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Abstract: In this study, a bound-constrained optimization algorithm is applied for estimating
physiological data (pulse and breathing rate) of human body using 60 GHz Doppler radar,
by detecting displacements induced by breathing and the heartbeat of a human subject. The influence
of mutual phasing between the two movements is analyzed in a theoretical framework and the
application of optimization algorithms is proved to be able to accurately detect both breathing and
heartbeat rates, despite intermodulation effects between them. Different optimization procedures
are compared and shown to be more robust to receiver noise and artifacts of random body motion
than a direct spectrum analysis. In case of a large-scale constrained bound, a parallel optimization
procedure executed in subranges is proposed to realize accurate detection in a reduced span of time.

Keywords: 60 GHz Doppler radar; bound-constrained optimization algorithm; breathing and
heartbeat rate detection

1. Introduction

Patient telemonitoring is a good solution to help manage medical environments such as nursing
homes and hospitals in daily tasks as well as patient managing, health monitoring, abnormality- and
distress-situation detection [1], and activities of daily living recognition [2]. It can increase the quality
of care and the efficiency of services provided. Indeed, it should facilitate daily tasks of caregivers
in the cases of casual and continuous monitoring of chronic patients, elderly and dependent people.
Several patient telemonitoring systems using different kinds of sensors have been proposed in
the literature. A multicamera motion-capture system is proposed in [3], aiming at providing caregivers
with timely access to the patient’s health status through mobile communication devices. In [4],
a Distress Sound Extraction System for Elder Care was proposed. A fall detection system is presented
in [5], based on smartphone accelerometer sensors using machine-learning classification algorithms.
A prototype for remote healthcare monitoring in [6] uses wireless sensor network (WSN) pulse
oximeters, environmental sensors and streaming video to monitor patients.

Large-sized sensors, such as cameras, microphones, oximeters and pulse sensors, could be
intrusive for most of the monitored people. To this aim, telemonitoring systems have been giving
increasing attention to the utilization of less-intrusive sensors such as pyroelectric infrared movement
sensors. In this context, a monitoring system was developed in [7] to monitor patient activities of daily
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living, such as mobility, agitation, repartitions of stays, and displacements. A new benchmark for
human activity-recognition algorithms was proposed based on infrared sensors [8]. A soft tracking
system was proposed in [9] using an infrared ceiling sensor network and a novel algorithm for
tracking multiple people. Indoor vital-signs telemonitoring can also provide a less-intrusive way to
detect emergency situations, which is generally realized by Doppler radar systems. This noncontact
technique [10,11] is very convenient for monitoring elderly and dependent people, as no sensor
attached to the human body is required. Owing to the Doppler effect, the body displacements induced
by physiological movements, such as heartbeat and breathing, can be detected by measuring phase
shifts of the reflected radar signal.

With this technique, detecting respiration and heartbeat rates simultaneously can be achieved
by transmitting a monochromatic wave towards the person whose vital signs are to be estimated.
The reflected wave is then received and analyzed. However, particular distances between the radar
and the person can lead to a null received signal. In order to avoid this null-point detection problem,
one can work at double sideband frequencies [12] or use an in-phase quadrature (IQ) receiver for
demodulation [13], where the local oscillator (LO) signal is split into two chains with π/2 phase
difference, ensuring that at least one output would not be trapped into the null point. The latter
is widely used in Doppler radar systems. Two different demodulation techniques with IQ receiver
are possible: arctangent demodulation [14] and complex demodulation [15]. In [16], the reflected
baseband signal after the arctangent demodulation is firstly processed through a wavelet filter to
separate the heartbeat signal from the respiration. An ensemble empirical mode decomposition
(EEMD)-based algorithm is then applied to extract the heartbeat rate. The arctangent demodulation is
straightforward to realize; nevertheless, this technique is sensitive to the DC offset caused by hardware
imperfections [17] and necessitates the preprocessing Gram–Schmidt procedure for compensating
the IQ mismatch [18]. The complex demodulation can avoid these drawbacks but undesired
intermodulation and harmonic components are present. An important limitation of these components
is the difficulty in determining the fundamental component from merged sinusoidal components.
It was shown that the carrier frequency of a continuous-wave (CW) Doppler radar could be limited
to the lower region of the Ka-band to decrease possible intermodulation effects between the two
movements [19]. Nevertheless, three different carrier frequencies are compared in [20], and measured
results show that operating at higher frequencies leads to a more accurate detection of heartbeat
rate. Therefore, a 60 GHz Doppler was developed in [21] to detect weak heartbeat signal, whereas
the intermodulation effect of the baseband signal is more important. Moreover, if the harmonic of
respiration is very close to the fundamental of the heartbeat, it becomes impossible to distinguish the
contributions. This phenomenon, referred to as ‘ambiguity’ in this paper, should be carefully addressed.
In all cases, a direct peak detection of the spectrum of reflected baseband signal is consequently not
reliable any more; this requires a spectral estimation algorithm for a robust determination of the
frequency components. In [22,23], a harmonic-path algorithm was developed to determine both
heartbeat and respiration rates by taking into account all harmonic components of the whole spectrum,
but the ambiguity problem is not addressed. A RELAX algorithm was used in [24] for the spectrum
estimation with a 20 GHz Doppler radar, which is based on the minimization of a nonlinear least-square
fitting problem. The heartbeat and respiration rates are estimated by recognizing all sinusoidal
components in the spectrum, but the intermodulation effects between them is not considered.

In addition to the ambiguity, the presence of random body movement can interrupt the detection
of small physiological signals and should be eliminated for accurate sensing. A specific model for
this movement, such as a sinusoidally modulated Gaussian signal, is considered and compensated
for by performing empirical mode decomposition in [25], under the assumption that the movement
waveform has a broader frequency band than desired physiological movements. For other possible
types of movements, multiple transceivers can be used to perform the measurement of different sides
of the body [15]. Another solution is to operate with two or more frequencies [26,27]. A hybrid
radar-camera sensing system is designed in [28] to record the random body movement, which is
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used as a-priori information for cancelling the body movement. As a result, body movement
compensation techniques presented so far are rather cumbersome in terms of practical implementations.
Consequently, a vital-sign estimation technique that is robust to body movements would be
highly appreciable.

In this paper, we investigate the estimation of human vital signs using signals received from an
IQ demodulator-based 60 GHz Doppler radar (operating at millimeter-wave frequencies enabled
using highly directive antennas, that are useful to spatially discriminate multiple persons in a
room, for instance). In particular, we propose an automatic breathing and heartbeat rate detection.
The goal is not to provide a waveform to be interpreted by a practitioner, but quantified data
that could be used in an autonomous device in order to monitor the elderly at home and detect
emergency situations. For that purpose, we propose an optimization procedure based on a direct
model describing the human movements. The minimization of a suitable cost function leads then
to a robust estimation of the vital signs. This approach depends therefore on the relevance of the
direct model. Consequently, this paper presents a thorough analysis of the different parameters
involved in the direct model. In particular, to our knowledge, the influence of mutual phasing between
the physiological movements on the detection has not been investigated and even not considered in
previous studies, especially in the presence of ambiguity. We show that this effect must be taken into
account for correct estimations. Furthermore, no statistical analysis has been previously given for
comparing different spectrum-estimation algorithms, with diverse physiological possibilities (normal
case, no breath, random body motion, etc.), whereas this has a deep influence on the accuracy achieved
by each technique. Our proposed approach will be shown to be robust in most scenarios, including
when random body movements are present. This paper is organized as follows: The importance
of taking into account the mutual phasing is theoretically analyzed in Section 2. The weakness
of the direct spectrum analysis is discussed in Section 3. Then, a bound-constrained optimization
algorithm is proposed in Section 4 for achieving both accurate respiratory- and heartbeat-rate detection.
Results are then statistically compared and shown in terms of a cumulative distribution function (CDF).
In Section 5, a parallel optimization is proposed to possibly decrease estimation time while maintaining
high accuracy in case of large-scale constrained bound. Different levels of noise are tested and a
random body motion is considered as a perturbation in our simulation. In addition, an experimental
setup is developed and measurement results are shown and discussed for different configurations.
Finally, a conclusion is drawn in Section 6.

2. Nonlinearity in Doppler Radar Vital-Signal Detection

In a continuous wave (CW) Doppler radar vital-sign detection system, a sinusoidal signal
T(t) = Aecos (2π f t) at carrier frequency f is transmitted towards a human body, located at a certain
distance d0, as shown in Figure 1. The signal is reflected by the chest, whose movement x(t) is due
to both heartbeating and respiration [29–31]. The reflected signal R(t) is demodulated by an IQ
quadrature receiver to avoid null-point detection issues [13]. The two baseband signals BI and BQ are
of the form

BI(t) = Arcos
[

4πx(t)
λ

+
4πd0

λ
+ θ(t)

]
,

BQ(t) = Arsin
[

4πx(t)
λ

+
4πd0

λ
+ θ(t)

]
,

(1)

and are modulated by physiological movements x(t) of the human body. θ(t) is defined as total
residual phase of the radar system. λ = 5 mm is the wavelength at f = 60 GHz. The physiological
movements are represented by the sum of two single-tone sinusoidal signals, x(t) = xr(t) + xh(t) =
mrsin(2π frt + φr) + mhsin(2π fht + φh). mr and mh describe the movement amplitude of respiration
and heartbeat, respectively, fr and fh represent the rate of movement, and φr and φh are the initial
phases for each movement. Typical values for mh lie in the range of 0.08–0.4 mm for an adult, according
to measurements with a CCD laser-displacement sensor [32], and mr varies from 0.8 to 6.0 mm if the
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detection is done in front of the human body, and is about 0.2 mm from the back [33]. The maximum
heart rate for a person older than 40 years is about 180 bpm (beats per minute) after exercise, and the
average resting rate is between 60–100 bpm [34]. The respiratory rate at rest ranges from 16 to 25 bpm
(breaths per minute) [35], and may raise up to 40–50 bpm after exercise [36].

Figure 1. Representation of phase-modulated Doppler radar system by movements of a human body.

2.1. Arctangent Demodulation

As shown in (1), the two baseband signals BI and BQ have a π/2 phase difference, so the total

Doppler phase shift can be obtained by computing arctan
[
BQ(t)/BI(t)

]
=

4πx(t)
λ

+
4πd0

λ
+ θ(t).

The residual phase ψ(t) = θ(t) +
4πd0

λ
is assumed to be constant during the observation time, for a

still human body. In an ideal case, the Fourier transform of this demodulated signal can directly give
the spectral information of the two movements, where the amplitude is inversely proportional to
the wavelength. Shorter wavelengths in the denominator provide a higher sensitivity to distinguish
small displacements [10,12].

2.2. Complex Demodulation

Another technique is the complex demodulation, where the baseband signal is constructed as:

B(t) = BI(t) + jBQ(t) = exp
[

j
4πx(t)

λ

]
exp (jψ) . (2)

By replacing x(t) in (2) by [xh(t) + xr(t)], we obtain the following formula:

B(t) = exp
[

j
4πmhsin(ωht + φh)

λ

]
exp

[
j
4πmrsin(ωrt + φr)

λ

]
exp (jψ) , (3)

where the first two exponential terms can be expanded using Fourier series [12] as,

exp
[

j
4πmhsin(ωht + φh)

λ

]
=

+∞

∑
n=−∞

Jn

(
4πmh

λ

)
exp [j (nωht + nφh)] , (4)

and

exp
[

j
4πmrsin(ωrt + φr)

λ

]
=

+∞

∑
k=−∞

Jk

(
4πmr

λ

)
exp [j (kωrt + kφr)] , (5)
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where Jn is the n-th order Bessel function of the first kind. Then, (3) can be expressed as

B(t) =
+∞

∑
n=−∞

+∞

∑
k=−∞

Jn

(
4πmh

λ

)
Jk

(
4πmr

λ

)
exp [j (nωht + kωrt)] exp [j (nφh + kφr)] exp (jψ) .

(6)

The negative frequency components can be eliminated by applying J−n(x) = (−1)n Jn(x). The dc

component J0

(
4πmh

λ

)
J0

(
4πmr

λ

)
exp(jψ) is negligible for the detection. Then, this baseband signal

is represented by a sum of harmonic components n fh + k fr, n = 0, 1, 2, · · · , k = 0, 1, 2, · · · , where the
nonlinear property causes not only the undesired effect of harmonic interference for each physiological
movement signal, but also intermodulation effects between these two movements. For example,
regarding the former phenomenon, at the desired heartbeating rate f = fh in the spectrum (n = 1 and

k = 0), the corresponding amplitude J1

(
4πmh

λ

)
J0

(
4πmr

λ

)
is determined by both mh and mr at the

same time. Moreover, regarding the latter effect, we remark that the initial phases φr and φh have also
influences on the spectrum in presence of the ambiguity. In the case that one harmonic component of
respiration is equal to, or very close to, the fundamental heartbeat frequency (i.e., ω′ = n′ωr ≈ k′ωh),
the Fourier spectrum at ω′ is calculated as

∣∣B(ω′)∣∣ = |Jn′

(
4πmh

λ

)
J0

(
4πmr

λ

)
exp

(
jn′φh + jψ

)
+J0

(
4πmh

λ

)
Jk′

(
4πmr

λ

)
exp

(
jk′φr + jψ

)
|,

(7)

whose amplitude is a superposition of the spectra of each movement, which depends not only on
mr and mh, but also on φr and φh. This influence makes the accurate rate detection more difficult, as
numerically illustrated in the next section.

3. Numerical Spectrum Analysis

In this section, simulation results are presented in order to highlight difficulties of the direct
spectrum analysis in retrieving vital-sign parameters, in particular, in the presence of ambiguity and
perturbations.

3.1. Without Noise

In this simulation, the two channels’ baseband signals are in the form of (1). mr is set to 1.0 mm,
and mh = 0.08 mm, corresponding to possible displacements in case of a frontal detection. Note that
this case is more difficult than the detection from the back of the body, as the heartbeat strength is
much weaker than the respiration. The three phases φr, φh, and ψ take arbitrary values uniformly
distributed in [0, 2π]. fr is set to 18 bpm, and fh = 72 bpm, being equal to the fourth harmonic
of respiration. An ambiguity is thus present. The observation time window is chosen as T = 10 s,
and the sampling frequency is Fs = 100 Hz, so that the frequency resolution is ∆ f = 1/T = 0.1 Hz.
Noiseless simulations show that the arctangent demodulation is more convenient than the complex
demodulation in this case, see Figure 2a,b. Only two peaks are present in the arctangent spectrum,
corresponding to the frequency component of the respiration and heartbeat, respectively. The peak
detection becomes more complicated with the complex demodulation due to the presence of many
peaks in the spectrum. The respiratory rate can be determined from the first peak in the spectrum,
but the heartbeat rate is not so evident as its frequency component is intermodulated by the harmonics
of the respiration. Moreover, the values for φr and φh have no influence on the arctangent-based
spectrum, as shown in Figure 2a. On the other hand, with the complex demodulation, different mutual
phases lead to different amplitudes, as shown in Figure 2b. This shift numerically verifies the influence
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of φr and φh on the spectrum, as shown in (7), thus making the simple peak detection not reliable.
It has to be noted that if the ambiguity is not present, the spectrum of complex demodulation does not
depend on φr and φh. The detection is therefore simpler since the amplitudes are related only to mr

and mh, which can be deduced by taking into account all harmonic components [12].

(a) Arctangent demodulation (b) Complex demodulation

Figure 2. Spectral representation of the noiseless baseband signals, using (a) arctangent demodulation
and (b) complex demodulation. mr = 1.0 mm, mh = 0.08 mm. fh = 4 fr = 72 bpm (i.e., ambiguity).
Red line and blue square line represent different mutual phases (φr and φh, respectively).

3.2. With Noise

As seen in the previous paragraph, without noise, the arctangent demodulation is a
straightforward technique as no intermodulation effect takes place. To investigate the robustness of the
peak detection with respect to the noise, a zero-mean white Gaussian noise for different signal-to-noise
ratios (SNRs) is added to the baseband signal. From Figure 3a, we can see that with a weak noise
(e.g., SNR = 10 dB), the direct spectrum analysis of arctangent demodulation succeeds in retrieving
two peaks associated to the heartbeat and respiration component, respectively. However, once the
noise becomes larger (SNR = 6 dB), this technique does not work as the weak heartbeat signal is buried
within the noise. Even without any noise, while an artifact of random body motion is present (which is
represented by only half a cycle of a sine wave, with an amplitude 2 cm, a period 0.5 s, and occurs
every 5 s), the arctangent demodulation is totally overwhelmed as all peaks in the spectrum are of the
same order, as shown in Figure 3b.

(a) With noise (b) With random body movement

Figure 3. Spectral representation of the baseband signals, using the arctangent demodulation technique.
mr = 1.0 mm, mh = 0.08 mm. fh = 4 fr = 72 bpm (i.e., ambiguity).

3.3. Choice of the Demodulation Technique

As seen in the previous paragraph, while the arctangent demodulation technique is
straightforward, it fails when the noise becomes strong or in the presence of a random body movement.
The complex demodulation, however, is more robust to the noise as shown in the next section,
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but simple peak detection is not reliable in the presence of ambiguity. To our best knowledge,
this ambiguity problem has not been highlighted in the literature and is yet a recurrent event. According
to typical scenarios, the 4th breathing harmonic is often close to the heartbeat fundamental. Moreover,
in these situations, φr and φh (which are usually not considered in the literature) have a huge influence
on the system response. Consequently, the estimation technique proposed in Section 4 handles these
issues.

4. Vital-Sign Detection Using Optimization Algorithms

To achieve accurate vital-sign detection with the complex demodulation technique, we propose to
apply an optimization algorithm [37], instead of the direct peak detection.

4.1. Description of the Problem

The optimization procedure consists of the minimization of a defined cost function, which
describes the discrepancy between the received signal (measured data) and the estimated one described
by the direct signal model (3). The direct signal model represents the physical model describing the
explicit relationship between the observed data and the model parameters, including the heartbeat
and respiratory rates of interest. The final solution (model parameters) is obtained once the value of
the cost function does not evolve any more or is smaller than a threshold value. Many algorithms exist
to solve this problem. One of the most popular techniques is the least-square minimization (LSM),
which is more suitable when there are more equations than unknown variables, and the initial estimate
needs to be given in advance. Another technique is the genetic algorithm (GA), which was invented by
John Holland in the 1960s. There is no need to define the initial estimate as the evolution starts from a
population of randomly generated individuals. Another heuristic search method is particle swarm
optimization (PSO), developed by Dr. Eberhart and Dr. Kennedy in 1995 [38].

The minimization of the cost function can be performed either in the time domain, or in the
frequency domain, and is defined as

F (X) =
‖Bmes − Best(X)‖2

‖Bmes‖2 , (8)

where in a real scenario, Bmes refers to the measured baseband signal after IQ complex demodulation
(in frequency or time domain). In simulation, Bmes is obtained using (6) by randomly choosing the
different parameters involved and adding or not adding a white Gaussian noise, as investigated
in the next sections. Best is the reconstructed signal based on the direct model in (6) and the set of
unknown parameters to be estimated: X =

[
mest

r mest
h f est

r f est
h φest

r φest
h ψest]. The goal of the

optimization procedure is to find X by minimizing the cost function (8) with X as variables. The ranges
of all variables are defined as lower lb(i) and upper bounds ub(i),

lb(i) ≤ Xi ≤ ub(i). (9)

The bounds for mest
r , mest

h , f est
r , and f est

h are taken from the typical ranges for a person at rest:
[0.1, 1.5] mm, [0.05, 0.15] mm, [12, 25] bpm and [60, 100] bpm, respectively. The bounds for φest

r , φest
h ,

and ψest are randomly taken between 0 and 2π. In the time domain, Best(X) is given by (3), and is
consequently defined as the Fourier transform of (3) in the frequency domain. To quantify the quality
of the optimization, the estimation error for each variable Xi is defined as

ErrXi
=
|Xactual

i − Xest
i |

|Xactual
i |

× 100%, (10)

where Xactual
i is the actual value of Xi while Xest

i is the value estimated by the optimization.



Sensors 2018, 18, 2254 8 of 18

4.2. Numerical Results

4.2.1. Without Noise, with Ambiguity

Firstly, the feasibility of optimization algorithms is tested using noiseless data, and fh = 4 fr = 72 bpm
(i.e., in presence of ambiguity). To compare the performance of different methods, simulations have been
performed in MATLAB environment on a computer with a 3.6 GHz Intel Core CPU and 32 GB RAM.
The CDF is obtained by executing 1000 optimizations. At each iteration, φr, φh, and ψ take random
values, while fr, fh, mr, and mh are fixed and are the same as in the previous section. The observation
time window is chosen to be 10 s. CDFs obtained from the three optimization algorithms (GA, PSO,
LSM) in the time and frequency domains are plotted in Figure 4a,b respectively. These results represent
the probability that the accuracy of the estimated quantity is greater than a threshold given by the
abscissa values. Only the CDF of the estimation error on fh is given here, as the estimation on fr is
much easier and always accurate. It can be seen that neither in the time domain, nor in the frequency
domain, does the LSM work well. The probability that the error on fh is less than 10% is about 0.35.
This highlights the weakness of LSM for this problem, which is very sensitive to the initial estimate.
Wrong starting values can cause the cost function to converge to a local minimum rather than the
global one that defines the least-squares estimates. It is very troublesome to give an adequate starting
point as the seven unknown parameters are independent. The population size NGA (swarm size NPSO)
for the GA (PSO) is 200 and the tolerance value of the cost function is 10−3. The GA works perfectly
in the time domain while a little less accurately in the frequency domain. The PSO is stable as the
probability is always converging to 0.95 whatever the working domain, but converges more quickly in
the frequency domain (average estimation time 2.6 s) than in the time domain (average estimation
time 4.6 s). The average estimation time for the GA is about 3.6 s in the frequency domain and 3 s in
the time domain. Note that none of these procedures can converge to 100% as sometimes the local
minimum persists. It should be noted that the estimation results in the case of no ambiguity are not
shown here but exhibit similar behavior to those with ambiguity.

(a) Time domain (b) Frequency domain

Figure 4. Obtained CDF with optimization in (a) time domain and (b) frequency domain.
Three optimization algorithms are compared (namely, GA, PSO, and LSM). Without noise. mr = 1.0 mm,
mh = 0.08 mm, and fh = 4 fr = 72 bpm (i.e., ambiguity).

4.2.2. Noise Influence on the Optimization

The performance of the GA and PSO algorithms are now investigated in the presence of noise at
the receiver. The estimation results are given in Figure 5a,b, for SNRs of 10 dB and 6 dB, respectively.
The estimation time is similar to the previous noiseless case. The GA in the time domain works best
as the estimation error on fh is less than 10% with a probability of 0.95 (0.90) for SNR = 10 dB (6 dB).
The other three optimization procedures perform pretty well but are less accurate than the GA in the
time domain.
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(a) SNR = 10 dB (b) SNR = 6 dB

Figure 5. CDFs of different optimization procedures with SNRs at the receiver of (a) 10 dB and (b) 6 dB.
mr = 1.0 mm, mh = 0.08 mm, and fh = 4 fr = 72 bpm (i.e., ambiguity).

4.2.3. Observation-Time Influence on the Optimization

Maintaining an SNR of 10 dB, the observation time duration is investigated by using two
additional windows of 5 s and 20 s, whose results are shown in Figure 6a,b respectively. For an
observation duration of 5 s, the corresponding frequency resolution is 0.2 Hz, which sets the best
achievable accuracy. This is not well suited for the considered problem, as the optimization in the time
domain under the same condition is always more accurate than 0.2 Hz. From Figures 5a and 6a, it is
noticeable that for both GA and PSO, results are more accurate with T = 5 s than with T = 10 s with
an estimation error less than 10%. Moreover, the estimation time is much less: only 1.4 s for GA and
2.2 s for PSO. However, for more accurate results (e.g., less than 2%), T = 10 s gives higher probability
where the CDF curve is steeper.

(a) T = 5 s (b) T = 20 s

Figure 6. CDFs of different optimization procedures for obervation time duration of (a) 5 s and (b) 20 s.
mr = 1.0 mm, mh = 0.08 mm, fh = 4 fr = 72 bpm (i.e., ambiguity), and SNR = 10 dB.

Figure 6b shows results for T = 20 s. The estimation time for GA is increased to 5.5 s (4.4 s) in
the frequency domain (time domain), and to 4.3 s (7.5 s) in the frequency domain (time domain) for
PSO. In particular, for frequency-domain GA, performance quickly decreases as the time-window
length increases. Comparing the optimization result in the time domain for T = 5 s and T = 20 s,
as shown in Figure 6a,b, with a probability of 80%, the estimation error is less than 4% with GA or
PSO for T = 5 s, and less than 2% with PSO for T = 20 s. However, beyond a certain error on fh,
we observe that with 20 s, the probability does not increase any more, whereas it does with a 5 s
window. Further simulations with different time windows show that, if the window size increases,
the precision can actually be improved if a suitable threshold is chosen on the cost function to truncate
the optimization process. If the threshold is kept constant, a saturation effect is indeed observed.
In these simulations, the parameter fh is kept constant during the observation window (whether it is
5 or 20 s). In a real scenario, breathing and heartbeat rate will be time dependent. Since the accuracy
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reached is considered satisfying for medical applications and a constraint on the computation time
is preferred in this work for real-time applications, this phenomenon is not further illustrated here.
Consequently, the next section investigates the robustness of these techniques in a broader range of
scenarios.

5. Large-Scale Constrained Bound: PSO Parallel Optimization

In Section 4.2.1, values of mr, mh, fr, and fh were fixed all the time, and the range of the constrained
bound was limited to normal situations. In practice, these values depend on individual physiology
and would vary widely from person to person. In order to test the robustness of our optimization
algorithm in diverse situations, we propose to investigate different scenarios. The PSO method will be
shown to be the most effective approach to estimate vital signs in a wide range of physical conditions.

5.1. Normal Case

The amplitude mr is firstly increased to 2 mm, and mh to 0.3 mm, which correspond to RMS
(root mean square) motion values indicated in [33]. This case is more delicate than the previous
one since mr is close to 0.3λ at 60 GHz, yielding stronger interference effects as high-order Bessel
functions Jn become more important in the spectrum [39]. The intermodulation between the heartbeat
and the respiration is also more prominent as the ratio of mh/mr is 0.15 with respect to 0.08 for the
previous case. fr takes a random value between [12, 25] bpm, and fh varies between [60, 100] bpm,
which correspond to a normal adult respiratory and heartbeat rate. The scale of constrained bound is
enlarged to upper and lower possible physiological limits in Table 1, including both the possibilities
of “at rest” and “after sport” conditions. Note that the lower limit for mr is set to 0 where a no-breath
case is also considered. As the range of the parameters to optimize is larger, a larger number of
initial populations NGA is needed in the GA optimization. This is illustrated in the following case,
where NGA = 500 and NPSO = 50. In order to maximize the accuracy, the following procedure has
been adopted. Independent optimizations are executed in parallel, each one having its own randomly
chosen initial populations. The procedure is stopped once one value of the cost functions reaches
a threshold. It has been verified that a further increasing of NGA or NPSO does not improve the
convergence but requires more estimation time. The threshold value of the normalized cost function is
set to 0.2, which corresponds approximately to a 20% estimation error. It is emphasized that this value
could be adjusted upon different experimental conditions, for example, with stronger measured noise,
the threshold could be slightly raised.

Table 1. Large-scale constrained bound.

fr (bpm) fh (bpm) mr (mm) mh (mm)

At rest
lb 12 48 0 0.05

ub 30 90 6.0 1.0

After sport
lb 30 90 0 0.05

ub 60 180 6.0 1.0

The CDFs of optimization results on fh and fr are shown in Figure 7a,b, respectively. It can be seen
that both GA and PSO work perfectly with no limited estimation time, where the estimation error is
always less than 10%. However, the average estimation time for GA is 12.9 s (with a standard deviation
10.3 s), and for PSO is 4.5 s (with a standard deviation 7.0 s), which are too time consuming for
real-time physiological applications. Thus, if the estimation time is limited to 5 s, corresponding to the
blue-square and magenta-circle lines in Figure 7, the estimation quality is deteriorated with respect to
the case with narrower ranges (Figure 6a). Due to the large-scale constrained bound, our optimization
algorithms can work, but need more estimation time to converge on the good solution.
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(a) (b)

Figure 7. CDFs of different optimization procedures with a large–scale constrained bound. SNR =
10 dB, mr = 2 mm, mh = 0.3 mm, fr = [12, 25] bpm, and fh = [60, 100] bpm. (a) Estimation error on fh,
(b) Estimation error on fr.

In order to guarantee the convergence of the optimization with an estimation time less than 5 s,
it is proposed to divide each wide range for fr and fh into two subranges, respectively. Each subrange
corresponds to the bounds of rest case and after-sport case. Then, four possible subregions are
generated, including also the cross possibilities, as shown in Table 1. The ranges for mr and mh are
not modified. The optimization is executed individually in each subrange. Once the value of the cost
function of one subrange converges to 0.2, all other subrange optimizations are stopped. Alternatively,
if the estimation time exceeds 5 s, all optimization procedures are abandoned. The subrange having a
minimum final value of the cost function is retained as the optimal solution. Only the PSO algorithm
is used as it is more efficient than GA, as shown in Figure 7.

Optimization results are shown in Figure 8a, and exhibit the same performance as the case of small
scale, in Figure 6a. The average estimation time for the convergence of the cost function is only 1.7 s
(with a standard deviation 1.4 s), that is, about one-quarter of the single large-scale case. This parallel
optimization works also very well with rapid breath and heart rate, for example, after doing sport,
as shown in Figure 8b.

(a) Normal case (b) After–sport case

Figure 8. CDFs of PSO optimization procedure executed in four sub-bounds for (a) normal case:
fr = [12, 25] bpm, fh = [60, 100] bpm, and (b) rapid case: fr = [25, 72] bpm, fh = [100, 180] bpm.
SNR = 10 dB. mr = 2 mm, mh = 0.3 mm.

5.2. No-Breath Case

Here, a particular case is considered where the person does not breathe, that is, mr = 0 mm.
The cardiac rhythm is supposed to be normal, taking a random value fh = [60, 100] bpm.
The optimization result on fh is always accurate, as shown in Figure 9a, where the probability is 0.95
for the estimation error less than 10%. The absolute estimated amplitude of respiratory displacement
mest

r is given in Figure 9b, which is always less than 0.2 mm with a probability of 0.9. Such a weak
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estimated value shows that the human body does not breathe any more or his respiration is very weak,
which may indicate an emergency situation.

(a) (b)

Figure 9. CDFs of PSO optimization procedure executed in four subranges. The person under test does
not breathe but has a normal heart rate. mr = 0 mm, mh = 0.3 mm, and fh = [60, 100] bpm. SNR = 10 dB.

5.3. With a Random Body Motion

As a final test, fr, fh, mr, and mh take random values generated from a Gaussian distribution,
within ranges in Table 1. Moreover, the same random body movement in Figure 3b is plugged into
the reflected baseband signal. The threshold value of the cost function is increased to 0.3, as several
perturbations exist. The optimization time is increased to 10 s as it is verified that 5 s is not enough to
get an accurate detection in the presence of random body motion.

The PSO estimation result is compared with the arctangent direct peak detection, in Figure 10.
As already discussed in Section 3.2 (Figure 3b), the direct peak detection does not work due to the
random body motion. The PSO parallel optimization succeeds not only in the estimation of breathing
and heartbeat rate, but also in the estimation of the amplitude of displacement, which can be used as
additional information for health monitoring. In order to summarize all the different detection methods
proposed in the paper, the approaches, together with the relevant advantages and disadvantages, are
given in Table 2.

Table 2. Comparison of different estimation methods.

Working Domain Methods Advantages Disadvantages

Frequency domain

Peak detection
Arctangent demodulation Fast, No ambiguity

Sensitive to noise
and to random
body movements,
Needs accurate DC
offset compensation

Complex demodulation Fast, Robust to noise Intermodulation, ambiguity

Optimization LSM, GA, and PSO Handle ambiguity

At least 10 s
time window,
Not adaptable to
nonstationary signal

Time domain Optimization

LSM Converge quickly

Sensitive to
initial estimates,
Easy to fall into
local minima

GA Robustness, Stable Computationally
expensive if applied
to large boundsPSO

Converges more
quickly than GA

PSO in parallel
Robust, Less
optimization time Multiple processors required
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(a) Error on fh (b) Error on fr

(c) Error on mh (d) Error on mr

Figure 10. CDFs of PSO optimization procedure in four subranges and arctangent direct peak detection.
SNR = 10 dB, and with a random body motion. mr, mh, fr, and fh take random values within ranges
indicated in Table 1. Results are obtained for 1000 generations.

5.4. Experimental Measurements

In order to assess the performance of the optimization technique with respect to the arctangent
demodulation on the estimation of real data, a 60 GHz noncontact Doppler radar system is developed
using the configuration presented in Figure 11. Both transmitter and receiver use a horizontally
polarized horn antenna. A 60 GHz wave is transmitted and the reflected wave is then down-converted
using two mixers to a signal at intermediate frequency of 10 kHz, which is sampled at fs = 100 kHz
with an oscilloscope. The recorded signal is then down-converted to an IQ baseband signal in Matlab,
on which the heartbeat rate estimation is performed. The three local oscillators at the frequencies
60 GHz, 13.75 GHz, and 5 GHz (see Figure 11), are provided by a Rodhe & Schwarz ZVA67 and do not
exhibit phase drift between each other. A photo of the setup is given in Figure 12. The antennas are
directed to the chest of an adult at a distance of 2 m.

Three different scenarios are considered: at rest, after sport, and holding breathing. For each
scenario, the vital signal is collected three times during 30 s from the front and the back of the test
subject (male, 1.82 m height, 80 kg). The I and Q baseband signals for one case at rest are shown in
Figure 13. PSO estimation results are compared with the arctangent direct peak detection in Figure 14
regarding the heartbeat rate. The accuracy is calculated by comparing the obtained results with
independent measurements given by a pulse oximeter sensor attached to the subject’s little finger.
The PSO algorithm is executed each time on a sliding time window (total length 5 s, sliding 1 s each
time) and the optimization time is limited to 2 s. As the computation time is less than the observed time,
we can state that this is close to real-time monitoring. For now, we record the measured data with an
oscilloscope, thus about 3 s is needed for the buffering time. In the future, once the data is recorded and
processed on chip, both the buffering and computation time should be saved. All other optimization
parameters are identical to the simulation part. As shown in Figure 14, the PSO estimation always



Sensors 2018, 18, 2254 14 of 18

leads to a better accuracy than the arctangent peak detection. In particular for the case ‘after sport’
where the person’s chest moves faster and with a greater amplitude, the arctangent estimation is
not suitable any more, since the performance is heavily deteriorated compared to the ‘at rest’ case.
However, the PSO optimization still exhibits a satisfactorily accuracy. Note that the estimation is
always more accurate when the subject is illuminated from the back rather than from the front. This is
due to the fact that the amplitude of respiration is smaller, and the intermodulation between both
breathing and heartbeat movements is less. Finally, the PSO technique enables the recognition of the
‘no-breath’ event. Indeed, the optimization leads to an estimation of the respiration movement mr in
the order of 0.01 mm. Such an amplitude that is close to null can inform that the person is actually not
breathing, and can be a useful feature for the detection of emergency.

Figure 11. Experimental assemblage of 60 GHz Doppler radar system.

Figure 12. Photo of experimental setup of 60 GHz Doppler radar system.
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Figure 13. Measured demodulated IQ signal when the person under test is at rest.
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Figure 14. CDFs of PSO optimization procedure in four subranges and arctangent direct peak detection.

6. Conclusions

In this paper, estimation techniques of vital-sign monitoring based on 60 GHz Doppler radar have
been studied. This operating frequency enables higher sensitivity for heartbeat detections but may
face stronger intermodulation effects with respiration signals. PSO and GA optimization procedures
have been investigated and found to be able to achieve accurate detections, even in the presence of
ambiguity and strong intermodulations. In the presence of a large-scale constrained bound, the parallel
PSO in the time domain is proved to be the optimal choice. The importance of mutual phasing on
the detection has been moreover discussed in detail. The proposed PSO parallel algorithm is further
applied on experimental data, where three different scenarios were investigated: ‘at rest’, ‘after sport’,
and ‘no breath’. The advantage of PSO with respect to the direct spectrum analysis is consistent in
both simulated and measured data.

The proposed optimization procedure has therefore promising applications in autonomous
noncontact health monitoring for people at home, in particular for detecting weak heartbeat signals
and quantifying induced displacements of the human body. More sophisticated signal processing
techniques will be studied for cancelling stronger undesired random body movements in future studies.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless sensor network
IQ In-phase quadrature
LO Local oscillator
EEMD Ensemble empirical mode decomposition
CW Continuous wave
CDF Cumulative distribution function
LSM Least-square minimization
GA Genetic algorithm
PSO Particle swarm optimization
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