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Abstract: Digital broadcasting signals represent a promising positioning signal for indoors
applications. A novel positioning technology named Time & Code Division-Orthogonal Frequency
Division Multiplexing (TC-OFDM) is mainly discussed in this paper, which is based on China mobile
multimedia broadcasting (CMMB). Signal strength is an important factor that affects the carrier loop
performance of the TC-OFDM receiver. In the case of weak TC-OFDM signals, the current carrier
loop algorithm has large residual carrier errors, which limit the tracking sensitivity of the existing
carrier loop in complex indoor environments. This paper proposes a novel carrier loop algorithm
based on Maximum Likelihood Estimation (MLE) and Kalman Filter (KF) to solve the above problem.
The discriminator of the current carrier loop is replaced by the MLE discriminator function in the
proposed algorithm. The Levenberg-Marquardt (LM) algorithm is utilized to obtain the MLE cost
function consisting of signal amplitude, residual carrier frequency and carrier phase, and the MLE
discriminator function is derived from the corresponding MLE cost function. The KF is used to
smooth the MLE discriminator function results, which takes the carrier phase estimation, the angular
frequency estimation and the angular frequency rate as the state vector. Theoretical analysis and
simulation results show that the proposed algorithm can improve the tracking sensitivity of the
TC-OFDM receiver by taking full advantage of the characteristics of the carrier loop parameters.
Compared with the current carrier loop algorithms, the tracking sensitivity is effectively improved
by 2–4 dB, and the better performance of the proposed algorithm is verified in the real environment.
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1. Introduction

With the development of mobile Internet and mobile smart devices, location-based services have
become the focus in many wireless network applications. In open outdoor areas, Global Navigation
Satellite Systems (GNSS) can provide precise location information for outdoor activities, however,
in buildings, urban canyons, and forested areas, the effectiveness of positioning using GNSS is limited,
making it impossible to provide high-precision location-based services. Typical studies on the above
problems in such harsh environments can be found in [1–5]. A general framework to characterize the
localization accuracy by unifying localization information of wideband wireless networks is proposed
in [1]. Reference [2] established the fundamental limits of wideband cooperative location-aware
networks. Centimeter accuracy indoor localization in an Assisted Living (AL) system is achieved
for a 5G systems using millimeter-wave signals, which can be found in [3]. Reference [4] proposed
a range information model which is a function of wireless environment, signal features and energy
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detection techniques. Soft range information-based localization can be found in [5] for high accuracy
network localization. Meanwhile, precise localization is of great importance in many applications
such as vehicular networks [6]. A state of the art vehicular communication system for the cooperative
awareness of connected vehicles is proposed in [7].

Studies show that people spend more than 80% of their time in indoors environments [8]. With the
increasing number of tall buildings, indoor location-based services have emerging applications
in commercial applications and public safety. As the main positioning technology, GNSS has
many significant advantages outdoors, such as a large coverage area, high positioning accuracy,
and superior navigation performance [9]. However, buildings obstruct, reflect, and diffract the
GNSS signals, the positioning performance is limited in indoor environments and cities. Recently,
terrestrial radio positioning systems and their enhancements to the GNSS have drawn increasing
attention, and the digital broadcasting signal is a promising positioning signal for indoors uses [10].
As for DVB-T/H signals, a different low-complexity solution to perform the coupling channel
estimation in an on-channel repeater can be found in [11–13]. This paper mainly studies a novel
terrestrial radio positioning system called Time & Code Division-Orthogonal Frequency Division
Multiplexing (TC-OFDM), which is based on the China Mobile Multimedia Broadcasting (CMMB)
system. The TC-OFDM system multiplexes the CMMB signal and pseudorange noise (PRN) codes in
the same frequency band, and the positioning performance can be achieved by adding some simple
modifications to the deployed CMMB facilities. The positioning part of the TC-OFDM system is a
direct-sequence spread spectrum code division multiple access (DSSS-CDMA) system employing
binary phase shift keying (BPSK) modulation, and [10] describes the TC-OFDM system in detail.
Compared with the GNSS, the TC-OFDM system has many potential advantages: the TC-OFDM
signal transmission power is stronger, the frequency band is the U band. The TC-OFDM receiver
demodulates PRN codes for high accuracy positioning, which can overcome the positioning limitations
caused by the CMMB single network coverage.

Weak signal strength is the main factor that limits the performance of the receiver tracking loop
to improve tracking sensitivity. Meanwhile, the indoor environment is more complex than outdoors
and the signal strength is significantly attenuated, which restricts the tracking performance of the
existing receivers for weak TC-OFDM signals. The main reason is that the accuracy of the residual
carrier estimation by the existing carrier loop algorithm is not ideal under weak signal conditions.
Since the carrier loop is the weakest link in the receiver tracking loop, the superior carrier loop
performance can improve the tracking sensitivity of the receiver for weak TC-OFDM signals to a
certain degree [14]. The carrier loop is usually divided into a frequency-locked loop (FLL) and
phase-locked loop (PLL) [15,16]. The FLL has good dynamic performance, but the carrier phase
measurement accuracy is lower due to the wide noise bandwidth [17]. The PLL tracks the received
signal more closely and has the high carrier phase measurement accuracy, but it has poor tolerance of
dynamic stress [18]. Due to the complexity of the indoor environment, the received signal strength is
greatly attenuated. Therefore, the existing carrier loop performance needs to be improved for better
performance in indoor weak signal environment. Currently, the methods to improve the carrier loop
performance are divided into three categories: the KF-based PLL [19], the algorithms based on the
Maximum likelihood estimation (MLE) algorithm [20], and the FLL-assisted PLL [21]. The KF-based
PLL includes Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) algorithms [22,23].
The observation model in the carrier loop is nonlinear, which means the observed signal vector and
the estimated state vector are nonlinear in the carrier loop. The EKF and UKF are utilized to expand
the nonlinear observation functions using Taylor series and keep the linear part of the function while
ignoring the higher order nonlinear part. However, the EKF and UKF based on linear minimum mean
square error estimation criterion represent a sub-optimal carrier loop scheme, which still produces
a large parameter estimation error for weak received signals. Methods based on FLL-assisted PLL
can ensure the dynamic of the carrier loop but the estimation accuracy is limited in a weak signal
environment [24]. Reference [25] uses the MLE to adjust the Doppler frequency in a high dynamics
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receiver carrier loop, but it does not make a detailed analysis for weak received signals. Iterative and
non-iterative MLE are proposed to estimate the signal Doppler frequency and code phase in [26,27].
These two algorithms need to deal with real-time IF data, which means a heavy calculation burden.

This paper proposes a novel carrier loop algorithm based on MLE and KF for weak TC-OFDM
signals. The main idea is to combine the MLE with KF to effectively estimate the carrier loop
parameters and smooth the estimation results, so as to obtain an accurate estimation of the residual
carrier for weak TC-OFDM signals and improve the receiver tracking sensitivity indoors. With the
novel algorithm, the MLE discriminator function replaces the current carrier loop discriminator.
The Levenberg-Marquardt (LM) algorithm is utilized to obtain the MLE cost function consisting of
signal amplitude, residual carrier frequency and carrier phase, and the MLE discriminator function is
derived from the corresponding MLE cost function. The KF is used to smooth the MLE discriminator
function results, which takes the carrier phase estimation, the angular frequency estimation and the
angular frequency rate as the state vector.

The rest of this paper is organized as follows: Section 2 presents the signal model. The proposed
carrier loop algorithm is introduced in Section 3. Section 4 presents the simulation and real data
test results of the comparison between different carrier loop algorithms. Finally, Section 5 concludes
the work.

2. Signal Model

The CMMB signal and pseudorange noise (PRN) codes are multiplexed in the same frequency
band. Figure 1 shows the structure of the TC-OFDM signal. The duration of each frame of the
CMMB signal is 1 s, and each frame consists of 40 time slots. The duration of each time slot is
25 ms. The CMMB system uses orthogonal frequency division multiplexing (OFDM) to transmit
the broadcasting signal. Two kinds of pseudo codes are superimposed on the CMMB signals to
provide high accuracy positioning services, which are named short codes and long codes, respectively.
The beginning of the frame has the TxID and two synchronization signals. The TxID is empty in
the practice CMMB signal, so the short codes are superimposed on the TxID to distinguish different
base stations by using different pseudo codes signals. Thanks to the fact the TxID is empty, the short
codes and the CMMB signals have the same transmission power. In order not to affect the normal
communication of the CMMB signal, the power of long codes is lower than the CMMB signal by
20 dB [10]. In the positioning, the receiver uses short codes to achieve acquisition and long codes to
achieve stable tracking.
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The TC-OFDM signal of the nth time slot can be expressed as:

s(i)k (t) =


sCMMB(t) + c(i)SC(t) (k− 1)TF ≤ t < (k− 1)TF + TSC

sCMMB(t) + αc(i)LC(t) (k− 1)TF + TSC ≤ t ≤ kTF
0 others

(1)

where the SCMMB(t) is the CMMB signal, CSC(t) and CLC(t) is short codes and long codes respectively.
The superscript i represents the base station number. TF is the time length of the time slot and TSC is
the time length of the short codes. The term α is the signal attenuation factor.

In order to transmit the positioning-assisted information, the PRN codes sent by the base
station are modulated with the positioning-assisted information, and each slot modulates one bit
positioning-assisted information. The TC-OFDM signal of ith base station can be written as:

s(i)(t) =
∞

∑
k=−∞

d(i)(t)s(i)k (t) (2)

where d(t) denotes the positioning-assisted information. The signal transmitted by the ith base
station is:

S(i)(t) = s(i)(t) cos(2π fct + ϕ0,i(t)) (3)

where fc is the carrier frequency, ϕ0,i(t) is the initial phase.
The signal from the ith base station is received by the receiver radio frequency (RF) antenna.

The output signal of the RF antenna can be written as:

r(t) =
N

∑
i=1

A(i)s(i)(t− τi) cos(2π( fc + fd,i)t + ϕ0,i(t)) + ω(t) (4)

where N denotes the signal received from N different base stations. A(i) is the signal amplitude, τi is
the incoming signal delay, fc is the carrier frequency, fd,i is the incoming Doppler shift, ϕ0,i(t) is the
initial phase, ω(t) is the additive Gaussian white noise (AWGN) with zero mean and variance σn

2.
After the receiver RF front-end, down-conversion, low-pass filter and analog-digital conversion

module (ADC), the digital intermediate frequency (IF) signal is expressed as:

rIF
(i)(nTs) = AIFs(i)(nTs − τi)ej2π( f IF+ fd,i)nTs+ϕ0,i + ω(n) (5)

where Ts is the sampling duration, AIF is the IF signal amplitude, τi is the incoming signal delay, fIF is
the IF frequency, fd,i is the Doppler shift, ϕ0,i is the initial carrier phase, ω(n) is the additive Gaussian
white noise (AWGN) with zero mean and variance σn

2.
The IF signal is sent to the baseband processor for acquisition [10], tracking and data demodulation.

A rough estimation of carrier frequency and code phase of the received signal is obtained from the
acquisition process, which initialize the related parameters of the tracking channel. Then the estimation
of these two signal parameters is refined step by step through the tracking loop. The numerically
controlled oscillator (NCO) in the tracking loop produces mutually orthogonal sine and cosine signals,
which can be created as: {

µos(t) = sin(2π fNCOt + ϕNCO)

µoc(t) = cos(2π fNCOt + ϕNCO)
(6)

where fNCO and ϕNCO is the carrier NCO frequency and initial phase respectively.
In this research, the TCXO is used in the TC-OFDM receiver, and the accuracy of the TCXO is

0.5 ppm. After many real tests, we find that the phase noise of the receiver clock is smaller than white
Gaussian noise in the research of the TC-OFDM meter-level positioning accuracy. Also, we can use the
TCXO phase noise estimation algorithm to predict the actual phase noise. However, adding the TCXO
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phase estimation algorithm has less influence on the proposed algorithm in this research. Therefore,
the effect of phase noise can be ignored in this research. After carrier stripped, the coherent integration
result of I and Q channel signals by integration and dumping module can be created as:{

Corr(n) = Amps(n) sin c(∆ f Tcoh)e(j(2π∆ f nTcoh+∆ϕ) + ω(n)
Amp = AIF(n)Tcoh, ∆ f = fd − fNCO, ∆ϕ = ϕIF − ϕNCO

(7)

where Corr(n) represents the nth coherent integration result, Tcoh is the coherent integration duration,
s(n) denotes the positioning-assisted information, Amp, ∆f and ∆ϕ represent the signal amplitude,
carrier and phase residual respectively. In order to avoid bit transition, the coherent integration
duration used generally do not exceed one time slot duration. We assume that in the coherent
integration duration, s(n) can be regarded as a fixed value.

For the convenience of analysis, we assume that the local code is strictly aligned with the received
signal. When in the coherent integration duration, the parameters Amp, ∆f and ∆ϕ have minor changes
which can be regarded as unknown nonrandom parameters. In the tracking process, the term of
sinc(∆fTcoh) ≈ 1 when ∆f is small enough. Then Equation (8) can be simplified as:

Corr(n) ≈ Amps(n)e(j(2π∆ f nTcoh+∆ϕ) + ω(n) (8)

The conventional carrier loop structure is shown in Figure 2. The coherent integration results of
Equation (8) is sent into the carrier discriminator to estimate carrier frequency. Then the Carrier NCO
is adjusted in real time based on the carrier frequency filtering results from the loop filter.
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3. MLE Parameter Estimation Model

In the case of an unknown prior distribution of estimated parameters, MLE provides the parameter
estimation with the smallest error variance when the parameters to be estimated is symmetric and
unimodal distributions. In terms of the linear discrete-time system, linear KF is the optimal filter [28].
Therefore, the MLE combined with KF can make an accurate estimation of the parameters in the carrier
loop, which can improve the tracking loop performance. The MLE is used to nonlinearly estimate the
carrier loop parameters of interest, and then KF is applied to smooth the estimated parameters from
MLE. Therefore, the proposed algorithm of combining MLE with KF is the optimal solution for the
TC-OFDM carrier frequency accurately tracking in the weak TC-OFDM signal environment.
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3.1. The Principle of MLE

MLE is often used to estimate unknown non-random parameters. MLE is defined as the
estimator of θ value that maximizes the likelihood function. The estimated value is denoted as
θMLE(x). We take the MLE for a single-parameter θ as an example. For an unknown non-random
estimation θ, the probability density function p(x|θ) of the observation vector (denotes as x) is called
the likelihood function. The basic principle of MLE can be explained as follows: for a selected θ,
MLE consider the probability p(x|θ)dx that x falls in a small area, and take the corresponding θ whose
p(x|θ)dx is the largest as the estimated θMLE(x). As shown in Figure 3, the likelihood function is
obtained after x = x0, then we can draw a curve between the likelihood function and the estimated
value of θ. The value of p(x|θ)dx for each θ means the probability that x falls within dx, and dx centered
on x0 in the observation space R for θ. When x = x0, it can be seen that θ = θ1 is unreasonable, so we
choose θ = θ2 as the estimation, and the θ that maximizes p(x = x0|θ) is selected as the estimated value
θMLE(x) within a range allowed by the estimated θ.Sensors 2018, 18, x FOR PEER REVIEW  6 of 22 
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3.2. MLE Cost Function

Given a set of observations x, the MLE of θ is the θMLE(x) at which the probability density function
is maximized:

θMLE(x) = argmax
θ

p(x|θ) (9)

According to the above analysis, when the likelihood function p(x|θ) is known, θMLE(x) can be
obtained by the following equation and the logarithmic form is given in Equation (11):

∂p(x|θ)
∂θ

∣∣∣∣
θ=θMLE

= 0 (10)

∂ ln p(x|θ)
∂θ

∣∣∣∣
θ=θMLE

= 0 (11)

Since MLE is considered a valid parameter estimation algorithm in the tracking loop of the
TC-OFDM receiver, we use MLE to effectively estimate the residual carrier frequency for weak
TC-OFDM signals indoors. Meanwhile, the MLE produces the minimum variance of estimation
error, when the statistical distribution of the estimated signal parameters in an uncertain interval
is unknown [29]. When it comes to multi-parameter problems, the MLE of signal parameters is
the estimation of signal parameters when the joint conditional probability density of a set of signal
observations gets maximized. Since the coherent integration time in the algorithm is 1.6 ms which is
shorter than the loop update time, we assume that the carrier is correctly tracked within such a short
coherent integration time. Therefore, the parameters to be estimated can be regarded as unknown
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constants over the interval. Meanwhile, N is defined as the number of consecutive coherent integration
results in this paper. The coherent integration results are adopted as observation sample parameters of
MLE, which contains the signal amplitude, residual carrier and phase value in Equation (8). The value
of N is selected to ensure that the parameters to be estimated remain constant over the entire interval,
and N is closely related to the dynamic bandwidth of the receiver. The TC-OFDM system is for indoor
positioning, which is mainly under low dynamic cases. In the low dynamic case, signal amplitude is
the main change parameter. We use the MLE to estimate the signal amplitude, and other parameters
(including residual carrier and phase) are little changed under such the low dynamic case. Also,
the simulation and real test are used to determine the value of N in this research. Therefore, in order to
obtain the MLE of the unknown Amp, ∆f and ∆ϕ in Equation (8), the joint probability density function
of N consecutive coherent integration results is obtained according to [30]:

p(CorrN |Amp, ∆ f , ∆ϕ) =
1

(2πσ2)N e(−
1

2σ2 (CorrN−
∧

CorrN)W(CorrN−
∧

CorrN)
H
) (12)

where CorrN = [Corr(0), Corr (1), . . . . . . , Corr (N − 1)] represents N consecutive coherent integration

results,
∧

CorrN is the estimated value of CorrN . W is the diagonal matrix which stands for the weight
factor of Corr(n), superscript H denotes the matrix transpose and conjugate operations.

The MLE minimum variance unbiased estimation can be achieved by obtaining the maximum
value of (10) to get the values Amp, ∆f and ∆tϕ. The diagonal elements of the diagonal matrix W are
set as 1 to obtain the log-likelihood cost function of Equation (12) as in [31,32]:

Λ(µ|CorrN) = − 1
2σ2 (CorrN −

∧
CorrN)(CorrN −

∧
CorrN)

H
− N ln(2πσ2)

= − 1
2σ2

∣∣∣∣CorrN −
∧

CorrN

∣∣∣∣2 − N ln(2πσ2)

= − 1
2σ2

N−1
∑

n=0
(real(Corrn)− Amp cos(θ))2 − 1

2σ2

N−1
∑

n=0
(imag(Corrn)− Amp sin(θ))2 − N ln(2πσ2)

= − 1
2σ2

N−1
∑

n=0

{
|Corrn|2 + Amp

2 − 2Amp[real(Corrn) cos(θ) + imag(Corrn) sin(θ)]
}
− N ln(2πσ2)

(13)

where Corrn = Corr(n), CorrN = [Corr(0), Corr (1), . . . . . . , Corr (N − 1)] is N consecutive coherent
integration results. µ = [Amp ∆f ∆ϕ]T represents the signal parameters to be estimated, n = 0 . . . N − 1,
θ = 2π∆fnTcoh + ∆ϕ, real(·) and imag(·) represent the real and imaginary part respectively.

By finding the maximum value of Equation (13) to get the estimated value of µ, which can be
expressed as:

∂Λ(µ|CorrN)

∂µ
= 0 (14)

Deriving the partial derivative of µ:

∂Λ
∂Amp

= − 1
σ2

N−1

∑
n=0

{
Amp − [real(Corrn) cos(θ) + imag(Corrn) sin(θ)]

}
(15)

when ∂Λ
∂Amp

= 0, the estimation value of Amp is obtained:

Amp =
1
N

N−1

∑
n=0

[real(Corrn) cos(θ) + imag(Corrn) sin(θ)] (16)

The signal amplitude Amp estimated in the MLE is used to subsequently adjust the observation
noise covariance matrix R in the KF. Since the items of |Corrn|2, Amp

2 and Nln(2πσ2) in Equation (13)
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do not affect Λ partial derivative of ∆f and ∆ϕ respectively, we can remove such irrelevant items and
the cost function is simplified as:

M =
N−1

∑
n=0

[real(Corrn) cos(θ) + imag(Corrn) sin(θ)] (17)

where θ = 2π∆fnTcoh + ∆ϕ, real(·) and imag(·) represent the real and imaginary part respectively.
We can find that if θ is obtained, then Amp can be calculated by Equation (16). According to

the relationship between θ, ∆f and ∆ϕ, θ can be obtained as long as we get the value of ∆f and ∆ϕ.
Thus Amp can be acquired by Equation (16), the rest is to estimate the value of θ, which is equivalent to
get the value of ∆f and ∆ϕ. Solving the problem of θ in Equation (17), which the essence is to obtain
the values of ∆f and ∆ϕ. Getting the value of ∆f and ∆ϕ can be regarded as the process of solving a
two-dimensional optimal problem. Therefore, the MLE solution of ∆f and ∆ϕ in θ is transformed to
solve the two-dimensional optimal solution by Equation (17).

3.3. LM Algorithm

The LM known as the damped least-squares (DLS) method, is one of the most effective algorithms
to solve nonlinear least squares problems, which has both the advantages of gradient descent method
and Gauss-Newton algorithm (GNA). The LM uses a gradient to find the maximum (minimum) value
and obtains the optimal solution through iterative convergence. The (non-negative) damping factor
λ is adjusted at each iteration. When λ is used as a smaller value, bringing the algorithm closer
to the GNA, whereas if an iteration gives insufficient reduction in the residual, λ can be increased,
giving a step closer to the gradient-descent direction. We use the LM algorithm to iterate to get the
frequency and phase values in the paper. The duration of the coherent integration time is 1.6 ms,
which is consistent with the LM iteration time. And the loop adjustment period of the carrier tracking
loop is 25 ms. Since the LM iteration time is less than the loop adjustment period, the algorithm
proposed in this paper can ensure the real tracking. Therefore, the LM algorithm is used to solve the
two-dimensional optimal solution in Equation (17). The iterative optimal solution is given by the
following equation:

∧
µi+1 =

∧
µi + (Hi + λ)−1Gi, i = 0, 1, 2 . . . (18)

where subscript i represents the number of iterations,
∧
µi is an 2 × 1 state vector including ∆f and ∆ϕ,

λ is an 2 × 2 diagonal matrix, used to ensure that Hi + λ is positive definite and adjust the iterative
convergence rate. Hi and Gi is 2 × 2 pseudo-Hessian matrix and 2 × 1 gradient vector respectively.
Hi and Gi can be written as:

Hi =

[
∂2M
∂µ2

]
µ=µi

(19)

Gi =

[
∂M
∂µ

]
µ=µi

(20)

where
∂M
∂µ

=
[

∂M
∂∆ f

∂M
∂∆ϕ

]T
,

∂2M
∂µ2 =

 ∂2 M
∂∆ f 2

∂2 M
∂∆ f ∂∆ϕ

∂2 M
∂∆ϕ∂∆ f

∂2 M
∂∆ϕ2

 (21)

The entire LM algorithm iterative process is shown in Figure 4. The first step is to initialize

the value of
∧
µ0 and λ. Since we assume that the carrier is correctly tracked at the beginning then

∧
µ0 = [0 0] and λ initialized to an experience value. Next, Equations (19) and (20) are utilized to get

Hi and Gi. Increasing λ to make Hi + λ positive definite. Then Equation (18) is used to update
∧
µ and

Equation (17) is used to judge whether M(
∧
µi+1) > M(

∧
µi) is satisfied. If not, continue to increase λ.

If satisfied, judging the gradient vector G is less than 0.2 or greater than 0.8 (the judgment condition
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for G is set according to the actual test), then adjust λ according to the conditions respectively satisfied.

The physical meaning of adjusting λ is that if the estimated value
∧
µ is closer to the optimal value

of iteration, then increase λ to slow down the convergence rate, otherwise decrease λ to accelerate
iterative convergence. The termination condition of the above iterative process is that the value of the
gradient vector G falls below predefined threshold (Pre_Thres) or the number of iterations (Iter_Num)
exceeds the set maximum (Iter_Max).

Sensors 2018, 18, x FOR PEER REVIEW  9 of 22 

 

 

                                  Set the initial  and λ 

                                    

Calculate Hi and Gi 

 

                    No            Judge whether Hi +	λ is 

     Increase		λ                     positive definite or not 

                                                                                      

     Yes 

Update ̂  
                                     

                                       Calculate M 

                                             

 

No              Judge whether >   

                                   is satisfied or not 

                                             Yes 

 

If < 0.2                 If > 0.8   

No            Yes                      Yes      No 

Increase	λ                  Decrease	λ 

 

                      

Judge whether the gradient vector       No 

G < Pre_Thres or Iter_Num > Iter_Max         										 = + 1 

                        Yes 

 

              If G < Pre_Thres is satisfied            If Iter_Num > Iter_Max is satisfied 

            

Output f and φ, iteration stop              Reset the initial  and λ 

Figure 4. LM algorithm flow chart. 

3.4. KF Model 

MLE can obtain the minimum error variance of parameters without relying on the prior 
distribution of signal estimation parameters. For MLE, the choice of the number of observations N is 
significant. The reason is that if a small value of N is adopted, the observed sample value of MLE is 
small, thus the estimated result cannot reflect the true data very well. Conversely, if the observed 
value of N is large, excessive observation noise will be introduced, which is not beneficial to obtaining 
accurate results. Therefore, if we use the estimated frequency directly in weak signal environment, 
the non-negligible estimated error in the carrier loop will occur, and finally restrict the improvement 
of tracking sensitivity and accuracy under weak signals. Since KF is the optimal filter in linear discrete 
systems [33]. KF is adopted in this paper to smooth the estimation of the parameters after a non-linear 
estimation by MLE. Therefore, for the carrier frequency tracking problem of TC-OFDM system, the 
combination algorithm of MLE and KF is the optimal solution. The proposed carrier loop structure is 
shown in Figure 5. 

Figure 4. LM algorithm flow chart.

3.4. KF Model

MLE can obtain the minimum error variance of parameters without relying on the prior
distribution of signal estimation parameters. For MLE, the choice of the number of observations
N is significant. The reason is that if a small value of N is adopted, the observed sample value of
MLE is small, thus the estimated result cannot reflect the true data very well. Conversely, if the
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observed value of N is large, excessive observation noise will be introduced, which is not beneficial
to obtaining accurate results. Therefore, if we use the estimated frequency directly in weak signal
environment, the non-negligible estimated error in the carrier loop will occur, and finally restrict
the improvement of tracking sensitivity and accuracy under weak signals. Since KF is the optimal
filter in linear discrete systems [33]. KF is adopted in this paper to smooth the estimation of the
parameters after a non-linear estimation by MLE. Therefore, for the carrier frequency tracking problem
of TC-OFDM system, the combination algorithm of MLE and KF is the optimal solution. The proposed
carrier loop structure is shown in Figure 5.
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The main idea is to use MLE to get the estimated value of ∆f and ∆ϕ, and KF to smooth the MLE
parameter estimation error to get more accurate ∆f and ∆ϕ. The output value of the KF is used to
adjust the carrier NCO. The MLE uses the LM iteration to get the next value of ∆f and ∆ϕ. In practical
application, the form of KF is closely related to the state equation and observation equation.

The state equation describes the behaviour of the state vector. In order to adjust the carrier loop
accurately, the state vector in the selected carrier loop is expressed as:

X = [ ϕ ωd ω′d ] (22)

where ϕ is the carrier phase estimation value, ωd = 2π∆f denotes the angular frequency estimation
value, ω′d represents the angular frequency rate.

The state equation can be expressed as:

Xk = ΦXk−1 + Wk−1 (23)

where Wk−1 is the input Gaussian white noise with mean zero and variance Q, Φ is the state transition
matrix and the form can be written as:

Φ =

 1 T T2/2
0 1 T
0 0 1

 (24)

where T = NTcoh is the loop update period.
The observation equation describes the relationship between observations and state vectors.

The observation equation can be expressed as:

Yk = HXk + Vk (25)
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where H is the observation matrix, the form can be written as:

H =

 1 0 0
0 1 0
0 0 1

 (26)

The value of the rate of change of Doppler in the observation matrix H is a predetermined
experienced value. The preset value is reasonable which satisfies the current applications in the
TC-OFDM system. And this kind of pre-setting for the rate of change of Doppler is beneficial to us to
further study the TC-OFDM receiver algorithm in high dynamic scenario.

Vk is the observed noise, the mean is zero and the variance matrix is R. The phase difference ∆θ

between the input signal and the local signal can be expanded by the Taylor series:
∆θ(k + 1) = ∆θ(k) + T∆ω0(k) + T2

2 ∆ω1(k) + ξ1(k)
∆ω0(k + 1) = ∆ω0(k) + T∆ω1(k) + ξ2(k)
∆ω1(k + 1) = ∆ω1(k) + ξ3(k)

(27)

where ∆θ is the carrier phase, ∆ω0 is the residual carrier and ∆ω1 is the rate of change of Doppler.
The form of ξi can be written as:

ξi(k) =
∫ kT
(k−1)T

τ3−i

(3−i)! Y(τ)dτ, i = 1, 2, 3 (28)

ξi(k) is the remainder of Taylor expansion, which is used to represent model noise and describes
the effects of random interference and model inaccuracy as described above. Y(t) is a zero-mean,
white Gaussian noise process with a single-sided spectral density Ny. The noise variance can be
expressed as:

E[Y2(t)] = σ2
y =

Ny

2T
(29)

and the value of E[ξi(k)·ξ j(k)] can be obtained:

E[ξi(k)·ξ j(k)]
= E

{[∫ kT
(k−1)T

u3−i

(3−i)! Y(u)du
][∫ kT

(k−1)T
v3−i

(3−i)! Y(v)dv
]}

=
s

uv

{
u3−i

(3−i)! ·
v3−i

(3−i)! E[Y(u)·Y(v)]
}

dudv

=
σ2

y ·T8−(i+j)

(3−i)!·(3−j)!·[7−(i+j)]

(30)

Then the variance matrix Q can be derived:

Q = E[ξ(k)ξT(k)]

= E


 ξ1(k)

ξ2(k)
ξ3(k)

[ ξ1(k) ξ2(k) ξ3(k)
]

= σ2
w I

 T4/20 T3/8 T2/6
T3/8 T2/3 T/2
T2/6 T/2 1


(31)

where σ2
w = σ2

y T2.
The forms of Q and R can be respectively denoted as [34]:

Q = σ2
w I

 T4/20 T3/8 T2/6
T3/8 T2/3 T/2
T2/6 T/2 1

 (32)
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R = σ2
v I (33)

where I is the unit matrix.
The σv

2 in R is adjusted according to the value of Amp estimated by MLE. For the σv
2 in the

observation covariance matrix R, we obtained a series of experience values based on multiple
experiments during the algorithm experiments. According to the estimated value of the signal
amplitude Amp obtained in the MLE, these experience values are utilized to adjust the preset value of
the σv

2.
The KF algorithm obtains the filter value at the current time according to the state estimation

value at the previous moment and the observation value at the current time. The entire carrier loop
filtering process can be divided into two parts, the state estimation and state prediction. The output
state estimate Xk of KF and the variance matrix Pk of the estimation error can be iteratively calculated
by the following equations:

Xk,k−1 = ΦXk−1 (34)

Pk,k−1 = ΦPk−1ΦT + Qk−1 (35)

Kk = Pk,k−1HT
k [HkPk,k−1HT

k + Rk]
−1

(36)

Xkk = Xk,k−1 + Kk[Yk −HXk,k−1] (37)

Pk,k = [I − Kk H]Pk,k−1 (38)

From Equation (36) can be seen that when Rk is large, the corresponding Kk will be small, then the
state estimate calculated by Equation (37) is small; when Qk is small, one step prediction covariance
matrix Pk,k−1 calculated by Equation (35) will be small, which lead to a smaller state estimate Xk−1

finally. From the above analysis, it can be seen that every update of the system state by KF is a
compromise between the current system state uncertainty and the observation uncertainty. Therefore,
in this paper, Rk and Qk are obtained by real-time statistics of noise on historical observation and
current observation to enhance the adaptability of KF to noise.

4. Simulation and Analysis

According to the previous discussion, a novel carrier loop algorithm based on MLE and KF is
designed. In order to further illustrate the feasibility and performance of the proposed algorithm,
simulations and real data tests are performed in this section. Monte Carlo simulations are adopted to
compare the proposed algorithm with the current algorithms to make a comprehensive evaluation of
the novel carrier loop algorithm. In addition, the TC-OFDM signals are broadcasted by the modified
base stations, a positioning receiver and other related equipment is also utilized to achieve the proposed
algorithm. Finally, we choose several points in a test building to test the positioning accuracy for the
static receiver.

4.1. Simulations

In order to verify the performance of the proposed algorithm, Monte Carlo simulation is applied
to evaluate the proposed algorithm effectively and comprehensively. To demonstrate the reliability
and effectiveness of the novel carrier loop algorithm, comparative tests are performed. The feasibility
of iterative estimation of the LM algorithm, the validity of the KF smoothing error and the superiority
of the combination the MLE with the KF algorithm are verified, respectively.

4.1.1. Determine the Number of Observations for MLE

In statistics, MLE is a method of estimating the parameters of a statistical model. And the
estimation accuracy of parameter using MLE is closely related to the number of signal observations
used for one estimation. In general, the accuracy of the MLE parameter estimation increases with the
number of observations used. Therefore, it is necessary to first analyze how many observations is
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suitable for one MLE in the carrier loop. The algorithm proposed uses coherent integration results as
the MLE observations. We use the loss of lock probability as a standard reference criteria to evaluate
the number of observations. The relationship between loss of lock probability and SNR using different
observations is shown in Figure 6. The numbers in the legend in Figure 6 represent the values of N.
The positioning signal adopts Gold codes and the simulation parameters are listed in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Slot time, TF 25 ms
Sample rate 4.4

Intermediate frequency, fIF 0 Hz
Data bit transition Random

Coherent integration time, Tcoh 1.6 ms
Predefined threshold, Pre_Thres 0.02

Iteration maximum numbers, Iter_Max 15
Signal to noise ratio, SNR −45 dB–−20 dB

Figure 6 shows the correspondence between the loss of lock probability and SNR of the proposed
algorithm when N = 15, N = 30, and N = 45. It can be seen from the results that as the number
of sample observations (denoted as N) gradually increases, the anti-noise ability of the proposed
algorithm gradually increases, which means the loss of lock probability with same SNR gradually
decreases. The result in Figure 6 is reasonable. Because the value of SNR in experiments is really low,
the influence of noise under weak signals will be greater than the different number value of N, which is
the main factor. We took a piece of data at low SNR to illustrate the problem in TC-OFDM system.
Also, 500 Monte Carlo simulations are made to give RMS of frequency error with different sample
observations. The results are shown in Figure 7.

Figure 7 gives the RMS frequency tracking error performance curve for the proposed algorithm
with different N values. The numbers in the legend in Figure 7 represent the values of N. From the
results, it can be seen that when the SNR is less than −35 dB, the larger of N, the higher frequency
estimation accuracy of the MLE&KF. The reason is that the larger number of sample observations
leads to the MLE with higher frequency resolution. However, the noise power gradually decreases
with the increase of SNR. When the SNR is greater than −35 dB, an excessively large value of N
will lead to excessive steady state error. Therefore, the error curve corresponding to N = 45 will be
degraded. In addition, Figure 7 also compares the error performance curve of MLE&KF with EKF.
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From the comparison results, it can be found that the performance of the frequency tracking error of
the MLE&KF designed for the optimal estimation and filtering algorithm is significantly improved
than the performance of the EKF based on the sub-optimal filtering algorithm. According to the above
analysis, observations with N = 30 are used to make a reasonable statistical sample observations.
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4.1.2. LM iteration Effectiveness

To test the feasibility and effectiveness of the MLE and the LM algorithm, we set the residual
carrier as 25 Hz and the phase as 0.5 rad of the input TC-OFDM signal. The SNR is −25 dB and
other parameters are same as Table 1. The convergence curve of frequency and phase using MLE and
iteratively by LM algorithm is shown in Figure 8. From Figure 8, after iteration to the 9th, the residual
carrier and phase values remain stable and are close to the set value. The final residual carrier value is
stable at 25.8 Hz and the phase value is stable at 0.53 rad, which verifies the feasibility of using MLE to
estimate the residual carrier and phase of the carrier loop. For the convenience of analysis, we selected
the iteration number fixed at nine in the following tests.
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4.1.3. KF Effectiveness of Smoothing Error

Meanwhile, there is still a large frequency error in adjusting the carrier loop directly using the
signal parameters estimated by MLE for weak TC-OFDM signals. KF is adopted to smoothing the
frequency error, so it is necessary to demonstrate the validity of KF smoothing error, and the MLE
combined with KF loop is compared with MLE loop. The SNR is −25 dB and other parameters are
same as Table 1. Figure 9 shows that the error of frequency estimation after KF is obviously decreased
in contrast to using MLE only, which verified the validity of KF smooth frequency error. The MLE
combined with KE denotes as MLE&KF and the other denotes as MLE in Figure 9, respectively.
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4.1.4. Performance Comparison Results of the Proposed Algorithm and Other Algorithms

To verify the signal parameter estimation accuracy corresponding to different SNR, we compare
the proposed algorithm with the conventional second-order FLL assisted third-order PLL (FLL&PLL)
carrier loop and EKF algorithm. The FLL&PLL displays both the high accuracy of PLL and the
large dynamics of FLL. The specific parameters and corresponding discriminator algorithm of the
second-order FLL assisted third-order PLL are given in Table 2. The EKF algorithm used for comparison
in this paper is a pure EKF algorithm that is independent of MLE. The result of the coherent integration
is used as the input observation signal parameter of the EKF. Since the carrier loop can be considered
as a nonlinear discrete-time system. The purpose of using the EKF-based carrier loop is to linearize the
state equation and the observation equation of carrier tracking loop to obtain a sub-optimal estimation
method for the carrier loop. The algorithm proposed in this paper is to use MLE to estimate the
interested parameters of the carrier loop, and then use KF to filter estimated parameters. Since the
carrier loop can be considered as a nonlinear discrete-time system. The KF is a linear discrete system
filter which cannot be directly used to the carrier loop. We use MLE to estimate the carrier loop
parameters and do a non-linear approximation, and then use KF for filtering, which is different from
the pure EKF algorithm. Two hundred Monte Carlo simulations are performed for each SNR with
a fixed predetermined frequency error. The RMSE frequency error comparison results are shown in
Figure 10. The results in Figure 10 show that the frequency estimation errors of the three algorithms
all increase with SNR decreasing. Among them, the FLL&PLL has the largest error under low SNR,
followed by the EKF. The proposed algorithm (MLE&KF) can still effectively estimate the frequency,
which shows high frequency estimation accuracy and tracking performance for weak TC-OFDM
signals. The simulation verifies the superiority of the proposed algorithm for various SNR.
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Table 2. The specific parameters and corresponding discriminator algorithms of second-order FLL
assisted third-order PLL.

Parameter Value

PLL bandwidth, Bw,PLL 10 Hz
FLL bandwidth, Bw,FLL 20 Hz

Wn of carrier PLL Bw,PLL/0.53
Wn of carrier FLL Bw,FLL/0.53

Phase discrimination equation Qp·sign(Ip)/sqrt(Ip
2 + Qp

2)

Frequency discrimination equation
Pcross·sign(Pdot)/(Ip

2 + Qp
2)

where Pcross = Ip−1·Ip + Qp−1·Qp,
Pdot = Ip−1·Qp −Qp−1·Ip
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Meanwhile, in order to further verify the tracking performance of the proposed algorithm,
the comparison results of the tracking probability with other two algorithms are shown in Figure 11.
Tracking probability is defined as the probability of successfully tracking the total number of Monte
Carlo simulations. Tracking sensitivity is defined as the SNR at which tracking probability exceeds
50%. At present, the definition of tracking sensitivity can be divided into two types: the detection
probability is 50% [31] and 90% [35]. In order to better illustrate the problem, this paper refers to [31]
for the definition of tracking sensitivity. According to the results of the detection probability of the
proposed algorithm in Figure 11, the SNR is adopted to be taken as the tracking sensitivity when the
tracking probability is 50%, which can reflect the overall level of the performance of the algorithms.
It can be seen that the tracking sensitivity of FLL&PLL is −31.1 dB, followed next by EKF which is
−33 dB. The MLE&KF algorithm has better performance than the others, and the tracking sensitivity
is −35.3 dB, which is 2.3 dB lower than EKF and 4.2 dB lower than FLL&PLL. The Monte Carlo
simulation results prove that proposed algorithm can significantly improve the tracking sensitivity for
weak TC-OFDM signals.
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4.2. Real Data Tests

Real data tests are conducted to prove that the novel carrier loop algorithm has significantly good
performance in an actual environment. We start our actual tests in a comprehensive test platform,
which is shown in Figures 12 and 13. The test platform consists of a modified base station and the
TC-OFDM receiver. Figure 12 describes each component of the modified base station in detail. The time
distributor, the counter and the industrial personal computer collaborative work together in order
to ensure synchronization between the modified base stations. Each modified base station equipped
with an atomic clock with an output frequency of 10 MHz. The synchronization accuracy between the
modified base stations is up to 5 ns (1σ). Meanwhile, the time distributor generates the positioning
data messages containing UTC, air pressure, base station number and base station coordinates which
are necessary for positioning. The function of the actuator is to modulate the TC-OFDM signal into RF
signal and finally the RF signal is transmitted by the transmitter.

We use the TC-OFDM receiver developed by us which is shown in Figure 13 to test the positioning
accuracy. An overview of the internal and external structures of the TC-OFDM receiver is shown in
Figure 13a. Figure 13b shows that the TC-OFDM receiver and mobile phone communicate through the
Bluetooth protocol to transmit useful data messages. Then the phone exhibits the final positioning
result via the map. An architecture based on FPGA and ARM is adopted in the TC-OFDM receiver for
baseband processing and data demodulation. The FPGA is used to perform the main logic operations
and ARM is responsible for controlling the circuit logic. The IF signal is processed into a zero-digital
IF signal for subsequent FPGA processing. The LM iterative and KF algorithm used in the proposed
carrier loop are implemented in the ARM processer. The main computational load is in LM. In each
LM iteration, sine, cosine operations and matrix calculations are needed. The above calculations are
easily calculated in ARM which can meet real tracking requirements for carrier loop.
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and (b) is the communication between the positioning receiver and the mobile phone.

In addition, we implement the proposed algorithm in our own developed TC-OFDM receiver.
The EKF algorithm and two-order FLL assisted three-order PLL algorithm are also implemented to
make a comparison. The performance when the three algorithms track weak TC-OFDM signals can
be evaluated in practical applications as shown in Figure 14. The modified base station is utilized
to generate TC-OFDM signals. Then the TC-OFDM signal is sent to a signal attenuator. The signal
attenuator is used to set different signal power. Then the receiver receives TC-OFDM signal of different
signal power for subsequent baseband processing. Finally, the useful data is transmitted to the mobile
phone for positioning. We use signal attenuator to gradually reduce the signal power to test the ability
of tracking weak signal performance of three algorithms. The test results are shown in Table 3, where it
can be seen that the proposed algorithm has better tracking sensitivity for weak TC-OFDM signals
by 2–4 dB. In the real TC-OFDM system, the weak signal power is generally between −125 dBm to
−130 dBm. But, under the special cases, the signal power is low to−136 dBm. Therefore, the sensitivity
improvement of the proposed algorithm is modest, and it can satisfy the use of existing TC-OFDM
systems. Meanwhile, the proposed carrier loop tracking algorithm in this paper is implemented in
the receiver’s ARM structure. The ARM development resources of existing TC-OFDM receivers can
meet the complexity and computational burden of the proposed algorithm. Furthermore, from Table 3,
the proposed algorithm can effectively track the TC-OFDM signal when the signal power is −136 dBm.
The signal power using the algorithm of FLL-assisted PLL and pure EKF is −132 dBm and −134 dBm,
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respectively. For signals with lower signal power, these two algorithms can no longer track steadily,
and even lose lock, so the improvement of signal tracking sensitivity of the proposed algorithm is
significant for practical applications.Sensors 2018, 18, x FOR PEER REVIEW  19 of 22 
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Table 3. Tracking sensitivity of three algorithms under different signal powers.

Signal Power (dBm) −126 −127 −128 −129 −130 −131 −132 −133 −134 −135 −136

the proposed algorithm O 1 O O O O O O O O O O
EKF O O O O O O O O O - -

FLL&PLL O O O O O O O - 2 - - -
1 The mark O represents the algorithm can track the signal at the corresponding signal power. 2 The
mark—represents the algorithm cannot track the signal at the corresponding signal power.

Furthermore, we ran an actual test on the campus suing the test environment shown in Figure 15.
We set up the base station on the roof of four buildings on our campus. Then we selected the 3th floor
of another building as test building to start our real test using the TC-OFDM receiver. The two-order
FLL assisted three-order PLL and EKF algorithms are implemented in the receiver to compare with
the proposed algorithm. In order to verify the better performance of the proposed algorithm for weak
TC-OFDM signal, we selected 30 test points on the floor of the test building for positioning accuracy
test. The receiver is placed at each test point for ten minutes, then we calculated the Root-mean-square
error (RMSE) of the test points. The corresponding acquisition and positioning algorithms are utilized
for the horizontal positioning. Since the positioning system uses a custom coordinate system for indoor
positioning, the output positioning result is compared with the distance between the selected point and
the origin of the corresponding floor. The RMSE of the positioning accuracy error results of the three
algorithms between the selected point and the corresponding original point are shown in Figure 16,
which shows the horizontal measurement accuracy results of three algorithms. The horizontal axis in
the figure represents the sequence number corresponding to the selected 30 points. The vertical axis
represents the calculation error of the final positioning result corresponding to each selected point.
The positioning results of the blue, red, and black lines respectively represent the three different carrier
loop algorithms: FLL&PLL, EKF, and MLE&KF. The final positioning results of using MLE&KF has
the smallest fluctuations and the best positioning accuracy, which shows the superior performance
of our algorithm compared to other algorithms. Also, these results is verified the effectiveness of the
proposed algorithm in practical applications. The horizontal positioning accuracy is better than 3 m.
The TC-OFDM receiver can be used to achieve accurate positioning in many indoor LBS applications,
such as indoor mall pedestrian navigation and positioning and elderly care terminal. It can be seen
that the positioning accuracy obtained by the proposed algorithm has smaller positioning error and
higher positioning accuracy than the others for weak TC-OFDM signals.
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5. Conclusions

To improve the tracking performance for weak TC-OFDM signals, a novel carrier loop algorithm
based on MLE and KF is proposed in this paper. The algorithm derives the MLE discriminator function
to replace the existing discriminator in carrier loop. The Levenberg-Marquardt (LM) algorithm is
utilized to obtain the MLE cost function consisting of signal amplitude, residual carrier frequency
and carrier phase, and the MLE discriminator function is derived from the corresponding MLE cost
function. In order to further reduce the residual frequency error, the KF is used to smooth the MLE
discriminator function results. Numerical simulation and real data tests are implemented to verify
the performance of the algorithm. The test results indicate that the novel carrier loop algorithm can
improve the tracking sensitivity of the TC-OFDM receiver by taking full advantage of the characteristics
of the carrier loop parameters. Finally, compared with the current carrier loop algorithm, the tracking
sensitivity is effectively improved by 2–4 dB and the positioning accuracy is experimentally improved
in the real environments.

Author Contributions: W.L., X.B. and Z.D. are both the principal investigators; J.M. and B.J. assisted X.B. to
conceive and conduct the experiments and analysis; and X.B. analyzed the data and wrote the paper.

Funding: This work is financially supported by the National Key Research & Development Program of China
(No. 2016YFB0502003).
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