nonlinear
ultrasonic modulation method can be used to detect debonding defects in the hidden frame supported
glass curtain wall.Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 
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The ultrasonic nonlinear harmonics method was also applied to detect the debonding defect and
compared with the nonlinear ultrasonic modulation. The frequencies of the excitation signal were
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139.1 kHz and the frequency of the second harmonic was 278.2 kHz to acquire a strong response.
The signal processing of the nonlinear harmonics method was the same as the nonlinear ultrasonic
modulation method. The received signal was denoised by a high-pass filter, then decomposed into IMF
components by EMD, and the nonlinear coefficient was calculated after DFT. The variation curves of
the nonlinear coefficient using the nonlinear harmonics method are shown in Figure 12. The detection
result of the nonlinear harmonic method includes not only contact nonlinearity but also the instrument
nonlinearity. Therefore, the nonlinear coefficient of the nonlinear harmonics method was larger than
that of the nonlinear ultrasonic modulation method. Similar to the nonlinear modulation method,
the nonlinear coefficient increases with the debonding length. The growth is obvious except when
the debonding length is 9 mm. Because the amplitude of the nonlinear coefficient is large, the growth
rate is relatively small. The growth rate exceeds 25% only when the defect is 12 mm. The nonlinear
coefficient increased with the debonding length. In other words, the nonlinear harmonics method can
still detect debonding defects in hidden frame supported glass curtain walls.Sensors 2018, 18, x FOR PEER REVIEW  12 of 18 
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To further compare the nonlinear ultrasonic method and nonlinear harmonics, normalization
was performed, and the mean squared error (MSE) was used to evaluate the result. The MSE of
the two methods are shown in Table 1. The MSE of both methods was small. It also proves the
feasibility of both methods for debonding detection. The MSE of nonlinear ultrasonic modulation are
smaller than that of nonlinear harmonics. The MSE of the nonlinear ultrasonic modulation method has
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been improved by 41%, thus, the nonlinear ultrasonic modulation method is more accurate than the
nonlinear harmonics method.

Table 1. MSE of nonlinear ultrasonic modulation and nonlinear harmonics.

Detection Method MSE

Nonlinear ultrasonic modulation 0.0974
Nonlinear harmonics 0.1660

4.3. Debonding Detection Under Different Temperatures

The working environment of the hidden frame supported glass curtain wall varies, in particular,
the temperature varies greatly in different places and time. Therefore, detection using nonlinear
ultrasonic modulation at different temperatures was studied. The low and high temperature
environment were controlled by refrigerator and thermal excitation devices. An infrared thermometer
was used to verify temperature. The thermal excitation device was independently developed by the
authors’ [51]. The model of the refrigerator is Haier BC/BD-202HT (Haier, Qingdao, China). The model
of the infrared thermometer is Victor 307C (Xian Beicheng electronic limited liability company, Xian,
China). The variation curves of the nonlinear coefficient under different temperatures are shown in
Figure 13. The detection results of the test at different temperatures of the same debonding state were
different. In a high temperature state, the nonlinear coefficient values were generally higher which
caused larger growth with the increase in debonding length. The growth rate is generally over 13%,
for example, when the debonding length is 9 mm, the growth rate reaches a maximum of 125.39%.
When the temperature is low, the growth rate is basically over 12% except when the debonding length
is 3 mm, it is only 1.74%. Because of the influence of temperature, the nonlinear coefficient changes,
but it still reflects the defects in the material.
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To compare the differences at different temperatures, normalization was carried out. After
normalization, the change trend of the nonlinear coefficient at different temperatures will more
obvious, and this is shown in Figure 14. It can be seen that the change trend for different temperatures
was similar. The nonlinear coefficient increases slowly when the debonding length is small and
increases rapidly when the debonding length is larger at different temperatures. The growth rate of
the normalized nonlinear coefficient was closer at different temperatures, which means the nonlinear
coefficient still reflects the debonding defect at different temperatures. Although the temperature has
an impact on the test results, debonding detection at different temperatures is still reliable.
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4.4. Debonding Detection Under Different Impact

As an external enclosure and decorative structure of high-rise buildings, the vibration caused by
wind load is also an important factor which may affect the detection result. The nonlinear ultrasonic
modulation method completed defect detection in the frequency-domain. The impact response
contains a very wide range of frequency components. The spectrum of the impact response was similar.
Therefore, to further verify the anti-interference of vibration using the nonlinear ultrasonic modulation
method, the detection effect under different single impacts were studied. The impact experiment was
carried out using a small plastic ball with a mass of 2.05 g when the debonding length was 12 mm.
In the experiment, the ball knocked the glass curtain wall at different heights to simulate various
impacts. The impact location was between the excitation and the receive transducer, directly above
the debonding defect to maximize the interference. The descent heights of the ball were 100 mm,
200 mm, 300 mm, 400 mm and 500 mm respectively. The received impact signal of 500 mm was
shown in Figure 15. Because of the large amount of data, the local details of the impact response in
the time-domain are shown in Figure 15a. In the time-domain, the maximum response of the ball
impact was obviously greater than the sine signal of the excitation. However, in the frequency-domain,
there was no obvious changes. This is because the energy of the impact in the frequency-domain
was small and dispersive compared with the excitation frequency and the sum frequency. After the
calculation, the received impact signal at different descent height is shown in Figure 16. It can be seen
that the nonlinear coefficient with or without ball impact is very close. According to Equation (7),
the nonlinear coefficient is mainly related to the amplitude of two excitation frequencies and sum
frequency. Therefore, as long as the frequency of the vibration interference is not the same as the
excitation frequency and the sum frequency, the vibration interference has little influence on the
detection result. The nonlinear ultrasonic modulation method has anti-interference properties for
vibration to a certain extent.
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5. Conclusions

In this paper, the nonlinear ultrasonic modulation method was developed for debonding detection
in hidden frame supported glass curtain walls. A series of experiments were carried out to verify the
feasibility and effectiveness of the nonlinear ultrasonic modulation method. First, a nonlinear ultrasonic
modulation testing system was established. The sweep signal experiment was performed to guide the
determination of the excitation frequency and obtain the strongest modulation signal. The detection
results from the nonlinear ultrasonic modulation method showed that the nonlinear coefficient
increases with the debonding length. The nonlinear ultrasonic modulation method can successfully
detect debonding defects of hidden frame supported glass curtain walls. Furthermore, the nonlinear
harmonics method was examined and compared with the nonlinear ultrasonic modulation method.
Normalization and MSE were adopted to compare the two methods. The MSE of the nonlinear
ultrasonic modulation method was improved by 41% compared with the nonlinear harmonics method.
In addition, to prove the anti-interference performance of the nonlinear ultrasonic modulation method,
the detection effect at different temperatures and impact was studied. The results showed that although
the nonlinear coefficient values were different at different temperatures, the change trend is consistent
with the debonding length at different temperatures. The interference of impact vibration does not
significantly affect the detection result.

In summary, the nonlinear ultrasonic modulation method can be used to detect debonding defects
in hidden frame supported glass curtain walls. The detection of debonding defects can be realized at
different temperatures. The results of this method include only contact nonlinearity, and the results
were more accurate. The method lays a foundation for debonding detection in glass curtain walls
using nonlinear ultrasonic testing method. However, the detection accuracy of debonding defects
could be further improved. The next step is to study the localization and imaging of the debonding
defect in glass curtain walls.
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