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Abstract: Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for
the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of
materials, the phenomenon, such as aging, poisoning, and damage of the gas sensitive material will
affect the measurement quality of MOS gas sensor array. To ensure the stability of the system, a health
management decision strategy for the prognostics and health management (PHM) of a sensor system
that is based on health reliability degree (HRD) and grey group decision-making (GGD) is proposed
in this paper. The health management decision-making model is presented to choose the best health
management strategy. Specially, GGD is utilized to provide health management suggestions for
the sensor system. To evaluate the status of the sensor system, a joint HRD-GGD framework is
declared as the health management decision-making. In this method, HRD of sensor system is
obtained by fusing the output data of each sensor. The optimal decision-making recommendations
for health management of the system is proposed by combining historical health reliability degree,
maintenance probability, and overhaul rate. Experimental results on four different kinds of health
levels demonstrate that the HRD-GGD method outperforms other methods in decision-making
accuracy of sensor system. Particularly, the proposed HRD-GGD decision-making method achieves
the best decision accuracy of 98.25%.

Keywords: health management decision; grey group decision-making; health reliability degree;
maintenance decision; sensor system

1. Introduction

Sensor systems are extensively used in many fields, such as industry, manufacturing, aviation,
and aerospace. Metal Oxide Semiconductor (MOS) gas sensor has become the most common gas sensor
in sensor system at present because it has the advantages of fast response to target gas, high sensitivity,
simple structure, easy to operation, low cost, and so on. Limited to the properties of metal oxide
gas sensitive materials, the phenomenon such as aging, poisoning and damage of the gas sensitive
material will affect the measurement quality of MOS gas sensor array. As a result, the trained pattern
recognition method greatly degrades the performance of odor detection and analysis to target gases [1].
The influence of the work state and measurement quality of MOS gas sensor array to the performance
of sensor system cannot be ignored.

At present, the following three ways are used to improve the fallen performance of the odor
detection and analysis for sensor system that is caused by the decrease of reliability of the measurement
value of the MOS gas sensor array.
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(1) Improve the material, structure and technology of gas sensor to optimize the stability of gas
sensor [2,3].

(2) Take high redundancy gas sensor array for data acquisition to minimize the impact of fault sensor
on the detection and analysis effect of pattern recognition methods subsequently [4].

(3) Adopt periodic calibration and maintenance for sensor to replace the gas sensor whose
performance decrease obviously [5,6].

Although the above methods can improve the reliability of sensor system to some extent, there are
their own application limitations still existing. Due to the inherent characteristics of MOS gas-sensing
materials, the current technology cannot completely solve the problem of stability of gas-sensing
materials. The high redundancy gas sensor array can only reduce the influence of the fault sensor, but
it cannot completely eliminate the effect of fault gas sensor on the detection and analysis results of the
sensor system. Regular calibration and maintenance not only consume a lot of manpower and material
resources, but they also cannot determine the working state and measurement quality of the sensor
system during the period between twice calibration and maintenance consequently [7–10]. There are
numerous sensitive elements and components in a sensor system and relationships among certain
components that influence each other. Sensitive elements and components often exposed to harsh
environments (high temperature, high pressure, and strong corrosion), which cause the system to fail.
In the past, when one or several sensors faulted in sensor arrays, changing the failure sensors is often
applied. However, it is difficult to guarantee that the consistency of sensors is exactly all the same in
replacement. It is necessary to rectify the parameters of the concentration output model. Sometimes,
there are no standby sensors when the sensor is failure. Therefore, it is necessary to apply health
management decision-making to the sensor system. To ensure the stability of the system, a suitable
solution must be determined to make the health status of all the sensors in the system more clear.

Prognostics and health management (PHM) is used widely in a great number of fields [11–13].
Prognostics and health management decision is a synthesis technique that includes data acquisition,
failure detection, failure diagnosis, failure recovery, health evaluation, failure prediction, maintenance
decision-making, and any other aspect [14–16]. The purpose of health management decision is to
improve the safety and reliability of systems. Health management decision can achieve an evaluation
and prediction of system health status according to the collected data [17]. According to the health
management decision-making method, maintenance recommendations are provided. In other words,
choosing the corresponding measures to reduce the failure level or to prevent the occurrence of a
fault. In this way, system state is clearer and the maintenance times are reduced accordingly [18–20].
The PHM structure of sensor system is shown in Figure 1. Based on some previous work [21–27],
the research of condition monitoring and health evaluation has been completed. This paper will focus
on health management decision-making on the basis of condition monitoring and health evaluation
methods. The purpose of this paper is not to separate the other parts of PHM from health management
decision-making, but to increase the reliability of the system combined with the other parts.

The current health management decision method, according to the theory and technical application
in research, can be divided into three categories: model-based maintenance decision-making [28],
data-based maintenance decision-making [29,30] and reliability-based decision-making [31,32].

The sensor system has a complex structure and changeable working condition and is easily
affected by the environment. The outputs of sensors are greatly influenced by the environment.
The baselines of the same concentrations are different at different times. It is difficult to define the failure
range. As a result, it is hard to build an appropriate model for maintenance decision-making of sensor
system. Data-based maintenance decision-making method is difficult to build for the same reason.
The traditional reliability-based method, such as D-S evidence theory [33–36], Bayes theory [37,38],
and fuzzy set theory [39–43], will face severe challenges with the uncertainty of information and
variety of data types. When provided with conflicting evidence, the D-S evidence theory results tend
to deviate from the understanding of the user. Under system failure, using D-S evidence theory to
meet the conflict changing from health status to failure status is difficult. Priori probability is essential
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for the Bayes decision method. Accuracy results are easily obtained when priori probability is known.
However, obtaining priori probability is difficult. The application will be limited to some extent.
Fuzzy set theory is a great data fusion method, but when handling maintenance decision-making, there
are many subjective factors in the description of information because of its logical reasoning. Therefore,
the representation and processing of information lacks objectivity. The three types of maintenance
decision-making methods are difficult to apply for such systems. In order to evaluate the work status of
the sensor, Shen et al. proposed the concept of health reliability degree of multi-functional sensors [25].
Health Reliability Degree (HRD) is a quantitative description of heath information. However, when
there are too many sensors, a single sensor failure cannot be effectively reflected [26].
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Figure 1. Prognostics and health management (PHM) structure of sensor system. 

In recent years, group decision-making technology has rapidly developed [44–47]. The main 
research content of group decision-making is making effective decisions when multiple decision 
makers make decisions simultaneously. The main problem that must be solved is how to aggregate 
the decision information of different experts with different preferences to obtain consistent decision 
results. By fusing the decision objective of each expert, the accuracy of the system can be improved. 
However, group decision-making technology research is undeveloped. The methods of correctly 
obtaining decision information, including property value, property weight, and decision maker 
weight information have not been established. 

In this paper, a method for health management and maintenance decision based on health 
reliability degree and grey group decision-making (HRD-GGD) is proposed. In this method, HRD of 
sensor system is obtained by fusing the output data of each sensor. The optimal decision-making 
recommendations for health management of the system is proposed by combining historical health 
reliability degree, maintenance probability, and overhaul rate. The HRD-GGD is proposed to realize 
the maintenance of the sensor system by comprehensively considering the decision results of 
multiple expert sets. Not only can the system give out the system state, but also provide the 
maintenance suggestion for each failure mode after the system working and give the confidence 
degree of each maintenance proposal. 

The rest of this paper is organized as follows. In Section 2, the framework of health management 
and maintenance decision and the corresponding methods are presented. In Section 3, the 
experimental setup and analytical discussion are introduced. In Section 4, two situations are 
presented and 400 different health status level samples are analyzed to give the results of health 
management decision. Finally, the conclusion is accounted in Section 5. 
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In recent years, group decision-making technology has rapidly developed [44–47]. The main
research content of group decision-making is making effective decisions when multiple decision
makers make decisions simultaneously. The main problem that must be solved is how to aggregate
the decision information of different experts with different preferences to obtain consistent decision
results. By fusing the decision objective of each expert, the accuracy of the system can be improved.
However, group decision-making technology research is undeveloped. The methods of correctly
obtaining decision information, including property value, property weight, and decision maker weight
information have not been established.

In this paper, a method for health management and maintenance decision based on health
reliability degree and grey group decision-making (HRD-GGD) is proposed. In this method, HRD
of sensor system is obtained by fusing the output data of each sensor. The optimal decision-making
recommendations for health management of the system is proposed by combining historical health
reliability degree, maintenance probability, and overhaul rate. The HRD-GGD is proposed to realize
the maintenance of the sensor system by comprehensively considering the decision results of multiple
expert sets. Not only can the system give out the system state, but also provide the maintenance
suggestion for each failure mode after the system working and give the confidence degree of each
maintenance proposal.

The rest of this paper is organized as follows. In Section 2, the framework of health management
and maintenance decision and the corresponding methods are presented. In Section 3, the experimental
setup and analytical discussion are introduced. In Section 4, two situations are presented and
400 different health status level samples are analyzed to give the results of health management
decision. Finally, the conclusion is accounted in Section 5.
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2. Health Management Decision

2.1. Implementation Framework of Health Management and Maintenance Decision

The main purpose of the health management decision is to obtain the working state of sensor
system quantitatively and to provide the maintenance decision for the system at this status. In order
to evaluate the state of the sensor system, the historical failure information, historical maintenance
records, and trends of historical health status for the system is used in order to model the health
management mode. As the state of the system is clearer, it is easy to reduce the proportion of
unscheduled maintenance in the maintenance plan and change the unscheduled maintenance to
predictive maintenance (scheduled maintenance).

The establishment of framework is the core of health management decision theory. The health
management suggestion is dynamically obtained by collecting fault information, health status, failure
prediction conclusion, and historical maintenance situation. The framework is shown in Figure 2.
The system input vector is composed of three parameters: historical health trend, maintenance
probability, and overhaul rate. The historical health trend indicates the working state of the system
during the last period of time. The parameter is acquired by fusing the historical HRD during
this period. Maintenance probability is obtained from historical maintenance records. The value is
equal to history maintenance times/total test times. The more frequent maintenance of the system,
the greater the probability of failure. The value of maintenance probability is larger at this condition.
Overhaul rate is the parameter of unpredictable maintenance task. The value is equal to the next
inspection time/overhaul cycle. The longer the overhaul time, the greater the uncertainty of the system.
The system is inclined to failure in this way.
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There are three experts in the expert set. The experts can be changed when facing different
problems. In the system, three algorithms are used as the experts, namely D-S evidence theory,
Bayes theory, and fuzzy set theory. Three experts give their suggestion, respectively, according to
the above three parameters. It can be found from the experiment that these three methods have their
limitations, respectively, which will be discussed in Section 4.

The second part is the group decision-making. This part is responsible for data fusion of the
decisions of the expert set to obtain the final decision result. The decision information is recorded as part
of the next decision. The decision information is recorded and used as the basis for the next decision.
The solution set of grey group decision-making is {A1, A2, A3, A4}, the corresponding decision
frameworks are A1 {no maintenance}, A2 {preventive maintenance}, A3 {corrective maintenance},
and A4 {immediate maintenance}. The decision expert set is {e1, e2, e3}, which represent three experts,
respectively. The decision index set is {u1, u2, u3}. The corresponding evidences are u1 {historical
health reliability degree}, u2 {unpredictable maintenance task}, and u3 {historical maintenance record}.
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The evidence property weight vector for three evidences is ω = {ω1, ω2, ω3}. The size of decision
framework is four. The decision framework and its corresponding health status levels and maintenance
levels are shown in Table 1.

The state description and corresponding maintenance suggestion are shown, as follows:

1. Health: The whole system is very healthy. All of the sensors are also healthy. Their measurements
are close to the expected value. There is no need to repair the system.

2. Subhealth: The system is working at subhealthy status. The output of the system is within a
normal range. All of the parameters may fluctuate near their expected value. It is essential to
execute preventive maintenance regularly. Failure detection and failure isolation methods should
be used in this situation.

3. Failure Edge: The system is nearly failure. Their actual measurements have deviated from the
expected value, but they have not deviated completely. In this status some sensors may be faulty,
but the system can work effectively when fault recovery is performed. Corrective maintenance is
needed after experiment [25]. Failure recovery method will be applied in this status to improve
the work status sometimes.

4. Failure: The system is failure. Most of sensors are failure. The actual output has completely
deviated from its expected results. Immediate repaired the failure components or replacement
failure components immediately may be the best choice.

Maintenance decision method can provide the maintenance suggestion for each failure mode and
give the confidence degree of each maintenance proposal.

Table 1. Maintenance level of health and maintenance decision fault preventive measures.

Solution Set Health Status Level Health Description Maintenance Level

A1 Health (HS) healthy condition No maintenance
A2 Subhealth (SHS) normal range Preventive maintenance
A3 failure edge (FES) fault edge Corrective maintenance
A4 Failure (FS) fault condition Immediate maintenance

2.2. Health Reliability Degree (HRD)

HRD is a novel conception to define a quantitative health level. HRD represents the health level
of whole system. The HRD of the system is fused by the health level of all the sensitive elements in
the system. The value ranges from 0 to 1. When the value is 0, the system works at a severe failure
state. When the value is 1, the system works at 100% healthy state. The larger the HRD, the higher the
health level. The relationship between HRD and health level is defined as Table 2. When to evaluate
the health status of the system, the four health status levels, healthy status (HS), subhealthy status
(SHS), failure edge status (FES), and failure status (FS). The specific values vary according to different
application objects [26].

Table 2. Health status level.

Solution Set Range of Health Reliability Degree Health Status Level

A1 0.9 ≤ HRD ≤ 1 Healthy
A2 0.6 ≤ HRD < 0.9 Subhealthy
A3 0.2 ≤ HRD < 0.6 Failure edge
A4 0 ≤ HRD < 0.2 Failure

HRD is fused of four belonging relationship degree (brd) of sensor system by applying grey theory.
The four parameters brd are the keys to computation HRD. The values can be expressed in a simplified
way, as shown in Figure 3. If the brd is equal to 1, then the current working status is completely
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belonged to its corresponding status completely. If the brd is equal to 0, then the current status is
completely not belonged to its corresponding status. The brd is changed with the fluctuation of HRD.
In order to map the relationship between HRD and brd, Relevance Vector Machine (RVM) is used to
fuse four brd to HRD.Sensors 2018, 18, x FOR PEER REVIEW  6 of 22 
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The relationship of brds and output parameters are shown in Figure 4. In summary, the whitening
function of four grey sets are obtained by Equations (1)–(4).

fHS(x) = exp
[
−‖x− µ‖2/2δ2

]
(1)

fSHS(x) =

 exp
[
−‖x− µ + δ‖2/2δ2

]
x < µ

exp
[
−‖x− µ− δ‖2/2δ2

]
x > µ

(2)

fFES(x) =

 exp
[
−‖x− µ + 3δ‖2/2δ2

]
x < µ

exp
[
−‖x− µ− 3δ‖2/2δ2

]
x > µ

(3)

fFS(x) =


1 x < µ− 5δ or x > µ− 5δ

−1/δ · [x− µ + 4δ] µ− 5δ < x < µ− 4δ

1/δ · [x− µ− 4δ] µ + 4δ < x < µ + 5δ

0 µ− 4δ < x < µ + 4δ

(4)

For the all of the components in sensor system, the grey sample evaluation (GSE) matrix at the
single time point can be expressed as GSEj = (gseijk)m×n(i = 1, 2, · · · , m; k = 1, 2, · · · , n), which is
shown in (5).

GSEj =

I1 I2 I3 I4

S1

S2
...

Sm


a1j1 a1j2 a1j3 a1j4
a2j1 a2j2 a2j3 a2j4

...
...

...
...

amj1 amj2 amj3 amj4

 (5)

where j represents the time point, S1 indicates all the elements in sensor system. Ik is the
evaluating criterion.
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The decision weight vector of different elements in sensor system is obtained by using information
entropy method. The probabilistic proportion of kth assessment criterion of ith elements is shown
in (6).

Pik = gseik
n
∑

k = 1
gseik

(i = 1, 2, · · · , m) (6)

Then compute the information the information entropy of the ith elements by (7).

Ei = − 1
ln n

n
∑

k = 1
Pik ln Pik (i = 1, 2, · · · , m) (7)

The weight vector Wj =
{

w1j, w2j, · · · , umj
}

is determined by

wij = 1−Ei
m
∑

i = 1
(1−Ei)

(i = 1, 2, · · · , m) (8)

After obtaining the decision weight, the comprehensive grey assessment values (CGAV) are
calculated by (9).

CGAV = W × GSE (9)

where CGAV = [ brdSH brdSHS brdFES brdFS ].
The flowchart of the HRD methodology is shown in Figure 5 and the detail steps are shown

in Table 3. The correlation among multiple parameters has been fully considered for the weight
distribution of different sensors.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 22 

 

The flowchart of the HRD methodology is shown in Figure 5 and the detail steps are shown in 
Table 3. The correlation among multiple parameters has been fully considered for the weight 
distribution of different sensors. 

Establish 
grey 

evaluating 
criterions

Determine 
whitening 
function of 
grey model

Deciding 
weights

Computing 
grey 

sample 
evaluating 

matrix

Computing  
CGAV of  
criterion 

sets.

Sensor 1

Sensor 2

Sensor n

...

Sensor array

System
HRD

Health 
status level

 

Figure 5. The flowchart of HRD methodology. 

Table 3. HRD computing procedure. 

HRD Based on Grey Theory 
Input: 
Output of the sensor system 
Output: 
Health Reliability Degree 
Procedure: 
Step 1: Establish the grey evaluating criterions, which is shown as (HS, SHS, FES, FS). 
Step 2: Determine the whitening function of the grey model according to Equations (1)–(4). 
Step 3: Compute decision weights by using information entropy method. 
Step 4: Compute Grey Sample Evaluating (GSE) Matrix by (5). 
Step 5: Calculate the CGAV under evaluating criterion sets. 
Step 6: Calculate HRD by RVM. 

2.3. Grey Group Decision-Making 

2.3.1. Grey Risk Decision-Making 

The scheme-set of grey risk group decision-making problem is 1 2( , , , ) nA A A , the decision 

indicator set is 1 2( , , , )mu u u , and the decision group set is 1 2( , , , )qe e e  ( 2)q ≥ , where se  

represents the s-th decision maker. For each decision indicator ju , there are l possible states 

θ θ θ θ= 1 2{ , , , }l . The probability of the state θt  occurring is (1 )s
tjp t l≤ ≤  for the decision maker 

se  under the decision indicator ju , which fits (0 )s
tjp l≤ ≤ , 

1

l
s
tj

t
p l

=

= . The attribute value of plan 

iA  is ( ) [ , ]
sss
ijtijtijta a a⊗ ∈  [48]. The expert decision-making is divided into f-levels. The grey expert 

attribute set is denoted as { }= 1 2, , , fM A A A . 

For the decision expert attribute set M of level f, the decision expert fuzzy attribute value is 

= ≤ ≤(1 )sm k k f . Define the deviation coefficient sa , which indicates the difference between sm  

and the s-th expert actual importance of the expert and ∈ −[ 0.5,0.5]
s

a . 

The index 1 2( , , , )mω ω ω ω=   weight is obtained while using the reciprocal of entropy weight 
method to increase the experts weight with higher accuracy. If the information entropy index is 
smaller, the more information it provides. The greater the role that it plays in the comprehensive 

Figure 5. The flowchart of HRD methodology.



Sensors 2018, 18, 2316 8 of 21

Table 3. HRD computing procedure.

HRD Based on Grey Theory

Input:
Output of the sensor system
Output:
Health Reliability Degree
Procedure:
Step 1: Establish the grey evaluating criterions, which is shown as (HS, SHS, FES, FS).
Step 2: Determine the whitening function of the grey model according to Equations (1)–(4).
Step 3: Compute decision weights by using information entropy method.
Step 4: Compute Grey Sample Evaluating (GSE) Matrix by (5).
Step 5: Calculate the CGAV under evaluating criterion sets.
Step 6: Calculate HRD by RVM.

2.3. Grey Group Decision-Making

2.3.1. Grey Risk Decision-Making

The scheme-set of grey risk group decision-making problem is (A1, A2, . . . , An), the decision
indicator set is (u1, u2, . . . , um), and the decision group set is (e1, e2, . . . , eq) (q ≥ 2), where es represents
the s-th decision maker. For each decision indicator uj, there are l possible states θ = {θ1, θ2, . . . , θl}.
The probability of the state θt occurring is ps

tj(1 ≤ t ≤ l) for the decision maker es under the

decision indicator uj, which fits (0 ≤ ps
tj ≤ l),

l
∑

t = 1
ps

tj = l. The attribute value of plan Ai is

as
ijt(⊗) ∈ [as

ijt, as
ijt] [48]. The expert decision-making is divided into f -levels. The grey expert attribute

set is denoted as M =
{

A1, A2, . . . , A f

}
.

For the decision expert attribute set M of level f, the decision expert fuzzy attribute value is
ms = k(1 ≤ k ≤ f ). Define the deviation coefficient as, which indicates the difference between ms and
the s-th expert actual importance of the expert and as ∈ [−0.5, 0.5].

The index ω = (ω1, ω2, . . . , ωm) weight is obtained while using the reciprocal of entropy weight
method to increase the experts weight with higher accuracy. If the information entropy index is smaller,
the more information it provides. The greater the role that it plays in the comprehensive evaluation,
the greater the weight of the index. In order to reduce the effluence, the reciprocal was used in this
way. The weight of the decision-maker s is

Hs =
m

∑
j = 1

ωj

l

∑
t = 1

(−ps
tj ln ps

tj)
−1 (10)

where ps
tj is the input data. Deviation factor is

as =
Hs − 0.5(minHs + maxHs)

minHs −maxHs
(11)

where as ∈ [−0.5, 0.5]. Let Hs = minHs, as = 0.5. If Hs = maxHs, as = −0.5. Therefore,
the decision-making expert attributes after recuperation are m′s = ms + as.

The expert weight is obtained, as follows:

λs =
m′s

q
∑

s = 1
m′s

(12)
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As Hs increases, more right information included in the decision maker s increases the effectiveness
and increases the weight. Thus, it is more realistic to correct the importance of the decision maker
using entropy to obtain the decision maker weights.

Let zij(⊗) =
q
∑

s = 1
rs

ij(⊗)λs, the standardized synthesis decision matrix can be obtained [49].

z(⊗) =
(
zij(⊗)

)
n×m =

([
zij, zij

])
n×m

(13)

2.3.2. Grey Group Decision Model for Decision-Making

The grey group decision-making theory is used to make the effective choice of the three decision
algorithms and the final comprehensive decision is made by fusing the three types of algorithms.
The specific process is shown in Figure 6. The comprehensive step of the grey group decision-making
theory is shown in Table 4. In summary, the maintenance decision results and the comprehensive
confidence of the system failure modes can be obtained while using the grey group decision-making
method, and the dynamic maintenance plan can be formulated on this basis.

Table 4. The comprehensive decision-making step of grey group decision-making theory.

Grey Group Decision-Making Algorithm

Input:
Historical Health Reliability Degree (HHRD): The parameter is composed of the last n HRDs.
Maintenance Probability (MP): Maintenance probability is equal to history maintenance times/total test times.
Overhaul Rate (OR): Overhaul rate is equal to the next inspection time/overhaul cycle.
Output:
Decision Result: The parameter is the level of the maintenance decision-making. The size of the framework

is four: {no maintenance, preventive maintenance, corrective maintenance, immediate maintenance}
Confidence: The parameter is output vector of the maintenance decision-making confidence.
Procedure:
Step 1: Calculate the interval grey numbers of each decision result for each evidence in the decision framework

under each decision method. The interval grey number is expressed as as
ij(⊗), as

ij(⊗) ∈ [as
ij, as

ij]. as
ij represents the

grey number lower limit and as
ij is the grey number upper limit (i = 1, 2, 3, 4, j = 1, 2, 3, s = 1, 2, 3).

Step 2: According to the upper-lower limit [as
ij, as

ij] in the interval grey number as
ij(⊗) in Step 1, establish the

comprehensive decision matrix (CDM) of each decision method as shown in Table 5.
Step 3: By utilizing the interval grey number weakening transformation, the decision matrix of three decision

methods is initialized and transformed to obtain the standardized decision matrix.
Step 4: Calculate the weight of each decision method. First, determine the effect vector of the three decision

methods for all decision frameworks according to the standardized decision matrix in Step 3. The matrix elements
are the effect vectors of the three decision methods for each decision result in the decision framework. Then,
according to the interval grey number vector distance formula and the weight of each evidence attribute
ωj(j = 1, 2, 3), the space projector distance of each effect vector is calculated. Finally, the ratio between the vector
distance of a decision method and the sum of effect vector distance for the other decision methods is the weight
coefficient λs(s = 1, 2, 3, 4) of the decision method.

Step 5: Calculate the comprehensive decision results. According to the maintenance decision result of the
experts, the confidence of each decision result corresponding to the four decision frames can be obtained. Finally,
according to the weight coefficients of each decision method that were obtained in Step 4, the final decision result is
obtained by applying weighted averaging to the confidence.

Table 5. Comprehensive decision matrix of decision method es(s = 1, 2, 3).

u1 u2 u3

A1 as
11 as

11 as
12 as

12 as
13 as

13
A2 as

21 as
21 as

22 as
22 as

23 as
23

A3 as
31 as

31 as
32 as

32 as
33 as

33
A4 as

41 as
41 as

42 as
42 as

43 as
43
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2.4. The Process of Health Management Decision Method Based on Grey Group Decision

In order to improve the accuracy of the evaluation. The health management decision method
combines grey group decision making and HRD theory to implement health management decision to
sensor system. The detail steps of HRD-GGD are shown, as follows.

Step 1: To obtain the system measurement point parameters of the sensor or network interface,
the data acquisition device is used to collect data.

Step 2: Pre-process the parameters collected by each measuring point in the system.
Pre-processing includes abnormal value elimination, filtering noise reduction, calculating average
value, and 3σ standard deviation.

Step 3: Failure detection, isolation, and diagnostic algorithms should be applied to determine the
location of and the type of failure [21,22].

Step 4: If there is no failure in the array, give out the best estimation value of each sensor, according
to the correlation of sensor array. If failure occurs in the sensor array, the best estimation value of
failure sensor can be obtained, according to the normal data and the value of normal sensor can be got
from the best estimation value of failure sensor and the other normal sensors.

Step 5: Establish the health reliability degree evaluation mode. The results of HRD are used as
the inputs of the historical health status trend. The calculation steps of HRD are thoroughly introduced
in Section 2.2.

Step 6: Establish a health management decision model based on grey group decision-making
theory. Make maintenance decision on various failure modes and give out the corresponding
maintenance suggestion.

Firstly, obtain the evidences for each expert.
The number of evidence is three, expressed as u1, u2, u3, known, as follows:
u1: Analysis of health reliability degree and historical health reliability degree;
u2: Historical failure information and corresponding maintenance records; and,
u3: Prepared system maintenance program.
Evidence u1 is fused according to three decision methods. Evidence u2 and u3 is obtained by

using the whitening function as shown in Figure 7. brd is grey parameters. HS represents Health
Status. SHS represents Subhealth Status. FES represents Failure Edge Status and FS represents Failure
Status Level.

The size of the decision framework is 4. The framework is expressed with a 4-bit binary number:
A1: no maintenance, 0001,
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A2: preventive maintenance, 0010,
A3: corrective maintenance, 0100, and
A4: immediate maintenance, 1000.
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Utilizing the historical experiment data in Step 4. Analysis and prediction of the trend of the
historical health parameters is based on the set of data. Determine the weight of each evidence attribute
ω = (ω1, ω2, ω3) based on historical failure information and maintenance records combined with
the prepared maintenance program. ω2 indicates that maintenance probability is equal to history
maintenance times/total test times. ω3 is the overhaul rate, which is equal to the next inspection
time/overhaul cycle. ω1 = 1 − ω2 − ω3.

Secondly, to process the input data and turn the data to grey numbers. Calculate the confidence
intervals of each evidence with a significance level of 0.05.

Thirdly, establish the comprehensive decision matrix (CDM) of each decision method. The CDM
of the three experts is calculated for each failure model. Then, the decision matrix is standardized to
calculate the standardization comprehensive decision matrix. Finally, the final comprehensive decision
results are obtained. The matrix includes upper bound evaluation matrices, lower bound evaluation
matrices, and whitening evaluation matrices. The upper bound evaluation matrices are CDM(1+),
CDM(2+), and CDM(3+). The lower bound evaluation matrices are CDM(1−), CDM(2−), and CDM(3−).
The whitening evaluation matrices are CDM(1), CDM(2), and CDM(3). The upper bound evaluation
matrices represent the maximum confidence of three evidences in the system. The lower bound
evaluation matrices represent the minimum confidence of three evidences in the system. Whitening
evaluation matrixes represent the confidence of three evidences for whitening degree in the system.
The matrices are shown as (14):

CDM(k) =

 σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

 (14)

where k represents the expert (k = 1, e1; k = 2, e2; k = 3, e3). σij represents the confidence of each evidence.
i is the health level of the decision framework (i = 1, A1; i = 2, A2 ; i = 3, A3; i = 4, A4). j is the evidence
(j = 1, historical health trends; j = 2, maintenance probability; j = 3, overhaul rate).

The steps to calculate the health status level using CDM are shown in Table 6.
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Table 6. Procedure of calculating health status level.

Health Status Level

Step 1: to calculate the health level of the decision framework and the confidence of every evidence.
Step 2: In grey group decision, the weight vector of each evidence attribute isω = (ω1,ω2,ω3)
Step 3: calculate the decision confidence for the expert set by confidencei = ω·CDM.
Step 4: the weight vector for each expertsωe = (ωe1,ωe2,ωe3) is obtained by entropy weight method.

Step 5: calculate the confidence of the final health status level by confidence =
3
∑

i = 1
ωe·CDM(i).

Finally, ranking all of the alternative health status levels in accordance with the confidence and
choosing the optimal health management suggestion with largest confidence.

3. Experimental Setup and Analytical Discussion

The detailed HRD-GGD process is given in Section 2.4. In this part, the problem of health
management decision for an atmosphere pollution gas sensor system is taken as an example to verify
the HRD-GGD method.

3.1. Sensor System Experimental System

The sensor system used for testing atmosphere pollution gas was mainly composed of gas source,
MFCs, gas chamber, sensor array, heater driver circuit, signal conditional circuit, data acquisition
circuit, power supply, and laptop PC. The sensor array that consisted of four different types of gas
sensors (CO, NO2, O3, SO2) and temperature, humidity, and pressure sensors, was fixed in the gas
chamber. The number of each type gas sensor is three. The gas chamber temperature was maintained
at 30 ◦C by constant temperature control. The structure of sensor system is shown in Figure 8 and the
physical picture of sensor system is shown in Figure 9. The normal working ranges and units for the
15 sensors (three CO sensors, three NO2 sensors, three O3 sensors, three SO2 sensors, one temperature,
one humidity, and one pressure sensor) are given in the Table 7. The health management decision
platform is applied to the system. In the experiment, QT is used as the experimental software platform
combined with SQL server software to realize database storage function. The HRD-GGD algorithm is
implemented using Visual Studio.

Table 7. Failure type of senor system and its form.

Failure Name Failure Feature and
Form Failure Place Failure Prevention and

Control Measures

F1 Sensor disconnect Step Response. Lower
than lower threshold Target gas sensor Check the sensor pin,

change the target sensor

F2 Sensor overload Step Response. Above
upper threshold Target gas sensor Check the sensor pin,

change the target sensor

F3 Sensor poisoned No response or
irregular fluctuation Target gas sensor Change the target sensor

F4 Sensor drift Slowly varying.
Baseline offset Target gas sensor Increase the preheating time,

change the target sensor

F5 Abnormal changed Output fluctuation Target gas sensor

Check and replace the filter
capacitor, check and replace
the power supply module,
change the target sensor

F6 Heater circuit failure Sensor has no response.
Heater has no input.

Target gas
sensor circuit

Circuit connection check,
change the chips



Sensors 2018, 18, 2316 13 of 21

Sensors 2018, 18, x FOR PEER REVIEW  13 of 22 

 

3.1. Sensor System Experimental System 

The sensor system used for testing atmosphere pollution gas was mainly composed of gas 
source, MFCs, gas chamber, sensor array, heater driver circuit, signal conditional circuit, data 
acquisition circuit, power supply, and laptop PC. The sensor array that consisted of four different 
types of gas sensors (CO, NO2, O3, SO2) and temperature, humidity, and pressure sensors, was fixed 
in the gas chamber. The number of each type gas sensor is three. The gas chamber temperature was 
maintained at 30 °C by constant temperature control. The structure of sensor system is shown in 
Figure 8 and the physical picture of sensor system is shown in Figure 9. The normal working ranges 
and units for the 15 sensors (three CO sensors, three NO2 sensors, three O3 sensors, three SO2 sensors, 
one temperature, one humidity, and one pressure sensor) are given in the Table 7. The health 
management decision platform is applied to the system. In the experiment, QT is used as the 
experimental software platform combined with SQL server software to realize database storage 
function. The HRD-GGD algorithm is implemented using Visual Studio. 

The system is used in the laboratory. The acquisition device utilized USB-bus cards (USB-2089, Art 
Technology Development Co. Ltd., Beijing, China) with 16 analog inputs at up to 400 KHz and a 14-bit 
A/D conversion accuracy. The sampling period is once per second. The failure data is generated by the 
failure simulating software. By analysis of the feature of historical failure data, the failure forms of 
different failures are summarized in the software. The maintenance suggestions are given according to 
practical experience. The failure information and maintenance suggestions are given in Table 7. 

Table 7. Failure type of senor system and its form. 

Failure Name 
Failure Feature and 

Form 
Failure Place Failure Prevention and Control Measures 

F1 
Sensor 

disconnect 
Step Response. Lower 
than lower threshold 

Target gas 
sensor 

Check the sensor pin, change the target sensor 

F2 Sensor 
overload 

Step Response. Above 
upper threshold 

Target gas 
sensor 

Check the sensor pin, change the target sensor 

F3 
Sensor 

poisoned 
No response or 

irregular fluctuation 
Target gas 

sensor Change the target sensor 

F4 Sensor drift 
Slowly varying. 
Baseline offset 

Target gas 
sensor 

Increase the preheating time, change the target 
sensor 

F5 
Abnormal 
changed 

Output fluctuation 
Target gas 

sensor 

Check and replace the filter capacitor, check and 
replace the power supply module, change the 

target sensor 

F6 
Heater circuit 

failure 
Sensor has no response. 

Heater has no input. 
Target gas 

sensor circuit 
Circuit connection check, change the chips 

 
Figure 8. The model of the sensor system. 

 
Gas Chamber

Air Supply

MFC(CO)

MFC(SO2)

MFC(NO2)

MFC(O3)

MFC(Air)

O3 Source

NO2 Source

SO2 Source

CO Source

control valve control valve

Gas Circuit

Out Door

Signal Conditioning 
Circuit

Heating Drive 
Circuit

Data Acquisition 
Circuit

Display and Storage 
Device

Circuit

Sensor Array

T H P

CO-1 CO-2 CO-3

SO2-1 SO2-2 SO2-3

NO2-1 NO2-2 NO2-3

O3-1 O3-2 O3-3

Gas Calibrator

Figure 8. The model of the sensor system.Sensors 2018, 18, x FOR PEER REVIEW  14 of 22 

 

 
 

(a) (b) 

Figure 9. (a) Physical picture of sensor system; and, (b) display interface. 

3.2. Experiment Data 

The data of each sensor are the voltage values collected by the 15 sensors in Table 8. Both the 
test and training samples include normal samples and fault samples. The normal samples are 
historical experimental data, i.e., system history experimental samples. The major frequent failure 
part in the sensor system is the sensor array. So, the failure type is mainly aimed at sensor array and 
heater drive circuit. The system HRD is the HRD of sensor array. The fault samples are analysed using 
fault simulation software, according to the fault modes. Figure 10 illustrates the sensor response 
process when exposed to 50 ppm CO in experiment. Each set of data includes 15 measurement points, 
with a sampling time of 1 s. The experiment involved 2 min for sensor to response completely and 2 
min for the sensor to recover. When the system works for a long time, the performance of the sensor 
system will decrease with the increasing of running time. The historical HRD of the sensor system in 
200 h is shown in Figure 11. 

F1–F5 are the failure of sensors, F6 is the failure of heater circuit. Because of the correlation 
among components, the output tends to be abnormal when the system fails. F1 to F6 are both sensors 
or circuit faults for single sensor. Every sensor fault can be diagnosed as a kind of failure. Due to the 
same form of expression and different location, it can be classified as a kind of failure. When multiple 
failures occur, which is to say that different sensors have different failures at the same time. This 
situation can be understood as multiple fault superposition, not as new failure. 200 sets of historical 
data are used for obtaining the best work state. 400 groups data of different health status level (each 
type of health status level contains 100 groups data) are used for testing. 

Table 8. The scope of all the sensors. 

Sensor Range Unit Sensor Range Unit 
CO-1 1–4 V O3-1 0.15–1.8 V 
CO-2 1–4 V O3-2 0.15–0.9 V 
CO-3 0.3–1.8 V O3-3 0.15–0.4 V 
NO2-1 0.3–5 V SO2-1 2–5 V 
NO2-2 0.3–5 V SO2-2 1.3–5 V 
NO2-3 0.1–1.5 V SO2-3 1.3–3.7 V 

T 15–50 °C H 20–65 %RH 
P 0.09–0.12 Kpa    

Figure 9. (a) Physical picture of sensor system; and, (b) display interface.

The system is used in the laboratory. The acquisition device utilized USB-bus cards (USB-2089,
Art Technology Development Co. Ltd., Beijing, China) with 16 analog inputs at up to 400 KHz and a
14-bit A/D conversion accuracy. The sampling period is once per second. The failure data is generated
by the failure simulating software. By analysis of the feature of historical failure data, the failure forms
of different failures are summarized in the software. The maintenance suggestions are given according
to practical experience. The failure information and maintenance suggestions are given in Table 7.

3.2. Experiment Data

The data of each sensor are the voltage values collected by the 15 sensors in Table 8. Both the test
and training samples include normal samples and fault samples. The normal samples are historical
experimental data, i.e., system history experimental samples. The major frequent failure part in the
sensor system is the sensor array. So, the failure type is mainly aimed at sensor array and heater
drive circuit. The system HRD is the HRD of sensor array. The fault samples are analysed using fault
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simulation software, according to the fault modes. Figure 10 illustrates the sensor response process
when exposed to 50 ppm CO in experiment. Each set of data includes 15 measurement points, with a
sampling time of 1 s. The experiment involved 2 min for sensor to response completely and 2 min for
the sensor to recover. When the system works for a long time, the performance of the sensor system
will decrease with the increasing of running time. The historical HRD of the sensor system in 200 h is
shown in Figure 11.

F1–F5 are the failure of sensors, F6 is the failure of heater circuit. Because of the correlation among
components, the output tends to be abnormal when the system fails. F1 to F6 are both sensors or circuit
faults for single sensor. Every sensor fault can be diagnosed as a kind of failure. Due to the same form
of expression and different location, it can be classified as a kind of failure. When multiple failures
occur, which is to say that different sensors have different failures at the same time. This situation can
be understood as multiple fault superposition, not as new failure. 200 sets of historical data are used
for obtaining the best work state. 400 groups data of different health status level (each type of health
status level contains 100 groups data) are used for testing.

Table 8. The scope of all the sensors.

Sensor Range Unit Sensor Range Unit

CO-1 1–4 V O3-1 0.15–1.8 V
CO-2 1–4 V O3-2 0.15–0.9 V
CO-3 0.3–1.8 V O3-3 0.15–0.4 V

NO2-1 0.3–5 V SO2-1 2–5 V
NO2-2 0.3–5 V SO2-2 1.3–5 V
NO2-3 0.1–1.5 V SO2-3 1.3–3.7 V

T 15–50 ◦C H 20–65 %RH
P 0.09–0.12 KpaSensors 2018, 18, x FOR PEER REVIEW  15 of 22 
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4. Results and Analysis

The health management decision of sensor system means that the maintenance suggestion is
implemented in a global way and it refers to all of the sensors and components. In this section,
two situations that represent different health levels are introduced to interpret the proposed strategy.

Situation 1: all the sensor and components are fault free

The collected data is processed using the grey data fusion method to obtain the historical health
reliability degree, the details are shown in Section 2.2. The last seven health reliability degrees are
used as the reference historical health parameter. The analysis and prediction of the historical health
parameters trend are performed based on a data set. Historical failure information, maintenance
records, and the established maintenance program are also considered.

Consider a random experiment as an example. The size of decision framework is 4. The framework
is expressed as: {no maintenance}: A1, {preventive maintenance}: A2, {corrective maintenance}: A3,
{immediate maintenance}: A4. Regard a series of historical health reliability degree as evidence. First,
obtain the series of experimental data and the previous seven series. The historical health parameters
are shown in Table 9 and are fused by three experts’ decision methods. Deal with data by grey
processing to obtain the grey interval and calculate separately. Deal with data by grey processing to
obtain the grey interval and calculate the confidence of each level separately. The decision result of
evidence 1: historical health trends are shown as (15).

Table 9. Historical health parameters for situation 1.

Evidence A1 A2 A3 A4

1 0.8150 0.3930 0.0039 0
2 0.8648 0.3357 0.0029 0
3 0.8568 0.3447 0.0029 0
4 0.8556 0.3457 0.0031 0
5 0.7337 0.4792 0.0057 0
6 0.9388 0.2373 0.0014 0
7 0.9393 0.2449 0.0014 0

According to detection conditions, the historical maintenance number is selected as five and
the total experiment time is 100 times. The next inspection time is set as 300 days and the overhaul
cycle is 365 days. Attribute weights are determined as ω = (ω1, ω2, ω3) = (0.7719, 0.05, 0.1781).
ω2 = 0.05 is the maintenance probability, which is equal to historical maintenance times/total test
times. ω3 = 0.1781 is the overhaul rate, which is equal to the next inspection time/overhaul cycle. In the
example, the historical maintenance times are five and total test times are 100. The next inspection
time is 300 days and the overhaul cycle are 365 days. The decision matrix that was established by
the fusion of each decision method is shown from Tables 10–12. The attribute weights of these three
decision methods are (0.4158, 0.3467, 0.2375), which is attained by (10)~(12). The whitening degree
is the mathematical expression of whitening rules in the grey set under the existing information.
Whitening degree is obtained by whitening function, which is shown in Figure 7. The comprehensive
decision matrixes that were obtained using the three decision methods by using (14).

Table 10. Comprehensive decision matrix of decision method e1.

u1 u2 u3

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

A1 [0.8562, 0.8617] 0.8589 [0.8690, 0.8707] 0.8698 [1, 1] 1
A2 [0.1383, 0.1438] 0.1411 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667
A3 [0, 0] 0 [0, 0] 0 [0, 0] 0
A4 [0, 0] 0 [0, 0] 0 [0, 0] 0

weight 0.7719 0.05 0.1781
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Table 11. Comprehensive decision matrix of decision method e2.

u1 u2 u3

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

A1 [0.8860, 0.9026] 0.8943 [0.8690, 0.8707] 0.8698 [1, 1] 1
A2 [0.0974, 0.1140] 0.1057 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667
A3 [0, 0] 0 [0, 0] 0 [0, 0] 0
A4 [0, 0] 0 [0, 0] 0 [0, 0] 0

weight 0.7719 0.05 0.1781

Table 12. Comprehensive decision matrix of decision method e3.

u1 u2 u3

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

A1 [0.6579, 0.6611] 0.6595 [0.8690, 0.8707] 0.8698 [1, 1] 1
A2 [0.3348, 0.3381] 0.3364 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667
A3 [0.0040, 0.0041] 0.0040 [0, 0] 0 [0, 0] 0
A4 [0, 0] 0 [0, 0] 0 [0, 0] 0

weight 0.7719 0.05 0.1781

Since the results of the matrix are floating from 0 to 1, normalization is not required. The final
grey group decision-making result can be obtained by directly fusing with the weight. For another
decision-making method, such as D-S evidence theory, Bayes theory, and fuzzy set theory are used as
the off-the-shelf maintenance decision-making method. The decision results are shown in Figure 12.
According to descending order of the maintenance confidence, the ranks and maintenance suggestions
that are based on grey group decision and another three comparative decision methods are shown in
Table 13, the rank of four methods are shown as A1 > A2 > A3 > A4, the final maintenance suggestion
of four methods are all A1: no maintenance, which is suitable to the status description.
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In order to verify the evaluation ability of maintenance decision method for health status,
100 groups of health status data at different times were used to test the accuracy of evaluation.
The confidence of the 100 groups health state data to four health status level are shown in Figure 13.
False alarm occurred when using Bayes theory. The accuracy for the four methods is shown in
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Table 14. Grey group decision ignores the disadvantage of Bayes theory for this situation to improve
the decision accuracy.

Table 13. The rank and maintenance suggestion of Situation 1.

Method Rank Maintenance Suggestion

Grey Group Decision A1 > A2 > A3 > A4 A1: No Maintenance
D-S evidence Theory A1 > A2 > A3 > A4 A1: No Maintenance

Bayes Theory A1 > A2 > A3 > A4 A1: No Maintenance
Fuzzy Set Theory A1 > A2 > A3 > A4 A1: No Maintenance
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Situation 2: single sensor is failure

To verify the effectiveness of the grey group maintenance decision method, situation 2 is used to
verify the versatility and correctness of the method. In situation 2, the data of each group are all kinds
of failures simulated by fault simulation software. The attribute weights areω = (ω1,ω2,ω3) = (0.0932,
0.4, 0.5068). In this example, the historical maintenance times are 40 and the total test times are 100.
The next inspection time is 250 days and the overhaul cycle is 365 days.

The decision results of four methods are shown in Figure 14. All of the decision results are
immediate maintenance except for the fuzzy set. The ranks and maintenance suggestions based on
grey group decision and other three comparative decision methods are shown in Table 15.

Table 14. The accuracy of maintenance decision-making.

Health Status Level Grey Group Decision D-S Evidence Theory Bayes Theory Fuzzy Set Theory

A1 100% 100% 94% 100%
A2 100% 93% 100% 94%
A3 95% 40% 95% 60%
A4 98% 49% 98% 93%

average 98.25% 65.5% 96.75% 85.75%
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To verify the effectiveness of the grey group maintenance decision method for single failure.
100 groups of failure status data are used for testing. The decision results are shown in Figure 15.
The decision accuracies are shown in Table 14. The result of grey group decision is the same as Bayes
theory and it is superior to the other algorithm. The result of D-S evidence theory is fluctuated and it
is hard to distinguish the optimal maintenance result. The confidences of four health status level of
fuzzy set theory are almost at the same level and it is difficult to realize the optimal maintenance result
Grey group decision utilizes the advantage of Bayes theory for this situation to ignore the inaccuracy
result of the other experts.Sensors 2018, 18, x FOR PEER REVIEW  19 of 22 
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The accuracy of maintenance decision-making which is verified by 400 groups different health
status level samples (100 groups for each health status level) are shown in Table 14. It is not difficult
to find out from the above test that D-S evidence theory has good detection results at health state.
However, it cannot be detected effectively at the failure state because of the large range data fluctuation.
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Bayes theory has a good decision-making result for the failure status, but false alarm will appear at
health state. The fuzzy set theory is very good in the health state. But, in the case of failure, the health
statuses often appear with a similar confidence, and cannot be effectively evaluated. According to the
group decision method, the grey group decision exerts the advantage of the D-S evidence theory and
fuzzy set theory in the health state and it reduces the missing alarm rate. In the case of failure, it plays
the advantage of the Bayes theory and it reduces the probability of false alarm.

Table 15. The rank and maintenance suggestion of Situation 2.

Method Rank Maintenance Suggestion

Grey Group Decision A4 > A3 > A2 > A1 A4: Immediate Maintenance
D-S evidence Theory A4 > A3 > A2 > A1 A4: Immediate Maintenance

Bayes Theory A4 > A3 > A2 = A1 A4: Immediate Maintenance
Fuzzy Set Theory A3 > A4 > A2 > A1 A3: Collective Maintenance

5. Conclusions

In this paper, a method of health management decision strategy of a sensor system is proposed by
utilizing HRD-GGD theory. Health reliability degree strategy is utilized to quantify system state and to
provide support for decision making. The system can provide the maintenance suggestion after the
system runs and give the confidence degree of each maintenance proposal. The experimental results
show that this method can evaluate the system state effectively, and the accuracy rate of maintenance
recommendation is 98.25%. The result proves that the accuracy is improved over 2% when compared
with the other methods and the decision results are optimal under all health status levels.

In the future, we will investigate the remain life of sensor system and failure prediction by analysis
of the historical trend of MOS sensor degradation in the sensor system.
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