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Abstract: This paper addresses the problem of localization accuracy degradation caused by outliers
of the angle of arrival (AOA). The problem of outlier detection of the AOA is converted into the
detection of the estimated source position sets, which are obtained by the proposed division and
greedy replacement method. The Mahalanobis distance based on robust mean and covariance
matrix estimation method is then introduced to identify the outliers from the position sets. Finally,
the weighted least squares method based on the reliable probabilities and distances is proposed
for source localization. The simulation and experimental results show that the proposed method
outperforms representative methods when unreliable AOAs are present.
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1. Introduction

The source localization techniques based on the angle of arrival (AOA) estimate the target position
using a set of estimated bearings. Various methods have been proposed to solve the localization
problem [1–3], among which the closed-form method of the pseudolinear estimator (PLE) was proposed
under the assumption that AOA errors are small [4]. Although the PLE method is easy to implement
and is efficient to compute, it is sensitive to outliers (AOAs with large errors), and such outliers
(also referred to as unreliable AOAs) may exist in many practical applications of distributed node
networks, which typically consist of a large number of small, low-cost sensor nodes. When nodes
are deployed in harsh and unattended environments, animal attack or other forms of interference
may occur. Moreover, low-cost nodes have limited amounts of power, computational, and memory
capacity, and these limitations may also cause outliers. Other factors, such as node failures, data loss,
and non-line of sight (NLOS) propagation [5,6], can lead to unreliable measurements. As a result,
the estimated AOAs at each node will deviate significantly from the true values. Such outliers have
been found to be detrimental to the PLE [7,8]. Thus, it is important to identify these erroneous data to
improve the localization performance or perform a repair of the data.

To reduce the error induced by outliers in node networks, several hybrid localization methods
have been proposed by combining the AOA with the time difference of arrival (TDOA) and received
signal strength (RSS) to identify and mitigate the NLOS error [9]. The expectation maximization
(EM) method is introduced to identify unreliable AOAs caused by NLOS [10]. The intersection points
(IPs)-based method [11] calculates the source position by taking the centroid of the set of intersections
obtained by pairs of bearing lines; however, this method cannot significantly improve the localization
performance, even eliminating the IPs obtained by two bearing lines close to parallel. The proposed
unreliable AOA detection method in [7] can improve the localization accuracy; however, many
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threshold parameters need to be set. The steered-response power phase transform (SRP-PHAT) [12]
source localization approaches have demonstrated robustness when operating in reverberant and
noisy environments. Regardless, these methods require a considerably higher amount of information
to be transmitted to the central processing node and cannot be applicable to large-range localization
scenarios (e.g., hundreds or thousands of meters). In this work, every node is equipped with a
microphone array to estimate the AOA and then transmits the estimated AOA to the central node.
This method does not require time synchronization in different nodes. Note that AOA estimation
methods under an environment with complex environmental noise are outside the scope of this paper;
interested readers are referred to [13–15]. These robust AOA estimation methods are proposed under
the assumption that only small portions of snapshots are contaminated; they can perform well for
continuous source signals or impulsive interference noise, which only have influence on limited
snapshots. However, with other causes that can last a period of time, such as sensor failures and
non-line of sight (NLOS) propagation, all snapshots for one node are unreliable; thus, outliers that
may deteriorate the localization performance are still present even when these methods are applied to
estimate AOAs under complex noise. Therefore, the outlier detection for the AOA is still necessary to
improve the localization accuracy.

Here, we propose a robust localization method when outliers are present. A large number of positions
can be obtained by different node combinations. The maximum number of estimated positions is N × (N
− 1)/2 for an N-node network. However, the estimated positions are sensitive to the bearing lines and their
differences. Deleting the outliers from all intersections alone cannot significantly improve the localization
performance [11]. To increase the estimated position reliability and improve the detection accuracy,
we propose the division and greedy replacement (DIG) method to obtain different estimated position sets
by changing one node at one time. The robust estimation method of the mean and covariance matrix for
estimated position sets is then addressed to provide the information for outlier detection. The Mahalanobis
distance (MD) [16] is finally proposed to identify the outliers from the estimation position sets. Finally,
the weighted least squares (WLS) method based on detected reliable probabilities and distances is used
to estimate the source position. The proposed method is easy to implement and can be easily extended
to a three-dimensional (3D) source localization method. The main contributions of this paper can be
summarized as follows:

• The division and greedy replacement (DIG) method is developed to estimate the target positions.
• The Mahalanobis distance based on robust estimation of mean and covariance matrix is proposed

to detect the outliers from estimated source positions.
• An improved WLS localization method based on reliable probabilities and distances is introduced.
• Outdoor experiments are conducted to verify the proposed method.

The remainder of this paper is organized as follows. Section 2 describes the AOA localization
method and addresses the existing problem. The unreliable node detection method is proposed in
Section 3. Simulations and experimental results are presented in Sections 4 and 5, respectively. Finally,
our work is summarized in Section 6.

2. AOA-Based Localization Method and Problem Statement

2.1. The Pseudolinear Estimator (PLE)

We consider N nodes equipped with a microphone array for each one, with known positions
sk = [xk, yk]

T (k = 1, 2, . . . , N), are deployed in an area of interest to estimate the location of a
single source p = [x, y]T as shown in Figure 1. Under the Gaussian background noise assumption,
the estimated angle θ̂k of k-th node can be given by the following:

θ̂k = θk + ηk, (1)
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where
θk = arctan(

y− yk
x− xk

), (2)

and ηk is the zero mean Gaussian noise with variance σ2
i .
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Figure 1. Illustration of angle of arrival (AOA) localization with three nodes deployed in the test area. 
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Figure 1. Illustration of angle of arrival (AOA) localization with three nodes deployed in the test area.

The set of measurements from N nodes can be written as follows:

θ̂ = θ+ η, (3)

where θ̂ = [ θ̂1 θ̂2 . . . θ̂N ]
T

, θ = [ θ1 θ2 . . . θN ]
T

, and η = [ η1 η2 . . . ηN ]
T

. Thus,
the pseudolinear estimator (PLE), also known as the orthogonal vectors (OV) estimator, can be used to
estimate the source position and is given by the following [4]:

Ap = B + e, (4)

where the estimated source position is as follows:

p̂ = (ATA)
−1

ATB, (5)

where the k-th row of matrix A and B is A(k, :) = [ sin θ̂k cos θ̂k ], B(k, :) = xk sin θ̂k − yk cos θ̂k, k = 1,
2, . . . , N, and

e = [ r1 sin η1 r2 sin η2 . . . rN sin ηN ]
T

, (6)

where rk is the distance between the source and node sk.

2.2. Problem Formulation

The PLE is easy to implement, even for large-scale data. However, the PLE is sensitive to unreliable
measurements (i.e., outliers). In this section, we use theoretical analysis and simulation results to
illustrate this problem.

If the measurement error is sufficiently small, then we have sin ηk ≈ ηk. Thus, the approximation
of the residuals of Equation (6) can be expressed as ek ≈ rkηk. The estimated error of the source position
can be expressed as follows [8]:

∆p = p̂− p
=
(
ATA

)−1ATB−
(
ATA

)−1ATAp
=
(
ATA

)−1AT(−e)
. (7)
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The covariance matrix of Equation (7) can be obtained by the following:

cov(∆p) = E(∆p∆pT). (8)

Thus, the mean-square error (MSE) is given by the following:

MSE = tr[cov(∆p)]. (9)

Submitting Equations (6) and (7) into Equation (10), we have the following:

MSE = 1
∑

i,j∈s
sin2(θi−θj)

·∑
i∈s

{
σ2

ei

[
( f11 sin θi − f12 cos θi)

2 + ( f21 sin θi − f22 cos θi)
2
]} , (10)

where S is defined as all the combinations if {i, j} with j > i. f11 = ∑
i∈s

sin2 θi, f22 = ∑
i∈s

cos2 θi and

f21 = f12 = ∑
i∈s

cos θi sin θi and σ2
ei
= E(eeT).

We can see from Equation (10) that the MSE is affected by the relative geometry between the
source and the nodes, the number of nodes, and the AOA measurement errors. To illustrate the effect
of outliers, we conducted several simulations to analyze the characteristics of the localization error for
different source positions. The source is assumed to be located at the gridded points, ranging from
−10 m to 10 m in a 20 × 20 m2 grid with a resolution of 0.5 m. Four nodes—s1, s2, s3, and s4—are
randomly deployed in the test area, as shown in Figure 1. The root-mean-square error (RMSE) of the
PLE of 500 trials for every target position is used as the performance metrics.

The RMSEs for different source positions are shown in Figure 2a when σ1 = σ2 = σ3 = σ4= 1
◦
.

It is clear that the localization errors are relatively lower when the source is surrounded by the nodes
compared to the outside source. The conclusion follows the analysis based on the Cramer–Rao lower
bound (CRLB) in [17].
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significantly increased when the source is far from the unreliable nodes. From Equation (10), we can 

Figure 2. Root-mean-square error (RMSE) for different source positions when four nodes are deployed
in a 20× 20 m2 test area: (a) σ1 = σ2 = σ3 = σ4 = 1◦; (b) σ1 = 10◦, σ2 = σ3 = σ4 = 1◦. The black dots
denote the nodes, and the numbers on the dotted line contours are the values of the RMSEs.

Assume that the unreliable node s1 is subject to a large noise with zero means σ1 = 10◦ and
σ2 = σ3 = σ4 = 1◦. The resulting RMSEs are plotted in Figure 2b. When the source is close to the
unreliable node, the localization accuracy is not significantly deteriorated. However, the RMSEs are
significantly increased when the source is far from the unreliable nodes. From Equation (10), we can
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see that for the same AOA estimation error σi, the MSE is mainly influenced by the distance rk between
the source and the node sk.

To demonstrate the importance of detecting unreliable nodes, the RMSEs of the estimated positions
obtained from the four nodes with one being unreliable are compared with the RMSEs when only
three reliable observations are used for the source located at p = [3, 0]T m. As shown in Table 1,
the localization errors obtained using only three reliable nodes are significantly lower than those
obtained with four nodes, one of which is unreliable. Therefore, it is necessary to detect the unreliable
nodes and then remove them to improve the localization accuracy.

Table 1. RMSE for different numbers of nodes.

Unreliable Node s1 s2 s3 s4

RMSE (m): N = 4 1.2201 0.3168 0.3146 0.8060
RMSE (m): N = 3 0.2155 0.1642 0.1695 0.1780

3. The DIG_MD Method

We know that at least two nonparallel bearing lines are required to estimate an IP, and the
maximum number of IPs for N nodes is N(N − 1)/2. Regardless of the parallel cases of two bearing
lines, all IPs are expected to be close to each other and surround the true source position when they
are only subjected to low-level environment noise. In contrast, the bearings corrupted by large noise
will lead the IPs to be far from the source position. As shown in Figure 3, the IPs obtained from s1

are obviously far from the other IPs. Therefore, we can identify the unreliable AOAs by detecting
outliers from the estimated target positions. However, there are too many intersections to calculate
for large-scale node networks if only two bearings are used. Moreover, the IPs are also easily affected
by the errors of either one and by the angular distance [11]. For example, it is easy to cause a false
alarm if s6 is determined to be unreliable when p16 and p36 are detected as outliers. To solve these
problems, the division and greedy replacement (DIG) method is proposed here to improve the stability
of the estimated positions. The two-dimensional (2D) outlier detection method is then used to find the
unreliable bearings. Finally, the WLS based on detected reliable probabilities and distances from initial
position to nodes is used to perform the localization. The procedure is given as follows:
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Figure 3. Illustration of the intersection points (IPs) distribution when one bearing is unreliable, where
the rectangle denotes the IP and pij is the intersection point obtained by si and sj.

3.1. The Division and Greedy Replacement (DIG) Method

In order to detect outliers from the AOAs, based on estimated source positions, a set of position
estimations are needed, which should be calculated by a fixed number of nodes only with one independent
variable. Thus, every estimated position corresponds to the unique different node. In this paper, we propose
to divide all nodes into two sets, and the greedy replacement is then used to obtain different combinations
of a fixed number of nodes with one difference.
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(1) Division: In this section, the two separated set are defined as the reference node set (Ωre f )
and the replacement node set (Ωrep), with sizes m and N − m, respectively. Here, to provide an easier
explanation, we assume that the reference nodes are indexed from 1 to m. Thus, Ωre f and Ωrep can be
denoted as Ωre f = {s1, s2, . . . , sm} (m ≥ 3) and Ωrep = {sm+1, sm+2, . . . , sN}, respectively. Algorithm 1
presents the selection method of reference nodes:

Algorithm 1. Selection method of reference nodes.

(1) Estimate the initial source position p′ by the PLE based on all measurements;
(2) Calculate the distances from p′ to all nodes;
(3) Select m nodes that have short distances and can form a convex polygon with the target inside.

The performance analysis in [17] shows that the nodes that are close to the target are dominant in
the localization results and that the localization error for the target inside a convex polygon composed
of multiple nodes is smaller than that of an outside one. So, we propose to use the nodes that can
comprise a convex polygon with the target inside and have short distances to the source as reference
nodes, as shown in step 3; thus, no fewer than three nodes should be selected as the reference nodes.
As the true position is unknown, an initial obtained from all the measurements can be used to evaluate
the distances stated as step 1 and step 2. As shown in Figure 3, p′ is the initial position calculated by
six measurements; s1, s2, and s3 are closest to p′, and p′ is inside the convex polygon formed by the
three nodes. Thus, s1, s2, and s3 are selected as reference nodes (i.e., Ωre f = {s1, s2, s3} when m = 3).
The detail of the division method can be summarized as follows.

To identify the unreliable bearings by detecting outliers from a set of estimated positions, we obtain
the positions by changing only one node at a time. As noted above, the localization error is sensitive to the
bearing error of the nodes relatively far from the source. Thus, we design the greedy replacement method
by using each node in Ωrep to replace one of those in Ωre f . The procedure is given by Algorithm 2. Every
node in Ωre f is replaced by (N − m) nodes from Ωrep. Next, m sets, including (N − m) positions in each set,
can be obtained, and every point is calculated by m nodes with (m − 1) same nodes from Ωre f . For this
method, the position sets can be calculated with cost (−m2 + mN). In contrast, the cost is [N(N− 1)/2] if
all IPs are estimated. In general, the DIG method is computationally simpler than the IP method.

Algorithm 2. Greedy Replacement Method.

For k = 1:m
For j = m + 1:N
Ω = Ωre f ∪ {sj} − {sk}

pk,j = (A(Ω)TA(Ω))
−1

A(Ω)TB(Ω)

Pk(j, :) = pT
k,j

end
end

In this paper, X ∪ Y and X − Y denote the union and difference of sets X and Y, respectively;
A(Ω) represents the matrix A in Equation (4) calculated based on the nodes from set Ω; and Pk(j, :)
is the j-th row of Pk. Each element pk,j of Pk is the estimated position using sj, j ∈ {m + 1, . . . , N} to
replace sk, k ∈ {1, . . . , m}.

3.2. Outlier Detection Method for Estimated Target Position Sets

All the position elements in Pk = [pk,m+1, pk,m+2, . . . , pk,n]
T, k = 1, 2, . . . , m should be close to each

other under the assumption that all the nodes are reliable. The outlier positions should be obtained
from the unreliable nodes. For the 2D source localization problem, the elements in Pk are identically
distributed 2D random vectors with mean µk and a positive-definite covariance matrix Σk. To identify
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the unreliable nodes in set Ωrep, the square of the Mahalanobis distance (MD) [18–20], which can be
formulated as in Equation (11), is proposed to detect outliers from the position matrix in Pk as follows:

d2
k,j(µk, Σk) = (pk,j − µk)

T
Σ−1

k (pk,j − µk) (11)

In the field of data statistics, MD is typically used to characterize how far a particular datum is
from the center. A point with a distance greater than a predetermined threshold is assumed to be an
outlier. The outlier detection problem in this work is a 2D data detection problem. Therefore, the robust
estimated method of Σk and µk is important for robust outlier detection. The outlier detection method
for one position set Pk is given by Algorithm 3.

To better explain Algorithm 3, let us recall the Gnanadesikan Kettenring (GK) estimator first [18],
which provides a reasonable relationship between variance and covariance. Assume that V is the
covariance matrix of L-dimensional random vector x and σ(·) represents the standard deviation; thus,
we have

σ(cTx)
2
= cTVc (12)

for all c ∈ RL. The GK estimator can be formulated as the following:

cov(x, y) =
1
4

(
σ(x + y)2 − σ(x− y)2

)
, (13)

where x and y are a pair of random vectors.

Algorithm 3. Outlier detection method from Pk.

Step 1. Let D = diag(σ(Pk(:, 1)), σ(Pk(:, 2))), and Mk = PkD−1.
Step 2. Compute the correlation matrix Ψ, Ψ11 = Ψ22 = 1, and

Ψ12 = Ψ21 = 1
4 [σ(Mk(:, 1) + Mk(:, 2))2 − σ(Mk(:, 1)−Mk(:, 2))2].

Step 3. Compute the matrix E whose columns are the eigenvectors of Ψ, and Ψ = EΛET, where
Λ = diag(λ1, λ2), and λi are the eigenvalues.

Step 4. Let G = DE and Zk(j, :) =
(

G−1pk,j

)T
, and v = [µ(Zk(:, 1)), µ(Zk(:, 2))]T, and define Σk ← c1Σk

′ ,

and µk ← c2µk
′ , where Σk

′ = GΓGT, µk
′ = Gv and Γ = diag(σ(Zk(:, 1))2, σ(Zk(:, 2))2),

Step 5. Calculate the square of MD d2
k,j based on Equation (11) with a threshold of d2

k0 = χ2
2(α).

Step 6. If dsk,j > dk0, pk,j is an outlier. Thus, the unreliable probability for sj is 1/m; otherwise, it is 0.

In Algorithm 3, med(·) represents the median value, χ2
p(α) is the α-quantile of the chi-squared

distribution with p degrees of freedom, diag(·) is the diagonal matrix, and σ(·) and µ(·) denote the
univariate standard deviation and average value, respectively. c1 and c2 are a constant. Σk

′ and µk
′ are

the estimations of Σk and µk.
Steps 1–4 in Algorithm 3 provide a method to obtain the positive-definite and approximately

equal-variant covariance matrix Σk for high-dimensional scatter datasets with much shorter computing
times [19]. The first step in Algorithm 3 makes the position vector scale-equivariant for different
dimensions. Then, the GK estimator is used to calculate the covariance matrix Ψ in step 2. However,
Ψ is symmetric but not necessarily positive semidefinite, it cannot satisfy the requirement of positive
definiteness of Σk [20]. Considering the fact that, the eigenvalues of a covariance matrix can be seen
as the variances along the directions of respective eigenvectors, the eigenvalue decomposition is
performed to find eigenvalues and eigenvectors in step 3. A modification is then made in step 4 by
using the positive robust variances calculated by Equation (12) to replace the eigenvalues, which may
be negative [21], to obtain the positive diagonal covariance matrix Γ. Then, Γ is used to estimate the
positive-definite covariance matrix Σk

′ instead of Λ. It has been proven in [22] that there exist constant
c1 and c2, such that the true Σk and µk can be approximated by the estimations Σk

′ and µk
′, that is
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Σk ← c1Σk
′ , and µk ← c2µk

′ . For the classical fast minimum covariance determinant (FASTMCD)
method [23], c1 is defined as follows:

c1 =
med(dsk,m+1 , . . . , dsk,N )

χ2
2(0.5)

, (14)

and c2 = 1. Once µk
′ and Σk are obtained in step 4, the MD for every position vector can be calculated

according to Equation (11), which can be rewritten as follows:

d2
k,j(µk, Σk) = c−1

1 (pk,j − µk)
T(

Σk
′)−1

(pk,j − µk). (15)

Thus, the outliers are identified by comparing the squared MDs with the defined threshold
d2

k0 obtained in step 5. The choice of the threshold is based on the fact that, when the position
matrix Pk ∼ N(µk, Σk), the squared MD d2

k,j is distributed as a χ2 random variance with 2 degrees of
freedom [22].

To reduce the false-alarm probability, we set an unreliable probability to every node in step 6.
If pk,j is detected as outliers, then the unreliable probability of sj is set to be qk,j = 1/m; otherwise,
qk,j = 0. After m position matrices are evaluated, the unreliable probability for every node in Srep

can be obtained by qj =
m
∑

k=1
qk,j. Thus, the unreliable probabilities for the nodes from Srep have been

determined. To identify the unreliable nodes in Sre f , the detection method is repeated with different
reference nodes, which are selected from the set of Srep that have been identified as reliable.

3.3. WLS Based on Reliable Probability and Distance

When the unreliable probabilities for all nodes are determined, the WLS method with reliable
probability qi and distance r̂i from the initial position to node si, i = 1, . . . , N is applied to perform
localization and can be formulated as follows:

p̂ = (ATWA)
−1

ATWB, (16)

where
W = diag(w1/r̂i, . . . , wN/r̂N). (17)

wi = 1− qi. The procedure for the proposed localization method is given by Algorithm 4.

Algorithm 4. The procedure of the proposed method based on DIG and MD: DIG_MD.

(1) Perform the DIG method to determine Ωre f = {s1, s2, . . . , sm} (m ≥ 3) and Ωrep = {sm+1, sm+2, . . . , sN},
and then calculate m position matrices Pk, k = 1, . . . , m.

(2) Identify all the outliers in the matrices Pk k = 1, . . . , m based on Algorithm 2.
(3) Calculate the unreliable probabilities for nodes in Ωrep.
(4) Estimate the source position based on Equation (16).
(5) Reselect the nodes with high low unreliable probability qi < 0.5 from Ωrep with the new initial position

obtained from step 5.
(6) Repeat steps 1–4 to estimate the source position as the final localization results.

4. Simulations

In this section, we compare the performance of the proposed method, DIG_WD, with that of the
PLE, the WLS-based distance method denoted as WLS (i.e., the reliable probabilities for all nodes are
1), and the EM-based method [10] through a series of computer simulations.

We assume that N nodes are placed uniformly in an L × L m2 test area with a resolution of ∆x and
∆y along the horizontal and vertical directions, respectively. Each node is equipped with a microphone
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array to estimate the AOA of the target, and 1000 Monte Carlo simulations are conducted for every
case based on the parameters L = 250, ∆x = ∆y = 50, and α = 0.95. Next, u randomly selected nodes
are assumed to be subject to large noise or interference, and their standard deviation of the estimated
bearing error is set to be σ2; moreover, those of the remaining “reliable” nodes are set to be σ1, σ2 � σ1.
The initial positions for WLS, EM, and DIG_MD are obtained by the PLE.

For comparison purposes, we also apply the detection method, Algorithm 3, to identify the
outliers from all IPs calculated by every two bearing lines. Instead of calculating the mean of IPs as
the source position, the WLS estimator based on reliable probabilities and distance is also used to
determine the position. When t (t ≤ n− 1) the IPs can be obtained on the bearing line extending from
si, i = 1, 2, . . . , n; the unreliable probabilities of si is q/t if q IPs included in the t points are identified
as outliers from all IPs. Next, the WLS based on Equation (16) is used to find the source position;
this method is defined as the IP_WLS method. Furthermore, the center of all IPs after excluding all
detected outliers is defined as CIP.

4.1. The RMSEs for Different σ1 and σ2

The localization performances of various approaches are influenced by the standard deviation
of the estimated bearings error. For the source located at p = [73.3, 62.3]T, the RMSEs of different
algorithms with different σ1 are plotted as shown in Figure 4a when σ2 = 15◦, u = 6 and m = 4.
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Figure 4. The RMSEs of the pseudolinear estimator (PLE), weighted least squares (WLS), center of all
intersected points (CIP), expectation maximization (EM), IP_WLS, and division and greedy replacement–
Mahalanobis distance (DIG_MD) methods with (a) different σ1 when σ2 = 15◦, (b) different σ2 when
σ1 = 2◦. (u = 6, m = 4 ).

It can be seen that the existence of unreliable bearings can severely deteriorate the localization
performance of the PLE, especially when σ1 is small. When σ1 = 0.5◦, the RMSE of the estimated
errors for the PLE is as large as 4.83 m. Compared with WLS, the CIP method shows lower RMSEs
only when σ1 < 2◦, and IP_WLS always outperforms WLS for all values of σ1, because it is easier
to detect the outliers when the data are contaminated severely. This phenomenon also illustrates
the importance of detecting outliers. From Figure 4a, we can also observe that IP_WLS shows better
performance than CIP, illustrating the superiority of WLS over simple CIP. The EM exhibits a somewhat
similar performance to that of DIG_WD when σ1 is small; however, it shows a greater advantage as
σ1 increases.
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The simulation is then conducted when σ1 = 2◦ and σ2 ranges from 10◦ to 20◦, considering the
fact that the background noise usually does not change greatly during a short period for certain
applications. The results in Figure 4b indicate that the DIG_MD can significantly improve the
localization performance compared with the conventional PLE and WLS. CIP can outperform WLS
only when the difference between σ1 and σ2 is large, and it always has higher RMSEs than those of the
IP_WLS method. EM performs slightly better than DIG_MD when σ2 is significantly larger than σ1.
In contrast, the DIG_MD clearly outperforms EM when σ2 is less than 16.

From Figure 4a,b, we can see that both IP_WLS and DIG_MD can improve the localization
accuracy compared with the PLE and WLS. However, DIG_MD shows better performance than IP_WL.
This is because IP_WLS is based on the outlier detection results of IP. These IPs are sensitive to the
difference of two AOAs. When the source and two nodes are close to located at a line, the IP will be
easily identified as outliers, and thus, false alarm probability will be increased. On the other hand,
any of the two AOA errors will have an influence on the IP. When one IP is detected as an outlier,
then two nodes will be allocated unreliable probabilities. As a result, the false alarm also exists if only
one of them is reliable, especially when the node is close to the source. All these problems can be
solved by the proposed DIG method.

4.2. The Influence of the Number of Reference Nodes

To discuss the effect of the number of reference nodes on the localization performance, the RMSEs
for different scale of reference nodes are plotted in Figure 5 when σ1 = 2◦ and σ2 = 15◦.
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Figure 5. (a) The RMSEs of DIG_MD with the number of reference nodes when different unreliable
nodes are present and N = 36; (b) the RMSEs of DIG_MD with the number of reference nodes when
different nodes are used and u = 6.

We can see that more reference nodes should be used when the number of unreliable nodes
increases, and the number of reference nodes should be no more than [n/6] ([x] is the nearest integer
to x). Otherwise, the performance of DIG_WD will deteriorate seriously. As illustrated in Section 3,
m position sets with (N−m) elements in each set can be obtained using the DIG_MD method. When the
number of reference nodes increases, the position sets also increase, whereas the number of estimated
locations decreases. Only if there are enough positions to be evaluated should more position sets be
used to increase the reliability of detection. To guarantee enough positions in each set to detect outliers,
(N − m) should be significantly greater than m. From the simulation results, it can be seen that the
reference node number is preferred to be within the range from three to [N/6].
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4.3. The Localization Performance for Different Numbers of Unreliable Nodes

Figure 6 further shows the localization performance for different numbers of unreliable nodes.
It can be seen that the RMSEs of all the methods increase as the number of unreliable nodes increases.
Compared with the PLE, CIP can improve the localization performance when unreliable nodes are
present; however, it exhibits slightly higher RMSE than PLE when there is no outlier. EM has the
highest RMSE among EM, WLS, IP_WLS, and DIG_MD; however, it performs better than WLS when
the number of unreliable nodes increases. The IP_WLS and DIG_MD methods can inhibit the effect
of unreliable bearing measurements for all cases. The superiority of the DIG_MD method over other
methods increases as the number of unreliable nodes increases.
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To investigate the robustness of the proposed method, the hit percentage of DIG_MD (when the
errors of the evaluated methods are less than WLS or the PLE) is shown in Figure 7. The figure shows
that the CIP method has the lowest hit percentages compared with both the PLE and WLS. EM has
higher hit percentages than IP_WLS compared with the PLE, while the latter can improve localization
accuracy with greater probability than EM compared with WLS. In contrast, the hit percentages of
DIG_MD retain its superiority compared with both the PLE and WLS.
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Figure 7. (a) Hit percentages of the DIG_MD, EM, IP_WLS, and CIP methods compared with the PLE
when σ1 = 2◦ and σ2 = 15◦, and m = 4; (b) hit percentages of the DIG_MD, EM, IP_WLS, and CIP
methods compared with WLS when σ1 = 2◦ and σ2 = 15◦, and m = 4.
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4.4. The Localization Performance for Different Numbers of Nodes and for Different Source Positions

As the number of nodes usually has a great influence on the localization performance, we plot
the relationship between RMSE and the number of nodes in Figure 8. For fairness, the number of
unreliable nodes is N/6. The number of reference nodes is four. Figure 8 shows that EM has a higher
RMSE than IP_WLS and DIG_MD methods when the number of nodes is 12. However, the IP_WLS
method shows worse performance than EM as the number of nodes increases. The proposed method,
DIG_MD, always has the best localization accuracy for the different cases.
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Figure 8. RMSE of PLE, WLS, CIP, EM, IP_WLS and DIG_MD vs. the number of nodes when σ1 = 2◦,
σ2 = 15◦.

To study the efficiency of the proposed method for different source positions, Figure 9b shows
the localization performance for five different source positions when six unreliable measurements are
present. It is clear that the proposed method can improve the localization performance significantly
for all source positions.
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5. Outdoor Experiment Results and Analysis

In this section, we describe the verification of our proposed method using a 30-node network
for acoustic source localization. All nodes were placed in an 11× 11 m2 square field, as shown in
Figure 10. Each node is an autonomous vehicle equipped with a four-element cross microphone
array, as shown in Figure 11. The microphone array is arranged into two orthogonal pairs 20 cm
apart. Each pair of microphones estimates an AOA using the generalized cross correlation with phase
transform (GCC-PHAT) [24] method. The final AOA is then obtained by the fusion of two AOAs
obtained by the two pairs of microphones. The vertical distance from ground to microphone is also
20 cm. During the test, all nodes transmitted the estimated angles to the base station following a
predefined collision-avoidance communication protocol. The localization tests were repeated 40 times.
The acoustic source was a car engine noise generated by a loudspeaker orientated upward. Without
loss of generality, we placed the speaker at the center of the test field (i.e., x = [5.5m, 5.5m]T).

The experiment is conducted in an outdoor environment, with noise always present. However,
the signal-noise-ratio (SNR) for each node is different as the distances from source to nodes are different.
The range is from 5 to 15 dB. During the experiment, unreliable AOAs may be introduced by the
following:

• Multipath signal: because the distance between the microphone array and the ground is only
20 cm, unreliable AOAs may be introduced by a multipath signal.

• Interferences: the movements of people and cars during the experiment are also causes of
unreliable measurements.

• The low SNR: because of the possible nonstationary background, the SNR of the received signal
of each node may vary in a large range, possibly resulting in unreliable measurements.
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To verify the influence of the number of reference nodes on the localization accuracy, we plotted
the RMSEs of different numbers of reference nodes, as shown in Figure 12. We can see that the proposed
method DIG_MD clearly outperforms other compared methods when the number of reference nodes
is fewer than six. As the number exceeds six, the RMSEs of DIG_MD increase gradually. When more
than nine reference nodes are used, the DIG_MD method yields similar localization performance to
the IP_WLS. To show the localization results more clearly, we further compared the localization results
of DIG_MD with the PLE for the 40 experiments with m = 4, as shown in Figure 13. The results show
that while most of the large error peaks of PLE were substantially degraded, there were a few cases in
which the DIG_MD method performed slightly better than the PLE (e.g., in the 11th and 33rd runs).
To investigate the underlying reason, we plotted the unreliable sensor node detection results for the
two cases, as shown in Figure 14a,b. For comparison purposes, the estimated AOA values and the
detection results for the 10th and 32nd experimental runs for which the proposed method significantly
improves the localization performance are plotted in Figure 14c,d, respectively.
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Figure 14. Estimated AOA errors and unreliable sensor detection results. (a) The 11th experiment;
(b) the 33rd experiment; (c) the 10th experiment; (d) the 32nd experiment.

As nodes, s11, s24, are misjudged as unreliable for the 11th run, the localization error of DIG_MD
is only slightly better than that of the PLE, even though the unreliable nodes s6, s9, s22 can be detected;
a similar situation can also be found in the 33rd experiment. In contrast, the unreliable nodes in
the 10th run can be detected correctly. For the 32nd run, the localization error can be significantly
decreased while s18 and s28 are detected with a very low false-alarm probability.

To verify the localization performance under different numbers of nodes in a node network,
we only use s1 ∼ sk, k = 20, 25, 30 to perform localization when four reference nodes are used.
Note that when different numbers of nodes are used, the source location is no longer located at the
center of all nodes. The simulation results shown in Figure 15 reveal that DIG_MD has the best
localization performance for all the cases considered.
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