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Abstract: In this paper, we present a complete, flexible and safe convex-optimization-based method
to solve speed planning problems over a fixed path for autonomous driving in both static and
dynamic environments. Our contributions are five fold. First, we summarize the most common
constraints raised in various autonomous driving scenarios as the requirements for speed planner
developments and metrics to measure the capacity of existing speed planners roughly for autonomous
driving. Second, we introduce a more general, flexible and complete speed planning mathematical
model including all the summarized constraints compared to the state-of-the-art speed planners,
which addresses limitations of existing methods and is able to provide smooth, safety-guaranteed,
dynamic-feasible, and time-efficient speed profiles. Third, we emphasize comfort while guaranteeing
fundamental motion safety without sacrificing the mobility of cars by treating the comfort box
constraint as a semi-hard constraint in optimization via slack variables and penalty functions, which
distinguishes our method from existing ones. Fourth, we demonstrate that our problem preserves
convexity with the added constraints, thus global optimality of solutions is guaranteed. Fifth,
we showcase how our formulation can be used in various autonomous driving scenarios by providing
several challenging case studies in both static and dynamic environments. A range of numerical
experiments and challenging realistic speed planning case studies have depicted that the proposed
method outperforms existing speed planners for autonomous driving in terms of constraint type
covered, optimality, safety, mobility and flexibility.

Keywords: speed planning; convex optimisation; autonomous driving; friction circle; driving safety;
dynamic obstacle avoidance; ride comfort; mobility

1. Introduction

Speed planning plays an important role in guaranteeing the ride comfort and safety in autonomous
driving applications. All different kind of scenarios together raises distinct requirements and
consequently different constraint types for speed planning problem formulations, which makes it
challenging to solve.

In most of urban driving scenarios, autonomous driving systems prefer smooth speed profiles for
the sake of ride comfort. These scenarios require the speed planner to consider the maximum lateral
and longitudinal accelerations and decelerations (comfort box (CB) constraints), jerk (smoothness (S))
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to manage smooth transitions between states of cars from time to time. Such a smooth speed profile
with these bounds does not only exhibit energy-saving behaviors of autonomous cars but also presents
a decent reference that is easy to track for a speed controller, which results in a pleased ride experience
for passengers in the end.

There are some scenarios that need the speed planner to exploit the full mobility capacity of cars
such as driving on the limits to pursue high speeds or dealing with emergencies [1]. These applications
raise a common hard constraint called friction circle (FC) constraint that is related to vehicle dynamics
and road conditions and a soft constraint called time efficiency (TE). Both constraints are closely related
since the time efficiency objective will push a car to the limits to achieve the minimum travelling time,
which may frequently activate the friction circle hard constraint during planning. A typical example is
that cars race in a prescribed curvy track for speed. In academia, a large body of research is carried out
to address the minimum-time speed planning problem over a fixed path and the outstanding ones of
them are [2,3], which inspire our work in this paper.

Although constantly pursuing high speeds is not the goal of autonomous driving, varying weather
conditions may have an impact on the road quality in such a way as to dramatically reduce the friction
coefficients and in consequence the maximum safe velocity limits for vehicles [4]. Thanks to the rapid
development of mature sensing, perception and scene understanding system relying on computer
vision and machine learning techniques for autonomous driving, high level information such as
weather conditions, road surface categories, together with vehicle state information, can be delivered
from on-board perception systems to road friction estimators [5,6]. The environment-dependent,
varying friction coefficient becomes available to speed or motion planners online, which can be used
to generate safety-guaranteed speed profiles. Above applications all require the speed planning to
consider the friction circle constraints in the problem formulation explicitly. Unfortunately, most
of existing speed planner [7–11] does not take it into consideration. They conservatively search for
solutions in a subset of the friction circle region, which sacrifices the mobility for safety. In addition,
speed planning is oftentimes the last action to guarantee safety by regulating the speed to stop the
car in front of obstacles when there is no room to adjust the shape of the path to avoid collision in
emergencies. This imposes a zero speed constraint at the end of the path, which is called boundary
condition (BC) constraints in this paper. The lack of this kind of constraint in [3,11] produces flaws in
safety in their planners.

In dynamic environments, speed planning also makes a difference in terms of dynamic obstacle
avoidance. Regulating speed along the fixed path to avoid dynamic obstacles rather than swerving the
path to deal with the dynamic obstacles (such as pedestrians, cyclists who are crossing lanes, changing
lanes or turning in the intersection) may be thought of as a smart, energy-saving, and risk-free behavior
in certain situations. It also should be noted that not all the cases with dynamic obstacles can be
overcome using this method. It works under the the assumption that the path has been well predefined
using some sampling techniques. Given the prescribed path, overtaking a slow front car using an
opposite lane [11] imposes one or several time window (TW) constraints for speed planning in time
domain at the conflict region with other road participants along the path. Merging from a freeway
entrance ramp to a lane with an oncoming high-speed vehicle on expressway [12,13] does not only
bring in a time window constraint but also boundary conditions such as a desired final speed and
acceleration constraints to keep the pace with other traffic participants. These cases require that the
car reaches a certain point on the path in the time window to avoid collision. However, most of the
existing methods [3,4,7,8,14] ignore these constraints, which make their methods applicable only in
static environments.

From the task perspective, the speed limit traffic sign along a road enforces a speed limit on
a certain segment of a path, which is known as a path constraint (PC), that is, a hard constraint,
in optimal control domain. In the case that desired speed profile is given by high level modules such
as behavior planners or task planners, the integral of deviations (IoD) between planned speeds and
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desired speeds over the path is used as an objective to optimized to accomplish certain goals, which is
a soft constraint.

All aforementioned constraints are summarized and categorized by us in Table 1, as requirements
for the speed planning module to meet and metrics to identify the capacity of speed planners. Please
note that we introduce a “semi-hard” constraint type to describe the unique characters of comfort
box (CB) constraints. By “semi-hard”, we mean this kind of constraints should be satisfied in the first
place to achieve high performance when possible and can be violated to meet fundamental motion
safety requirements while penalizing violations. This is different from soft constraints that treat all the
solution space equally by assigning the same coefficients to the soft constraints.

Table 1. Constraints for speed planning.

Category Constraint Name Description Property

Soft Constraints
Smoothness (S) continuity of speed, acceleration and jerk over the path performance

Time Efficiency (TE) time used by travelling along the path performance
IoD integral of speed deviations performance

Hard Constraints

Friction Circle (FC) total force should be within the friction circle safety
Path Constraints (PC) speed limits on path segments safety
Time Window (TW) time window to reach a certain point on path safety

Boundary Condition (BC) speed at the end of the path safety & performance

Semi-hard Constraints Comfort Box (CB) comfort acceleration and deceleration bounds performance

A safety-guaranteed speed planner should be able to generate a solution satisfying at least all
the hard constraints (safety) in Table 1. A mature speed planner should cover all the constraints that
include soft and hard ones.

By taking some additional steps beyond the seminal work done by [2,3], we present a general
speed planning framework specifically for autonomous driving that is able to handle a wide range
of different scenarios using convex optimization subject to a large collection of relevant constraints.
Our contributions are as follows:

• We summarize the most common constraints raised in various autonomous driving scenarios as
the requirements for speed planner design and metrics to measure the capacity of the existing speed
planners roughly for autonomous driving. We clarify which constraints need to be addressed by
speed planners to guarantee safety in general.

• In light of these requirements and metrics, we present a more general, flexible and complete speed
planning mathematical model including friction circle, dynamics, smoothness, time efficiency,
time window, ride comfort, IoD, path and boundary conditions constraints compared to similar
methods explained in [3,11]. We addressed the limitations of the method of Lipp et al. [3] by
introducing a pseudo jerk objective in longitudinal dimension to improve smoothness, adding
time window constraints at certain point of the path to avoid dynamics obstacles, capping a path
constraint (most-likely non-smooth) on speed decision variables to deal with task constraints like
speed limits, imposing a boundary condition at the end point of the path to guarantee safety for
precise stop or merging scenarios. Compared to the approach of Liu et al. [11], our formulation
optimizes the time efficiency directly while still staying inside of the friction circle, which ensures
our method exploits the full acceleration capacity of the vehicle when necessary.

• We introduce a semi-hard constraint concept to describe unique characters of the comfort box
constraints and implement this kind of constraints using slack variables and penalty functions,
which emphasizes comfort while guaranteeing fundamental motion safety without sacrificing
the mobility of cars. To the best of our knowledge, none of the existing methods handle these
constraints like ours. In contrast, Refs. [7–11] regarded comfort box constraints as hard constraints,
which dramatically reduces the solution space and in consequence limits the mobility of cars.

• We demonstrate that our problem still preserves convexity with the added constraints, and hence,
that the global optimality is guaranteed. This means our problem can be solved using
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state-of-the-art convex optimization solvers efficiently as well. We also provide some evidence to
prove that our solution is able to keep consistent when the boundary conditions encounter some
disturbances, which means only the part of results needed to be adjusted will be regulated due to
the global optimality. This may benefit the track performance of speed controllers by providing a
relative stable reference. It is not the case for these methods that solve the speed planning problem
using local optimization techniques like [11]. A small change of boundary conditions or initial
guess may result in a totally different solution due to local minimas in their problem.

• We showcase how our formulation can be used in various autonomous driving scenarios by
providing several challenging case studies solved in our framework, such as safe stop on a curvy
road with different entry speeds, dealing with jaywalking in two different ways and merging
from a freeway entrance ramp to expressways with safety guaranteed.

This paper is organized as follows. Section 2 reviews the featured speed planning methods for
autonomous driving. Section 3 formulates the problem for speed planning along a fixed path by
considering different constraints. Section 4 describes the implementation details. Section 5 shows a
rich set of numerical experiment results and Section 6 demonstrates three case studies with parameters
from real platforms. Section 7 draws conclusions.

2. Related Work

A rich literature exists on speed planning as a single research topic or part of motion planning
systems. Speed planning methods used in literature fall into two categories roughly: coupled speed
planning and decoupled speed planning. The former family exists in motion planning frameworks that
explore the spatial-temporal space simultaneously using optimization techniques [15–17] or search
algorithms [18,19]. Most of the time-parameterized trajectory planning based on optimal control
belong to this family. Due to the non-convexity of objectives, dynamics and other constraints, it is
already very hard to find a feasible path, let alone a time optimal trajectory. Finding a time optimal
path may take a lot of time. Thus it is impracticable to apply these methods to autonomous driving
applications due to run-time requirements. The latter family frequently appears in hierarchical motion
planning frameworks [9,20–22] that decouple motions by planning a path first then reconstructing a
speed profile along the path, or shows up as a standalone research with the assumption that the path
is known.

As we focus on the second class of the problem, we review these featured methods that are closely
related to ours, which generate speed profiles along a fixed path subject to certain constraints. We first
compare them with others in terms of constraints coverage, optimality, safety, flexibility, and capacity
without revealing details, as seen in Table 2. Most of the existing methods just provided a workable
speed profile rather than an optimal one for autonomous driving. None of them covered all the
constraints we list in Table 1.

Table 2. Capacity of different speed planning methods.

Method S TE IoD FC PC TW BC CB Optimality Safety Mobility Flexibility

Li et al. [7] X 7 7 7 X 7 X X 7 low low low
Gu et al. [8–10] X 7 7 7 X 7 X X 7 medium medium medium

Dakibay et al. [4] 7 7 7 X X 7 X 7 7 medium high low
Liu et al. [11] X X– X 7 7 X X– X local medium medium medium
Lipp et al. [3] 7 X 7 X 7 7 7 7 global low high low

Ours X X X X X X X X global high high high

Mobility: determined by how much mobility capacity of the vehicle the planner is able to leverage; Optimality:
determined by whether the planner is able to identify an optimal solution in terms of its objective; Flexibility:
determined by how many type of scenarios the planner is able to handle by only adjusting parameters without
changing underlying problem formulation or problem structures; Safety: determined by four aspects, ability to
stop in front of obstacles (BC) precisely, ability to deal with emergencies (FC), ability to impose task constraints like
speed limits, and ability to handle dynamic obstacles (TW).
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Li et al. [7] employed a trapezoidal speed profile with constant accelerations and decelerations
along the fixed path in a hierarchical trajectory planning framework and smoothed the ramp-up and
ramp-down part of trapezoidal speed profiles with 3rd-order polynomials, which is neither optimal
nor flexible. Besides, the acceleration value may exceed the threshold after smoothing. Thus very
conservative accelerations for the ramp-up and deceleration for the ramp-down were selected in their
work. Most of the constraints in Table 1 were not covered in their speed planner.

Gu et al. [8] developed a constraint-based speed planner that trimmed the reference speed
profile according to maximum velocity, lateral acceleration, longitudinal acceleration and deceleration.
Since smoothness of the speed profile is not taken into account, the excessive longitudinal jerk may
be observed [9]. They considered moving obstacles in speed planning in a reactive way based on
the distance between obstacles and the ego car to affect speed profiles in the following work [10]
and further enforced jerk limits on the speed profile in [9] for the sake of smoothness. As dynamics
constraints are considered separately in the form of comfort box constraints that its upper boundaries
need to be selected conservatively to prevent the total force from exceeding the friction force limits,
the capacity of driving on the limits to deal with emergencies or pursue time efficiency is highly
restricted. The difference of potential solution space of comfort box constraints and friction circle
constraints is shown in Figure 1. In addition, the reduction of friction coefficient in extreme weather
conditions will shrink the friction circle and the original fixed comfort constraints may create one or
several dangerous zones in solution space, as shown in Figure 1, which will inevitably cause potential
safety issues.

Figure 1. The comparison of solution spaces of the normal friction circle, the comfort box and the
shrinked friction circle constraints.

Dakibay et al. [4] exploited an aggressive speed planning method by numerically solving a
nonlinear differential equation (NDE) about friction circle constraints and capping the speed profile
with forward and reverse integration of accelerations results along the fixed path. Due to the
approximation of solution of NDE, the full capacity of car is not explored. None of their results
reaches exactly the friction circle. As the driving conditions are quite close to the limits, admissible
room left for track errors is little. We argue that the smoothness of speed profiles still need to be
considered to improve tracking performance of the controller for safety concerns (jerky speed profiles
may result in overshooting and oscillation of controllers), even for aggressive driving scenarios,
which did not appear in their solution.
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Lipp et al. [3] presented a convex-optimization-based general minimum time speed planning
method over the fixed path based on the approach proposed by [2]. The friction circle constraint is well
considered as a convex set constraint acting on the problem formulation, which leads to an elegant
solution. Not only the capacity of mobility of cars are fully explored, but also the total time travelling
along the path is explicitly and analytically represented as a soft constraint to achieve time efficiency.
The problem is solved by a customized interior point method using log barrier functions efficiently.
Thanks to the preserving convexity of the problem formulation, the global optimality of solutions
is guaranteed. However, smoothness of the speed profile is not consider, which most likely results
in the same issues that we mentioned about Dakibay’s work regarding tracking performance and
safety concerns. In addition, the use of customized Newton-based solver requires that constraints
and objective functions are all at least twice differentiable, which seems very restrictive on the type of
constraints that users can impose in convex optimization. Convex problems with non-differentiable
constraint terms cannot be solved by their framework.

Liu et al. [11] recently introduced a temporal optimization approach, optimizing time stamps
for all waypoints along a fixed path with respect to time window constraints at each point, and then
using a slack convex feasible set algorithm to solve it iteratively. Smoothness of the speed profile and
time efficiency are taken into account in the problem formulation. However, the time efficiency is
considered in an indirect way that optimizes IoD with respect to a reference speed over the path. Their
formulation leads to a highly nonlinear and non-convex problem and is solved by a local optimization
method, thus only local optimality is guaranteed. They addressed some important constraints in
Table 1 such as smoothness, time window and comfort box constraints in their formulation but left
out the friction circle constraint, which does not fully exploit the acceleration capacity of the vehicle.
In addition, since they optimized timestamps directly, we do not see a quick way to impose a path
constraint or a point constraint as a hard one to manipulate speed profiles.

3. Problem Formulation

Assuming a curvature continuous path has been generated by a hierarchical motion planning
framework like [9,22], the speed planning is to find a time-efficient, safe, and smooth speed profile
travelling along the fixed path with respect to both safety and performance constraints.

To solve the proposed problem, we optimize the performance criterions from three aspects,
smoothness JS, time efficiency JT , and speed deviation JV from a desired speed, with others left as
hard constraints or semi-hard constraints. We first introduce the path representation and explain
the relationship of an arc-length parametrized path and a time parametrized path, then present
mathematical expressions of all the constraints, and pose the optimization problem at the end.

3.1. Path Representation

The goal of speed planning is to find a speed profile along a fixed path. Since the path is known,
we need to reconstruct the mapping between the known path and the speed profile, then represent the
speed profile with parameters determined by the prescribed path. A rich set of parameterized path
representations has been proposed in the literature, including B-spline [23,24], Bezier curve [25,26],
clothoid [27,28], polynomial curve [29] and polynomial spiral [30,31]. It is trivial to convert all the
listed curve models to a simple waypoints representation, but not vice versa. To avoid the non-trivial
converting between curve models, we use the general waypoints parametrization to represent a
fixed path, with the orientation and curvature encoded implicitly by the path. Formally, we define a
waypoints parametrized curve as a workspace path. A workspace path, r, of the body point, b, at the
center of the rear axle with footprint, A, is defined as r : [0, s f ]→ R2. More specifically, we consider
the following arc-length parametric form in Cartesian coordinate system,

r(s) = (x(s), y(s)), s ∈ [0, s f ], (1)
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where s is the arc-length parameter along the path, x(s) and y(s) are the scalars along two orthogonal
base axes respectively. The relationship between the arclength s and the corresponding time t is formed
as the function s = f (t), therefore the time parameterized workspace path r̃(t) = (x̃(t), ỹ(t)), t ∈ [0, t f ]

can be easily acquired by substituting in for s.
Since the path, r(s), is known, the speed vector ~v in Cartesian coordinates can be calculated

as below (the prime ′ and the dot · denote derivatives with respect to the arc-length, s, and the time, t,
respectively for a curve throughout the paper),

~v = ṙ(s) = r′(s) ḟ , (2)

where r′(s) is the unit tangent vector of the path r(s) at s that represents the direction of the speed of a
car by assuming no sliding, ḟ is the corresponding longitudinal speed of the car in ego frame. Let θ(s)
represent the heading of the car at s of the path r, we get

r′(s) =
(

cos (θ(s)) , sin (θ(s))
)
=
(

x′(s), y′(s)
)

. (3)

The acceleration vector~a in Cartesian coordinates system is

~a = r̈(s) = r′′(s) ḟ 2 + r′ f̈ , (4)

where f̈ is the longitudinal acceleration and r′′(s) is the principal normal vector of the path, which is
also called the curvature vector. The 2-norm of the r′′(s) is the scalar of the curvature

κ = ‖r′′‖. (5)

3.2. Vehicle Model and Vehicle Dynamics Constraints

Due to the non-holonomic dynamics of the vehicle system, the lateral motion and longitudinal
motion are intrinsically coupled in a way that the car cannot move laterally without longitudinal speeds.
The lateral motion is explicitly expressed by the prescribed path. The longitudinal motion is the goal
of this paper. To build the connection between them and describe the vehicle dynamics explicitly in
the problem formulation, we employ the single track vehicle model [32] (see Figure 2) to represent the
actual vehicle kinematics and dynamics, which is widely used in motion planning research [9,19,22,30]
and performs satisfactorily in practice [33]. The control force is defined as u = (uτ , uη), where uη is
the lateral force and uτ is the longitudinal force in ego frame. The dynamics of the car are given by

Ru = mr̈, (6)

where R =

[
cos(θ(s)) − sin(θ(s))
sin(θ(s)) cos(θ(s))

]
is the rotation matrix that maps forces from the ego frame to the

global Cartesian coordinate system, m is the mass of the car. We replace the f̈ with a function α(s),
ḟ 2 with a function β(s) according to [2],

α(s) = f̈ , β(s) = ḟ 2. (7)

Then, β̇(s) = 2 f̈ ḟ = 2α(s) ḟ = β′ ḟ . Thus,

β′(s) = 2α(s), s ∈ [0, s f ]. (8)

Therefore, Equations (4), (6) and (8) form the dynamics constraints of cars.
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Figure 2. Single track car model.

3.3. Friction Circle Constraints

Given sufficient engine powers, it is well known that the traction power of the car produced by
tires to drive the car is limited by frictions between tires and the road surface. The combination of
lateral and longitudinal control forces that is able to be leveraged by cars should stay inside a friction
circle to prevent slipping or car from running out of control, which is defined as below

‖u‖ ≤ µmg, (9)

where µ is the coefficient of friction between the tires and the road surface. The longitudinal force upper
boundary can be calculated according to the maximum longitudinal acceleration by uτ ≤ m · aτ

max.
This is only a necessary condition but not a sufficient condition to limit decision variables within
the physical limits such as the nominal power. Take a driving case along a straight line for example,
the speed will constantly increases to infinity if a fixed longitudinal force acts on the car and the path is
long enough. However, in reality, the max force that a plant system can provide is also limited by the
nominal power of the engine. For most of the time, the actual power used by car systems is maintained
below the nominal power P, shown as below,

uτ ḟ ≤ P, (10)

which also means, if the nominal power is reached, the driving force that a car is able to provide will
decrease when the speed increases. This constraint is obviously nonlinear and non-convex. This issue
ignored by [3] was first pointed out by Zhu et al. [20], but they did not solve it and left it as future work.
Here we provide our solution by adding an upper boundary constraint on speed profiles according
to platform limits. It will prevent the speed from increasing without limits. Other constraints like
path constraints, boundary condition constraints, and the smoothness objective will also restrict the
upper boundary of speed profiles. By doing so, we partially address this issue without bringing in
non-convexity to our problem formulation. Given these factors, the formal mathematical representation
of friction circle constraints can be defined as below,
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(
α(s), β(s), u(s)

)
∈
{(

r̈(s), ṙ2(s), u(s)
) ∣∣∣

‖u(s)‖ ≤ µmg,

uτ(s) ≤ m · aτ
max,

β(s) ≤ v2
max

}
.

(11)

3.4. Time Efficiency Objective

Different from the approach used in [11] that optimizes deviation between the planned speed and
desired speed to ensuring time efficiency implicitly, we optimize the total traveling time along the
fixed path from 0 to s f directly like [2,3], which can be expressed as JT = T =

∫ T
0 1dt. Substitute the

time variable t with arclength s and we get

JT = T =
∫ f (t f )

f (0)

1
ḟ

ds =
∫ s f

0
β(s)−

1
2 ds. (12)

3.5. IoD Objective

In autonomous driving applications, users, a behavior planning module or a task planning
module may assign a reference speed vr(s) profile for a car to track. It is not a strict constraint like
max speed thresholds or speed limits on the road that cannot be exceeded. Thus we introduce the
integral of deviations between the planned speed and desired speed over the path as a soft constraint
to measure this kind of performance, expressed as follows,

JV =
∫ s f

0
‖β(s)− vr(s)

2‖ds. (13)

Unlike Ref. [11] regarding it as the measurement of time efficiency, we call it the task soft
constraint, which makes more sense according to the purpose it serves in the form of (13).

3.6. Smoothness Objective

Direct tracking of a minimum-time speed profile will lead to joint vibrations and overshoot of
the nominal torque or force limits of actuators [34,35]. When this happens in autonomous driving
cars, it most likely results in bad ride experience and unstable driving behaviors. To ensure a smooth
speed profile for better tracking performance, reducing wear of power train systems and guaranteeing
the ride comfort at the same time, the smoothness of the trajectory needs to be considered. Since we
assume a smooth and curvature-continuous path has been generated by a path planning module,
we only consider the longitudinal jerk component of the trajectory. Formally speaking, jerk is the first
derivative of acceleration in terms of time t, which also means the second derivative of velocity and
the third derivative of position. According to (7) and (8), the jerk J (s) of the speed profile can be
calculated as follows,

J (s) =
...
f = α̇(s) = α′(s) ḟ

= α′(s)
√

β(s) =
1
2

β′′(s)
√

β(s),
(14)

which is nonlinear and non-convex. In fact, various smoothness metrics, including jerk, have been
proposed to quantify the motion smoothness in literature [36,37]. However, the jerk objective brings
in non-linearity and non-convexity, which makes our problem hard to solve, a better measurement
which covers all the aspects we care about and also with good mathematical properties should be
selected for the sake of fast convergence rate and optimality. Therefore, we introduce a pseudo jerk
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α′(s), which is the first derivative of acceleration with respect to the parameter arc-length s, to the
problem to encourage smooth transitions between states. The smoothness objective is then defined as

JS =
∫ s f

0
‖α′(s)‖2ds, (15)

which is convex. By minimizing the variation of acceleration in terms of parameter s, a smooth
acceleration profile is preferred. By integrating the smooth acceleration along s, the speed profile can
be further smoothed.

3.7. Path Constraints

Path constraints can be defined as the following form,

ψ(s, x, u) ≤ 0, ∀s ∈ [0, s f ], (16)

where s is arclength or time, x is the state of the system and u is the control variable. It restricts the
range of values of states or controls, or the mixed one of both over the time or arc-length interval,
or sub-interval of either for safety reasons or task requirements [38]. The rationales behind imposing
these constraints in our problem are:

• Speed limits on certain segments of roads happen to be common driving scenarios in urban
environments. The speed limits cannot be exceeded by autonomous driving systems, or the
driving system will violate the traffic regulations and be fined. The restrictions may happen
along the whole path or just segments of the path, which is a little different from an overall speed
threshold constraint and the IoD objective.

• A high-level planning system (i.e., behavior planning system, task planning system) may provide
the upper boundary or lower boundary of the speed profile to a speed planner to make it behave
well or satisfy certain task requirements. A speed planner has to plan a speed profile that stays in
the prescribed region or below the envelope.

Both cases enforce hard constraints on speed profiles (state), which cannot be ensured by using
soft constraints of speed deviation presented in [11] or the IoD constraint described by us. The residues
in soft constraint form can be minimized by optimization, but how the state (velocity) approaches
the reference is not determined. Overshooting or oscillation may occur around the reference during
the optimization. However, a hard constraint like (16) is able to limit the “trace” of the system states
strictly. More concisely, the specific constraints in our problem are expressed in the following form
without involving control variables explicitly,

β(si) ≤ β̄(si), ∀si ∈ [sm, sn], (17)

where β̄ is the upper boundary of β at s, 0 ≤ sm ≤ sn ≤ s f and m < n. Three typical path constraints
shapes of β̄(si) are demonstrated in Figure 3.



Sensors 2018, 18, 2185 11 of 29

Rectangle
Straight Line

Serrate
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3.8. Boundary Condition Constraints

The boundary condition constraints specifically refer to the terminal constraints that can be
generally represented by

g(s f , x f , u f ) ≤ 0, (18)

where x f is terminal state variable and u f is the final control variable. More specifically, we impose the
following constraint type,

αs f
≤ αs f ≤ ᾱs f

β
s f
≤ βs f ≤ β̄s f .

(19)

With αs f
≤ ᾱs f and β

s f
≤ β̄s f , we can enforce either equality constraints (by “=”) or target set

inequality constraints (by “<”) on the terminal state of the speed profile. These constraints involve
two types of typical applications. One is the scenario that the car needs to fully stop in front of obstacle
at a certain point on the path or at the end of the path. A zero speed and a zero acceleration at s f need
to be guaranteed in this case. The other scenario occurs as a car tries to merge into an expressway from
an entrance ramp, which needs to have the final speed fall in the speed limit range of the expressway.
Other applications, such as keeping a fixed distance to the front car at the end of the path while
matching the final speed with that of the front car can also be solved using this constraint in our
framework. Such capacities are not present in [3,11]. If no strict boundary conditions on terminal states
are required, the constraints can be deactivated by making αs f

= −µg, β
s f
= 0, ᾱs f = µg, β̄s f = v2

max.

3.9. Time Window Constraints

Time window constraints are represented as

ti = T(si) ∈WT = (0, TU ], (20)

where T(si) =
∫ si

0 β(s)−
1
2 ds and TU > 0. The constraint ensures that if the car passes the station si

during the time window WT , non-collision with other traffic participants is guaranteed. The time
window, WT , can be acquired efficiently from a collision detection algorithm such as [39] with predicted
trajectories of traffic participants in the workspace-time space. This type of constraint is very useful for
handling time-critical tasks such as dynamic obstacle avoidance at certain points, si, along the path,
and for arriving at the destination within the given max time duration. If no time window information
about dynamic obstacles is available, this constraint can be relaxed by setting TU = ∞. In fact, there
are three types of time windows when involving dynamic obstacles. Take the cross scenario without
traffic lights in Figure 4a for example, the oncoming vehicles (C1, C2) are approaching the cross with
predicted or prescribed speed profiles. They will occupy the station O during the time interval [t1, t2]
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and [t3, t4]. These infeasible time intervals divide the feasible time window to three different pieces
that have distinct forms. As shown in Figure 4b, the WA

T only has an upper boundary (see the green
bar), and the WB

T owns both lower and upper boundaries (see the pink bar), and the WC
T has a lower

boundary and an unlimited upper bound (see the blue bar). The complete feasible time window is
an union of WA

T , WB
T and WC

T , which is non-convex since WA
T is convex and WA

T , WB
T are non-convex.

Inposing the combined time window seems straight-forward to do but will lead to a non-convex
optimization problem, which makes our optimization problem hard to solve. In practice, a decision
making system can rank the feasible time windows according to risks, energy to consume, or physical
limits of vehicles, then select the best one to pass to the speed planning. For example, the black curve
shows the previous solution without considering the oncoming vehicles. If the autonomous car does
not regulate the speed, it will collide with the oncoming car C1 during [t1, t2]. By enforcing three
different time windows constraints, three possible solution classes (green, red and blue curves in
Figure 4b) are available. The time window size of the red curve class is very small. It means that it is
very risky to go though this kind of time window. The blue curve class needs great control efforts to
change the current state to satisfy the corresponding time window constraint. In the end, the green
curve class becomes the best option since it needs minimum efforts to avoid the moving vehicles and
has fairly low risks. By doing so, decision making can select a single time window constraint to enforce
on the path with the help of other useful information. Hence, imposing a single time window that is
convex becomes applicable while still keeping the problem in good structure. The type A time window
expression WA

T is employed as the simplified and generalized convex time window constraint for the
optimization shown as (20). For the time windows constraints like WB

T or WC
T , we can pick TU ∈WB

T or
TU ∈WC

T as the upper boundary to form the (20). Then a big coefficient for the smoothness objective
can be used to “stretch” the travel time, which pushes the arrival time ti at the station si to the upper
boundary TU . It is an indirect way to achieve the goal. The exact usage cases of this constraint can be
found in Sections 5.5 and 6.2.

(a)

Arclengh S(m)

T
im

e 
T

(s
)

(b)

Figure 4. A cross scenario with moving vehicles. (a) A cross scenario without traffic lights. The blue
car is the autonomous car. The orange cars (C1, C2) are the oncoming vehicles with prescribed speed
profiles. (b) A S-T graph that describes different types of time windows and possible solutions to avoid
moving vehicles. The S is the arc-length along the path of the autonomous car.
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3.10. Comfort Box Constraints

The comfort box constraint as another requirement of the ride comfort other than the smoothness,
appears in a threshold form in the literature [7,9,11],

‖aη
i ‖ ≤ aη

c

‖aτ
i ‖ ≤ aτ

c ,
(21)

which is a hard constraint. The aτ
c is the threshold for the longitudinal accelerations and decelerations.

The aη
c is the threshold for lateral accelerations. This box form of constraints ensures comfort at the

cost of mobility. The mobility may dramatically drop if the comfort acceleration thresholds are set too
conservatively. The feasible region for optimization is limited within a rectangle inside the friction
circle if (21) is present, as shown in Figure 1. However, when an emergency occurs, the planner may
have to violate the comfort constraint to leverage more mobility of the car to generate a safe speed
profile by ignoring the comfort constraint temporally instead of failing by satisfying it. With a hard
constraint presented in the problem, there is no way to reach this goal. Thus we employ a penalty
method with slack variables to soften the comfort box constraint [40,41], which makes it a “semi-hard”
constraint. If the original optimization problem was

minimize
s

J(s)

s.t. c(s) ≤ 0,
(22)

an equivalent optimization problem using slack variables can be acquired as

minimize
s

J(s) + λ‖σ‖

s.t. c(s) ≤ σ

0 ≤ σ,

(23)

where σ is the slack variable that represent the constraint violations, λ is the corresponding weight.
When σ = 0, the constraint is satisfied as a hard one. By doing so, we conserve the freedoms to explore
full mobility of cars and capacity of breaking the comfort box constraint to recover the feasibility when
necessary. The exact expression of the semi-hard constraint is shown in (24).

3.11. Overall Convex Optimization Problem Formulation

Finally, the complete speed planning optimization problem over the fixed path is posed,
which incorporates the full set of constraints presented above as,

minimize
α(s),β(s),u(s),

στ(s),ση(s)

J = ω1 JT + ω2 JS + ω3 JV

+ λ1‖στ(s)‖+ λ2‖ση(s)‖
s.t. (6), (8), (11), (17), (19), (20),

‖α(s)‖ ≤ aτ
c + στ(s),

‖uη(s)
m
‖ ≤ aη

c + ση(s),

0 ≤ στ(s),

0 ≤ ση(s),

(24)

where ṙ2(s) =
(

r′(s)
)2

β(s) and r̈(s) = r′α(s) + r′′β(s). Please note that α(s), β(s), u(s), στ(s), ση(s)
are the decision variables to optimize. The parameters ω1, ω2, ω3, λ1, λ2 ∈ R+ are fixed in advance to
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suit the particular application objectives. When parameters λ1, λ2 are both set to zeros, the στ(s), ση(s)
are degenerated to constants zeros and aτ

c , aη
c are set to infinity, which means the comfort box constraint

is relaxed. The problem formulation we presented can be demonstrated to be convex as follows.
For these readers who are not familiar with convex optimization, we refer them to [40,42] for details.

• For the objectives, JT is an integral of a negative power function and is therefore convex. JS is
an integral of a squared power of absolute value and is therefore convex. JV is an integral of an
identity power of absolute value and is therefore convex. So are ‖στ‖ and ‖ση‖. As ω1, ω2, ω3,
λ1, λ2 are all nonnegative, J as a nonnegative weighted sum of convex functions, is convex.

• For (6), the dynamics equality constraint is affine in α, β, u and is therefore convex. For equality
constraints about decision variables (8), since the derivative is a linear operator, the relation
between α and β is convex. For the inequality path constraint (17), β(si) is a sublevel set of
convex set in the interval [sm, sn] and is thus convex. The equality and inequality constraints
about boundary conditions (19) are linear constraints, thus convex. As the Ti is an integral of a
negative power function, therefore convex and TU is a fixed upper boundary, the time window
inequality constraint (20) is a convex constraint.

• For the convex set constraint about the friction circle (11), the norm of u is convex, upper bounds
are fixed and v2

max is fixed, so the control set constraint is the intersection of three convex sets and
is therefore convex.

• The comfort box constraints with slack variables στ and ση are second-order cone constraints
and convex.

Since the objectives are convex, equality constraints are affine and inequality constraints are
convex, this optimization problem is convex [40]. The speed planning problem as stated is therefore an
infinite-dimensional convex optimization problem.

4. Implementation

To solve the speed planning problem, we discretize the objectives, constraints and decision
variables to form a finite dimensional approximated version of the original problem, which is known
as direct transcriptions in optimal control. We consider N = 200 segments along the path, thus N + 1
discretised points for all these numerical experiments in Section 5. For one segment of the path,
we assume constant acceleration, which is also used in [2,3]. According to (8), β(s) can be expressed as,

β(s) = βi + (s− si)(
βi+1 − βi
si+1 − si

), s ∈ [si, si+1]. (25)

It should be noted that a zero speed constraint will result in an infeasible optimization problem.
In practice, two methods can be employed to avoid the singularity. The first one is pruning the path
after the station where the speed is zero since the zero speed point is the switch point of the system.
The speed of the pruned part of the path is set to zero or the pruned part of the path can be another
speed planning problem with a zero start speed. The second method is to use a small speed value to
approximate the zero. In this way, we can still evaluate the objectives, perform the optimization and
get a solution. When speeds fall below a certain value (i.e., 0.02 m/s) in the solution, we can treat them
as the zero speeds.

4.1. Discretization of JT , JS, and JV

Substituting β(s)−
1
2 into (25) yields,
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JTi =
∫ si+1

si

β(s)−
1
2 ds

=
∫ si+1

si

(
βi + (s− si)(

βi+1 − βi
si+1 − si

)

)− 1
2

ds

=
2 · ∆s√

βi +
√

βi+1
,

(26)

where ∆s = si+1 − si is a fixed arclength increment.
This integral can be approximated in the following form,

JT = 2
N−1

∑
i=0

∆s√
βi +

√
βi+1

. (27)

For the smoothness term, we use finite differences to approximate α′(s), which yields

JS =
∫ s f

0
‖α′(s)‖2ds

=
N−1

∑
i=0
‖α(si+1)− α(si)

∆s
‖2∆s.

(28)

The JV can be directly represented by

JV =
N−1

∑
i=0
‖β(si)− v2

r‖∆s. (29)

4.2. Discretization of r′(s) and r′′(s)

The discrete form representations of constraints are straight-forward to define, with the exception
of the dynamics constraint (6), which involves first and second order derivatives of r(s) with respect
to the arclength s. We use finite differences to approximate r′(s),

r′(s) =
r(si+1)− r(si)

si+1 − si
, (30)

and a fourth-order Range-Kutta formula to approximate r′′(s),

r′′(s) =
r(si−2)− r(si−1)− r(si) + r(si+1)

2∆s2 . (31)

We model our problem using Convex.jl [43] , a convex optimization modeling framework in Julia,
and solve it using a second-order cone programming solver from Gurobi [44].

5. Numerical Results

To evaluate the performance and capabilities of the proposed speed planning model, we use a
curvy example path from [3], as shown in Figure 5, to conduct various challenging speed planning
numerical experiments. To be fair, we implemented both our problem formulation and MTSOS in [3]
in Julia [45] running on a PC with an Intel Xeon E3 processor at 2.8 GHz and 8 GB RAM in a Linux
system and then compared our results with theirs to show the improvements and new capacities.
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Figure 5. An example path from [3].

The used parameters are listed in Table 3. As they are a proof of concept experiment,
these parameters do not match those of the real platforms. However, it does show the capacities
of the speed planner from functional aspects. We will demonstrate the case studies using parameters
from real platforms and dealing with real on-road driving scenarios in the next section.

Table 3. Parameter Values.

Parameter Description Values Unit

m Mass of the car 0.1453 kg
µ Friction coefficient 0.70 1
g Acceleration of gravity 9.83 m/s2

aη
c Longitudinal acceleration threshold for comfort 0.4 µg m/s2

aτ
c Lateral acceleration threshold for comfort 0.4 µg m/s2

aτ
max Max. longitudinal acceleration of the car. 0.5 µg m/s2

vmax Max. speed of the car. 1.8 m/s

As the friction circle constraint is the essence of the safety regarding vehicle dynamics, we enabled
it for all the experiments below. We first run the MTSOS algorithm on the example path to generate the
speed profile, accelerations and their distribution within the normalized friction circle as the baseline
to compare with.

5.1. Smoothness

In this case, we show how the smoothness constraint of the our formulation affects the results and
improve the performance. The initial speed

√
β(0) of the car is a fixed point and assigned according

to the current vehicle state in the optimization. In this case, we set the initial speed
√

β(0) to 0 m/s
and enable only friction circle constraint, time efficiency objective, smoothness objective by setting the
parameters to {

ω1 = 1, ω2 (see Figure 6), ω3 = 0

all the other constraints are relaxed
(32)

The other constraints are all relaxed or ignored to remove side effects and highlight the effects
of the smoothness objective term. The black curve presented in Figure 6 represents the speed profile
generated by MTSOS [3] with only time efficiency objective and friction circles constraints. The colored
curves depict our results using different coefficients for the smoothness objective. Multiple cusps are
observed in the MTSOS’s result, which definitely increases the difficulty of tracking such a speed
profile for controllers. Overshooting and oscillation may happen when tracking a non-smooth speed
profile such as the black one. Instead, our method generates way more smooth speed profile without
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cusps while still keeping time efficiency in mind. With small coefficients for smoothness, the resulting
speed profiles tend to stay close to the most time-efficient speed profile (the black one) while still
maintaining high order continuity. As coefficients of smoothness increase, flatter slopes of speed
profiles are encouraged, thus smoother speed profiles are generated. With this structure in hand,
our method offers a way to balance the time efficiency performance and smoothness performance
according to specific application requirements when necessary. We also demonstrated control efforts
distribution of MTSOS, ours with ω2 = 0.0002, ω2 = 0.002, and ω2 = 0.02 using a normalized friction
circle (“g-g” diagram [46,47]), as seen in Figure 7. Since the MTSOS only considers the time efficiency,
most of their acceleration points tend to stay close to the limits of accelerations. Ours, with the increase
of smoothness coefficients, tend to lie around the center of the friction circle and reach the limits when
necessary, which leads to a gentler control sequence. None of [3,4,8,10,48] show such high quality
results as ours by taking both smoothness and time efficiency into consideration.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
arclength s (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

V(
m

s
1 )

MTSOS
ours, 2 = 0.0002
ours, 2 = 0.0005
ours, 2 = 0.001
ours, 2 = 0.002
ours, 2 = 0.005
ours, 2 = 0.01
ours, 2 = 0.02
ours, 2 = 0.05

Figure 6. Speed planning results with different coefficients of the smoothness objective.
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ours, 2 = 0.0002
ours, 2 = 0.002
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Figure 7. Friction circle for smoothness.
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5.2. Boundary Condition Constraint

To demonstrate the capacity of boundary condition constraints, we carried out two set of
experiments. In the first set of experiments, we compared the results with the following setting,

MTSOS


time efficiency objective

free final speed

friction circle constraint

ours-A


ω1 = 1, ω2 = 0, ω3 = 0

final speed constraint β(s f ) = 0

all the other constraints are relaxed

ours-B


ω1 = 1, ω2 = 0.002, ω3 = 0

final speed constraint β(s f ) = 0

all the other constraints are relaxed.

The case A, B in Figure 8 showed that our method is able to satisfy the final speed boundary
condition while optimizing time efficiency (A) with a sharp slow-down slope or optimizing time
efficiency and smoothness at the same time (B) with a flatter slow-down slope at the end. We conducted
the second set of experiments with both time efficiency and smoothness objectives considered using
same coefficients but with different type of boundary conditions,

ours-C


ω1 = 1, ω2 = 0.05, ω3 = 0

inequality constraint:

0.22 ≤ β(s f ) ≤ 0.32

all the other constraints are relaxed

ours-D


ω1 = 1, ω2 = 0.05, ω3 = 0

equality constraint:

β(s f ) = 0.52

all the other constraints are relaxed

ours-E


ω1 = 1, ω2 = 0.05, ω3 = 0

free final speed

all the other constraints are relaxed.

Without limiting the final speed, a speed profile such as E is generated, which is the optimal shape
under the given objectives. By adding an equality constraint (D) and an inequality constraint (C) to the
final speed, we observed notable differences of the last portion of the speed profile among these results.
The last segments of the speed profile are adapted by the optimization to satisfy the given constraints.
The other parts almost stay the same for case C, D, E due to global optimality. A similar phenomenon
is observed between the results of MTSOS and case A in Figure 8. Only the part that needs to be
adjusted is regulated. This is an appealing feature for speed tracking regarding temporal consistency
of references and control stability. Since time efficiency is one of the objectives, it makes sense that the
final speed of the case C reached the upper boundary at the end when given a feasible range.

Neither MTSOS [3] nor [11] can deal with this case due to the lack of corresponding constraints.
Adding a similar constraint to the MTSOS requires re-arrangement of the problem and non-trivial,
error-prone changes to their customized solver. Regarding the final speed constraint as a soft one
like [11] cannot guarantee where and when the constraint is satisfied. Instead, our formulation and
framework overcome above flaws.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
arclength s (m)

0.0
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Figure 8. Speed planning results with different end boundary conditions.

5.3. Path Constraint

In this part, to show effects of path constraints, we conducted experiments with the friction circle
constraint, time efficiency and smoothness objectives by ω1 = 1, ω2 = 0.005, ω3 = 0. For the sake
of clarity, all the other hard constraints except path constraints are relaxed or ignored. For reference,
a speed profile without any path constraint is generated using the given parameters (see the black
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curve in Figure 9), which can be thought of as the original speed profile before imposing the path
constraints. Then we enforced three types of path constraints to show the capacity of our method,

• straight line shape (A in Figure 9)
• rectangle shape (B in Figure 9)
• serrated shape (C in Figure 9)

as seen in Figure 9. The corresponding speed planning result is tagged using the same color with that
of the path constraint. As shown in Figure 9, the original speed profile was deformed by optimization
according to path constraints and all the resulting speed profiles stayed below the corresponding path
constraints strictly while still keeping smooth. This provides a powerful tool for users to customize the
speed profiles according to their needs while guaranteeing high quality of solutions.
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1 )

A-straight line path constraint
B-rectangle path constraint
C-serrate path constraint
result without any path constraint
result with A constraint
result with B constraint
result with C constraint

Figure 9. Speed planning results with different path constraints.

5.4. IoD Task Constraints

We evaluated effects of IoD task constraints using two different desired speed profiles
(the dash-dot line A and the dash-dash line B in Figure 10) to show the behaviors of our planner.
We first ran the MTSOS planner to generate the upper boundary of the speed profile for reference.
For the desired speed profile A in Figure 10, we consider the time efficiency objective and IoD objective
only by ω1 = 1, ω2 = 0, ω3 = 10 and relaxed all the other constraints to generate the speed profile,
shown as the orange curve in Figure 10. The orange curve aligned well with the desired speed profile
except for the part that the desired speed exceeds the limit of the friction circle. For the exceeding
part, the orange curve stayed as close as possible to the desired speed but limited by the speed upper
boundary constrained by the friction circle. This result uncovers the strong safety feature of our
method. Moreover, taking the smoothness objective into consideration by making ω2 = 0.1, the quality
of the speed profile is further improved (see the green curve in Figure 10). We also tested the IoD
constraint against the totally feasible desired speed profile B using the same parameters setting with
the previous experiment. The blue curve in Figure 10 depicted the planning result without considering
smoothness. The resulting speed almost perfectly aligned with desired speed B. Similarly, the quality
of the speed profile was significantly improved by add the smoothness objective (see light red curve in
Figure 10).
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Figure 10. Speed planning results with desired speed in different shapes.

5.5. Time Window Constraint

To reveal how the time window constraint affects the speed planning in our method, we first
generate a baseline speed profile by considering only time efficiency and smoothness objectives with
the following parameter setting, ω1 = 1, ω2 = 0.5, ω3 = 0, β(s f ) = 0. All the other hard constraints are
relaxed. The result without time window constraints is shown as a blue curve in Figure 11. With a large
coefficient for smoothness, the travel time at the end of the path reached 6.626 s. Please note that the
time window constraint in (20) can be enforced on any point along the path. For simplicity, we picked
the s f point as the place where imposing the constraint. We added the time window constraint by
limiting the arriving time T(s f ) at the end of the path to (0, TU ], where the TU = 5 s for case 1 and
TU = 4 s for case 2 and solved them with respect to these constraints. The resulting speed profiles
were shown as green and red curves for case 1 and case 2 in Figure 11, respectively. The travel time
at s f are listed in Table 4 and both time constraints were satisfied according to the data. The original
speed profile (blue one) were regulated to meet the time window requirements. The resulting speed
profile was clearly above the original speed profile. This is a powerful tool that makes us able to
control the time arriving at a certain point of the path by using a large coefficient for smoothness then
enforcing the time window constraint to compress the travel time below the upper boundary of the
given time window. In this way, we can easily “stretch” or “compress” the travel time for a fixed path.
An example of “stretching” the travel time can be found in Section 6.2 case study.
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Figure 11. Speed planning results with time window constraints.
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Table 4. Time Window Constraints.

Profile Figure 11 Coefficients Time Window (s) Travel Time at s f (s)

blue ω1 = 1, ω2 = 0.5 free 6.626
green ω1 = 1, ω2 = 0.5 ts f ∈ (0, 5] 4.999

red ω1 = 1, ω2 = 0.5 ts f ∈ (0, 4] 4.000

5.6. Semi-Hard Comfort Box Constraint

To show the capacity of the semi-hard comfort box constraint, we conducted experiments with
the following four different configurations,

case-A

{
ω1 = 1, ω2 = 0, ω3 = 0

β(s f ) = 0, λ1 = 2, λ2 = 2
case-B

{
ω1 = 1, ω2 = 0.05, ω3 = 0

β(s f ) = 0, λ1 = 2, λ2 = 2

case-C


ω1 = 1, ω2 = 0, ω3 = 0

β(s f ) = 0, λ1 = 2, λ2 = 2

ts f ≤ 3.5s

case-D


ω1 = 1, ω2 = 0.05, ω3 = 0

β(s f ) = 0, λ1 = 2, λ2 = 2

ts f ≤ 3.5s.

The comfort acceleration thresholds aτ and aη are listed in Table 3. For case A, we only took the
time efficiency objective into account and enable the comfort box constraints. The light blue curve
in Figure 12 shows the resulting speed profile and the black dots in Figure 13 depict the resulting
acceleration points distribution. Due to the presence of the time efficiency objective and limits of
semi-hard comfort box constraints, most of the acceleration points tend to stay on the edge of box to
achieve minimum travel time under such constraints. For case B, we add the smoothness objective
in based on case A. The resulting speed profile is shown as the green curve in Figure 12, which is
smoother than previous one. The rationale behind this is that the smoothness term encourages gentle
control efforts to keep smooth transitions between states. Thus the acceleration points of case B more
focused around the center of the friction circle while still staying inside of the box, shown as green
dots in Figure 13. To demonstrate the “semi-hard” feature of our formulation, we imposes a time
window constraint by making the final arriving time ts f ≤ 3.5 s. With this constraint, the mobility
constrained by the box region is no longer enough to achieve the required time efficiency. To get a
solution that satisfies the time window constraint, the optimization has to exploit the region that is
within the friction circle but outside of the box. The results of the acceleration points distribution of
case 3 (see cyan pentagons in Figure 13) and case 4 (see pink pluses in Figure 13) proved our statements.
The acceleration points were no longer limited within the box region. The corresponding speed curves
were shown as the light red curve for case 3 and blue curve for case 4 in Figure 12. This nice feature
distinguishes our method from existing speed planning methods such as [7,9,11] that regard comfort
box constraints as hard ones like (21). Their methods guaranteed the ride comfort at the expense of
losing potential mobility. Limiting accelerations to the comfort box region dramatically reduces the
solution space of the speed planning problem, which may lead to no solution when one does exist
in certain situation. Our method, instead, turns the comfort constraint to a semi-hard constraint by
leveraging penalty functions and slack variables. More precisely, when the region limited by the box
constraint is able to provide the needed mobility to satisfy other hard constraints, the slack variables
are reduced to zero and the penalty functions have no effects on the optimization. The comfort box
constraint is equivalent to a hard constraint. However, when the mobility provided by the box region is
not enough to satisfy other hard constraints, slack variables increase and the penalty functions penalize
the constraints violation. The comfort box constraint then is transferred to a soft constraint. By doing
so, our method gives priority to the solution space in box region and leverages the outside region
when necessary, which emphasizes comfort while keeping the solution space complete. To the best of
our knowledge, none of the existing speed planning methods for autonomous driving has done this.
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Figure 12. Speed profiles with semi-hard comfort box constraints.
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Figure 13. The g-g diagram of semi-hard comfort box constraints.

6. Case Study

In this section, we demonstrate three case studies to show how to combine constraints we present
to solve distinct sets of speed planning problems raised in different real autonomous driving scenarios
with parameters from the real platform like a Lincoln MKZ.

6.1. Speed Planning for Safe Stop

First, we considered a cornering scenario (see Figure 14) with different entry speeds. At the
end of the road, a static obstacle blocks the road and the car must stop safely in front of the obstacle.
The comfort box constraints parameters used in this experiment are listed in Table 5. First, we perform
speed planning that considers the time efficiency, smoothness objectives, friction circle and final
speed constraints by making ω1 = 1, ω2 = 5, β(s f ) = 0. The initial speed of the car is vinit = 6 m/s.
The semi-hard comfort box constraints were not taken into consideration in this one. The corresponding
results are shown in Figures 15 and 16 in black color. The second experiment was carried out using the
same parameters. In addition, the semi-hard comfort box constraints were added by setting λ1 = 10
and λ2 = 10. The corresponding results are shown in green color. As depicted in Figure 15, when
comfort box constraints were not presented, the optimization uses more control efforts when cornering
and stopping for the sake of time efficiency. Once comfort box constraints were added, the control
efforts were limited into the box region when mobility is enough to use. Next, we conducted the
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next two experiments using the same setting with that of the green one except two different initial
speed vinit = 8 m/s (cyan curves and dots) and vinit = 12 m/s (pink curve and dots). As shown in
Figure 15, when the initial speed increase to 8 m/s, the region constrained by comfort box was still
able to provide enough mobility to stop at the end. Thus all the acceleration points stayed inside the
box region. However, when the initial speed was increased dramatically to 12 m/s, the optimization
had to use more control efforts to stop in the end. In consequence, the box constraints are “softened”
and acceleration points went beyond the box region to guarantee a safe stop. With the comfort box
constraint as a hard one, the method cannot get a solution in the last case.

Table 5. Parameter Values.

Parameter Description Values Unit

w Car width 2.45 m
l Car length 4.9 m

wb Car wheelbase 2.8448 m
tr Car track 1.5748 m
m Mass of the car. 1500.0 kg
µ Friction coefficient 0.7 1
g Acceleration of gravity 9.83 m/s2

aη
c Longitudinal acceleration threshold for comfort 0.4 µg m/s2

aτ
c Lateral acceleration threshold for comfort 0.4 µg m/s2

aτ
max Max. longitudinal acceleration of the car 0.5 µg m/s2

vmax Max. speed of the car 30 m/s

fixed path
road boundary
obstacle

Figure 14. Safe stop scenario.
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Figure 15. Friction circle for the safe stop scenario.
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Figure 16. Speed profiles for the safe stop scenario.

6.2. Speed Planning Dealing with Jaywalking on a Curvy Road

Second, we considered a jaywalking scenario on a curvy road. The time window [t1 = 7 s, t2 = 11 s]
that the pedestrian occupies the road at s = 30 m is given by a dynamic obstacle prediction subsystem.
As shown in the previous experiments, our method is able to stop at a specified point along the path. Here,
we consider two advanced use cases to avoid the pedestrian safely without stop by manipulating the
arrival time. Non-stop dynamic obstacle avoidance strategies may result in energy saving driving behavior
or greatly reduced operation time in certain cases. As the pedestrian occupied the road between 7 s and
11 s at s = 30 m along the path, if our car reaches s = 30 m in the same time window, an accident may
happen. Unfortunately, with the parameter setting ω1 = 1, ω2 = 5, ω3 = 0, λ1 = 10, λ2 = 10, our car
will collide with the pedestrian, which is shown as the green curve in Figure 17. Two strategies can be
employed to avoid this failure. The first involves passing the potential collision point before the pedestrian
arrives point A, that is, ts=30m <= t1, which is shown as the blue car situation in Figure 18. The second
involves passing the potential collision point just after the pedestrian passes point B, that is, ts=30m >= t2,
which is shown as a green car situation in Figure 18. We solved this problem using both strategies.
By making ω1 = 1, ω2 = 15, ω3 = 0, λ1 = 10, λ2 = 10, ts=30m <= 6.8 s, we solved the former case and the
corresponding results are demonstrated in color cyan in Figures 17, 19 and 20. In practice, we may be not
able to pass the barrier in time using the former strategy due to dynamics constraints of cars. The latter
approach or a safe stop at a specified point along the path can be always employed to avoid collision.
The latter approach is solved by setting ω1 = 1, ω2 = 15, ω3 = 0, λ1 = 10, λ2 = 10, ts=30m <= 11.2 s.
The results are presented in color pink in Figures 17, 19 and 20. It should be noted that the second approach
is an indirect method for avoiding collision in this scenario. We first stretch the time by increasing the
coefficient ω2 from 5 to 15, then compress the arrival time by making ts=30m ≤ 11.2 s. The exact arrival
time at s = 30 m for three different cases are 10.656 s (green), 6.799 s (cyan), and 11.199 s (pink).

Pedestrian

Figure 17. S-T graph for the jaywalking scenario.
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fixed path
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Figure 18. Jaywalking scenario.
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Figure 19. S-V graph for the jaywalking scenario.
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Figure 20. Friction circle for the jaywalking scenario.
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6.3. Speed Planning for Freeway Entrance Ramp Merging

Finally, we demonstrate a freeway entrance ramp merging scenario. The oncoming yellow
car is driving in around 20 m/s. The arrival time tA = 8.5 s at merging point A in Figure 21 is
given by the dynamic obstacle prediction or V2V communication module. The initial speed of the
autonomous driving car is 4 m/s. With the parameter setting ω1 = 1, ω2 = 5, ω3 = 0, λ1 = 10,
λ2 = 10, 20 m/s ≤ v f ≤ 22 m/s, the arrival time ts f at position B of the autonomous car provided
by the optimization is 10.123 s. The related speed profile is shown as the green curve in Figure 22.
The corresponding S-T graph is depicted in Figure 23 in green. The trajectory of the on-coming car is
shown as the black curve in Figure 23. The scenario is designed such that the autonomous car would
collide with the oncoming vehicle in the conflict zone if the oncoming car does not yield. To avoid the
risk, we enforce a time window constraint at the end of the path, based on the previous parameter
setting by making t f ≤ 8.5 s. In this way, the autonomous vehicle has already reached position B by
the time the oncoming vehicle arrives position A, which also keeps a safe distance between the two
vehicles. Further, the final speed of the autonomous car is constrained to be no less than that of the
oncoming vehicle, which ensures that the safety is guaranteed. The corresponding solution is depicted
by the cyan curve in Figures 22 and 23. The exact arrival time at the end is 8.5 s.

In terms of the run-time performance, for 201 discretized points, the solving time range of our
method is 0.05 s to 0.2 s with the Gurobi solver as the backend in Julia. For 100 discretized points,
the solving time range is 0.03 s to 0.07 s. It is worth noting that the computation time may be greatly
reduced if the algorithm is implemented in C++.

Potential Collision Point

Figure 21. Freeway entrance ramp merging scenario.
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Figure 22. S-V graph for freeway entrance ramp merging.

merging point

Figure 23. S-T graph for the freeway entrance ramp merging scenario.
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7. Conclusions

In this paper, we summarize and categorize the constraints needed to solve various speed planning
problems in different scenarios as the requirements for speed planners design and metrics to measure
the capacity of the existing speed planners for autonomous driving. Keeping these requirements
and metrics in mind, we present a more general, complete, flexible speed planning mathematical
model including time efficiency, friction circle, vehicle dynamics, smoothness, comfort, time window,
boundary condition, speed deviations from desired speeds and path constraints for speed planning
along a fixed path. The proposed formulation is able to deal with many more speed planning problems
raised in different scenarios in both static and dynamic environments while providing high-quality,
time-efficient, safety-guaranteed, dynamic-feasible solutions in one framework compared to existing
methods. By considering the comfort box constraints as a semi-hard constraint and implementing it
with slack variables and penalty functions in optimization, we emphasize comfort performance while
guaranteeing fundamental motion safety without sacrificing the mobility of cars. We demonstrate that
our problem preserves convexity with all these constraints added, therefore the global optimality is
guaranteed. We conduct a range of numerical experiments to show how every constraint affects the
speed planning results and showcase how our method can be used to solve speed planning problems
by providing several challenging case studies in both static and dynamic environments. These results
have depicted that the proposed method outperforms existing speed planners for autonomous driving
in terms of constraint type covered, optimality, safety, mobility and flexibility.

Although our method is able to handle the dynamic obstacle with the time window constraint,
it does rely on other modules to provide a single time window instead of the union of several
time windows. It cannot handle multiple dynamic obstacles in optimization directly due to the
non-convexity of the obstacle avoidance problem. In the future, nonconvex version of our problem
formulation will be explored to specifically deal with multiple dynamic obstacles using the union
of several time windows constraint in optimization directly. Since our problem is a multi-objective
optimization problem, how to tune these coefficients systematically according to different autonomous
driving applications will also be explored.
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