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Abstract: As a multichannel signal processing method based on data-driven, multivariate empirical
mode decomposition (MEMD) has attracted much attention due to its potential ability in self-adaption
and multi-scale decomposition for multivariate data. Commonly, the uniform projection scheme
on a hypersphere is used to estimate the local mean. However, the unbalanced data distribution in
high-dimensional space often conflicts with the uniform samples and its performance is sensitive to
the noise components. Considering the common fact that the vibration signal is generated by three
sensors located in different measuring positions in the domain of the structural health monitoring for
the key equipment, thus a novel trivariate empirical mode decomposition via convex optimization
was proposed for rolling bearing condition identification in this paper. For the trivariate data matrix,
the low-rank matrix approximation via convex optimization was firstly conducted to achieve the
denoising. It is worthy to note that the non-convex penalty function as a regularization term is
introduced to enhance the performance. Moreover, the non-uniform sample scheme was determined
by applying singular value decomposition (SVD) to the obtained low-rank trivariate data and then
the approach used in conventional MEMD algorithm was employed to estimate the local mean.
Numerical examples of synthetic defined by the fault model and real data generated by the fault
rolling bearing on the experimental bench are provided to demonstrate the fruitful applications of
the proposed method.

Keywords: trivariate empirical mode decomposition; convex optimization; low-rank matrix
approximation; rolling bearing condition identification

1. Introduction

With the development of industrial production, the key equipment and structure always have the
characteristics of complex structure, variable operation status and continuous online service. Especially
in the metallurgical industry, most parts such as rolling bearing are working under an environment
of high speed, overloading and high temperatures. As an important approach of structural health
monitoring, the damage feature extraction algorithm for rolling bearings based on signal processing
technology has important significance [1–3]. Naturally, the vibration signal is expressed as nonlinear,
non-stationary and time-varying [4–8]. Moreover, the noise components directly affect the performance
of the signal analysis [9–11]. Thus, improved signal processing methods are required.

In order to improve the signals to noise ratio (SNR) of actual measured vibration signal,
many scholars have done a lot of research work [12–16]. Short-time Fourier transform (STFT)
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is presented as a modified edition of conventional Fourier transform, which is used to analysis
non-stationary signals [17]. Since the size and shape of analysis window are fixed, it cannot achieve
adaptability with the change of the target signal. Based on it, Wavelet Transform (WT) is proposed
by the inner product operator between the analysis signal and the mother wavelet function [18,19].
Moreover, the multi-scale analysis is conducted by choosing different factors. The performance is still
related to the basis function and decomposition level selection. So far, the research has focused on two
radically different techniques. The first set of techniques is known as reassignment methods, while the
second set of algorithms is referred to as data driven algorithms. Synchronous wavelet transform
(SWT) is regarded as the most common application reassignment method. It can produce highly
localized time-frequency representations in the scale domain [20]. However, it may be unsuitable
for fast varying instantaneous frequency. Empirical Mode Decomposition (EMD) is a typical signal
adaptive decomposition algorithm. If the signal contains intermittent modes, its performance is
affected by the mode-mixing problem (MMP) [21,22]. Thus, by adding random white noises, Ensemble
EMD (EEMD) and its improved edition have been proposed [23–25]. In essence, the problem of MMP,
namely the stability of decomposition, determines the ultimate performance of signal decomposition.

The above-mentioned signal processing method of time-frequency analysis is mainly oriented to
the single sensor. The single sensor can only provide limited useful information, and the characteristics
of the early equipment running status information are hard to be inspected. On the contrary,
the multi-channel signals processing technology can be employed to identify the multichannel
correlation, improve the accuracy and reliability of diagnosis. In short, it can provide more scientific
evaluation to equipment online service quality [26]. Especially the sensor and measurement technology
have made tremendous progress, multivariate signal processing method is the focus of this paper.
Since EMD has presented a better potential, it can be set up as a powerful way in multi-channel signal
processing. The concept of bivariate empirical mode decomposition (BEMD) was firstly proposed by
Rilling [27]. By using the rotation property of quaternions, Empirical mode decomposition for trivariate
signals (TEMD) is presented, which is employed to obtain multiple projections on the sphere [28].
Then, a multivariate extension of EMD has been proposed by Rehman, namely multivariate empirical
mode decomposition (MEMD) [29]. As a critical step in signal decomposition, the uniformly sampled
scheme is used to estimate the local mean envelope of BEMD and MEMD input signals in multiple
directions in multi-dimensional space. In solving the problem of the decomposition stability, MEMD
has more superiority than BEMD and conventional TEMD, it has been widely used in signal processing
and other fields [30,31]. When the MEMD is used to identify the early damage status identification of
the rolling bearing, the multi-channel data in high-dimensional space is usually inhomogeneous, and
the feature information will be inferred by noise components. The noise components are generated
by thermal shock, acoustic noise, base strain, the thermal noise inside the amplifier circuit and so on.
It will be added to the original true data and produce measurement error. This phenomenon usually
indicates that it is difficult to identify the real fault characteristic frequency information under strong
noise environment. Therefore, the MEMD method has some shortcomings. For instance, it is sensitive
to the noise components and has poor signal decomposition ability for complex signal. Generally,
the vibration signal is measured by three sensors located in different positions and the trivariate
signal is expressed as the form of matrix. Distinguished from MEMD, trivariate empirical mode
decomposition based on low-rank matrix approximation via convex optimization framework and
non-convex regularization term is proposed firstly to achieve better denoising performance. It has been
proved that the non-convex penalty functions can obtain more accurate low-rank structure [32]. Then,
considering the inhomogeneity of trivariate data distribution in high-dimensional, a non-uniformly
sampled scheme based on singular value decomposition (SVD) is presented to obtain low-rank
trivariate data matrix. The obtained principal component is corresponding to the directions of highest
curvature, and the main features of the data can be sampled. Subsequently, a novel trivariate empirical
mode decomposition is put forward in this paper for rolling bearing condition identification. In order
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to verify the validity of the method, the simulation signal model and measured experimental data of
fault rolling bearing are conducted to analysis.

This paper was organized as follows: the basic principles and characteristics of the trivariate
empirical mode decomposition via convex optimization were introduced in the second chapter. In the
third section, the numerical simulation analysis was conducted to confirm the effectiveness of the
algorithm. In the fourth part, the validity of the proposed method was verified by the bearing data of
the experimental bench. The conclusions of the study were given in section fifth.

2. Theoretical Descriptions

Given a trivariate signal Y(t) = {y1(t), y2(t), y3(t)} generated by the mechanical equipment using
triaxial acceleration sensor or three sensors installed in different positions, it is a common fact that the
actual measured trivariate signal is composed by useful signal and noise components. The problem of
estimating a low-rank matrix X from its noisy observation Y is considered as follows:

Y = X + W Y, X, W ∈ R3×n (1)

where W represents zero-mean additive white Gaussian noise.
It was reported that the non-convex regularization methods outperformed the convex

regularization methods on matrix approximation and could enhance sparsity [32]. Thus, in this paper,
a low-rank matrix approximation [33] for the trivariate signal Y can be expressed as the following
model:

arg min
X
{ψ(X) =

1
2
||Y−X||2F + λ0

k

∑
i=1

φ(σi(X); a0) + λ1

m

∑
i=1

n

∑
j=1

φ(Xij; a1)} (2)

where k = min(m, n), φ is the parameterized non-convex penalty function, σi(X) represents
the singular values of the matrix X. a0 and a1 represent the parameters of non-convex penalty
functions, which are associated with the convexity of the objective function. The weights of two
parameterized non-convex penalty functions are adjusted by the regularization parameters λ0 and
λ1. Obviously, if λ1 = 0 and φ(x, a) = |x|, Equation (2) is transformed into a typical nuclear norm
minimization problem.

Typical non-convex penalty functions should be 2nd order differentiable, continuous and
symmetric. An example of a non-convex penalty function is the rational penalty function, which is
defined as:

φ(x, a) =
|x|

1 + a|x|/2
(3)

Equation (3) is parameterized by the parameter a ≥ 10. The proximal operator of φ(x, a) is
expressed as:

proxφ(y, λ, a) = argmin
x∈R

{
1
2
(y− x)2 + λφ(x, a)

}
(4)

It is noted that the proximity operator is associated with the non-convex function φ(x, a). In order
to ensure that the objective function ψ(X) is strictly convex, the parameter a0 and a1 should meet the
following requirement:

0 ≤ a0λ0 + a1λ1 < 1 (5)

Then, the alternating direction method of multipliers (ADMM) algorithm in conjunction with
variable splitting is employed to solve the trivariate data matrix of the low-rank approximation problem.
The ADMM algorithm is applied to Equation (2), and yields the following iterative procedure. Firstly,
initialize the model with Z = 0 and D = 0. Then, the iterative optimization is conducted as following:

X← proxφ(
1

1 + µ
(Y + µ(Z + D)),

λ1

1 + µ
, a1) (6)
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[U, Σ, V]← SVD(X−D) (7)

Z← U · proxφ(Σ, λ0/µ, a0) · V
T (8)

D← D− (X− Z) (9)

where µ > 1 is the scalar augmented Lagrangian parameter to ensure the strictly convex of
the algorithm; SVD indicates the operator of singular value decomposition. The trivariate data
preprocessing method based on low-rank matrix approximation via convex optimization requires the
specification of two regularization parameters λ0 and λ1, two penalty parameters a0 and a1, and the
scalar augmented Lagrangian parameter µ. Generally, the regularization parameters λ0 and λ1 are
determined by the follow formulation:

λi = βiσ (10)

where βi is chosen so as to maximize the signal-to-noise ratio. σ is corresponding to the spectral noise
variance, which can be estimated by the wavelet coefficients by using the local variance analysis [34].
The values of two penalty parameters a0 and a1 can be simplified chosen by Equation (5). It’s also
noted that the value of µ does not affect the solution due to the iterative algorithm converges, and
µ = 1.5 is always suitable for algorithm convergence. Through the processing of the proposed method,
a low-rank approximation matrix X is obtained from the observed spectral data matrix X.

Then, the singular value decomposition (SVD) of the covariance matrix to X is performed,
E
{

XXT} = VΛVT , where V is the eigenvector matrix and Λ = diag{λ1, λ2, λ3} is the eigenvalues
corresponding to the eigenvalue matrix. The corresponding azimuth angle φH and inclination angle θH
of the Hammerseley projections are obtained by uniformly sampling a sphere using the Hammerseley
sequence [29]. It is aimed to identify the Cartesian coordinates of the uniformly sampled sphere.
Thus, the non-uniform sample ep on a sphere can be determined by constructing an ellipsoid with the
following parameters:

el =


λ

1
3
1 cos θH sin φH

λ
1
3
2 sin θH cos φH

λ
1
3
3 cos φH

 (11)

The direction of the highest curvature is sampled by rotating the ellipsoid el . Therefore, the novel
non-uniform samples scheme can be defined as ep = Vel = {e1, e2, e3}. As a critical step of signal
decomposition, the local mean estimation according to the conventional MEMD algorithm using the
non-uniform samples ep is implemented and the computational procedure of trivariate empirical mode
decomposition via convex optimization can be described in Algorithm 1.

Algorithm 1. Trivariate empirical mode decomposition via convex optimization

1. Perform the low-rank matrix approximation via convex optimization framework to a trivariate signal
Y(t) and the new observed signal X(t) can be obtained.

2. The projection pk(t)(k = 1, 2, . . . , K) can be calculated of the input low-rank trivariate signal X(t) along

the direction vector
{

e1
k, e2

k, e3
k
}

. It should also be noted that K is the number of the directional
vector sets.

3. The time instants tk
m corresponding to the maxima of the set of projected signals pk(t) is determined.

4. Interpolate [tk
m, X(tk

m)] to obtain multivariate envelope curves Ek(t). Then, the envelop mean can be

calculated M(t) = 1
K

K
∑

k=1
Ek(t).

5. Calculate the residual by R(t) = X(t)−M(t). If the stopping criterion condition of iteration can be
satisfied, then R(t) is set as one IMF and repeat the above steps to X(t)−R(t) until the next IMF is
isolated. If it does not satisfy the stopping criterion, then repeat the above steps to R(t) until it meets
the criterion.
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Cauchy-type convergence condition is chosen as the stopping criterion of the sifting iterative
process, which indicates the iterative will stop under the circumstance that the discrepancy between
adjacent sifting results is less than a threshold with a range 0.2–0.3. For clarify, K = 32 is always
suitable for the application of trivariate signal empirical mode decomposition.

3. Simulation Signal Analysis

Rolling bearing is an important transmission component supporting the rotating part of the
mechanical equipment. If a bearing with an outer race that is fixed to the structure, a typical fault
rolling bearing model can be simplified as follows [35]:

xi(t) = α sin(2π fit)[1 + β sin(2π frt)] (12)

where fi is the inner ring failure frequency and fr is corresponding to rotational frequency, respectively.
Then, the following three source signals X = {x1, x2, x3} are employed to simulate the collected
vibration signals in this section:

x1(t) = 0.1 cos(2π f1t + 10) (13)

x2(t) = 0.2 sin(2π f2t− 15) (14)

x3(t) = 0.3 sin(2π fit)[1 + sin(2π frt)] (15)

where the characteristics frequency about three simulation source signals are chosen as f1 = 10 Hz,
f2 = 45 Hz, fi = 110 Hz, fr = 10 Hz. The sampling number and sampling frequency are set as
N = 1024 and fs = 1024 Hz, respectively.

In the analog process of sensor collecting signal, the vibration signal will be collected by any
sensor simultaneously, and the trivariate signal is the instantaneous mixed signal composed by three
above mentioned simulation signal. Considering the influence of noise, the zero-mean additive white
Gaussian noise with variance 0.5 is added to the observation signal, and it is denoted as SN . A random
matrix of 3 × 3 is chosen to mix the simulation source signal together and it can be expressed as
follows:

A =

 0.6241 0.3674 0.8852
0.6791 0.9880 0.9133
0.3955 0.0377 0.7962

 (16)

Then, the instantaneous mixed signal model can be described as Y = AX+SN and Y = {y1, y2, y3},
which indicates trivariate signal with noisy generated by three source signal using three sensors.
The analysis results of trivariate signal in time-domain and frequency spectrum provided by FFT are
shown in Figures 1 and 2.
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Figure 2. The frequency spectrum of mixed trivariate signal with noise.

As shown in Figures 1 and 2, it is hard to identify the frequency characteristics and modulation
phenomenon of the observed trivariate signals with noisy. Only the inner race fault frequency fi in
channel#3 can be inspected, and other frequency components are not obvious for all the channels. It is
illustrated that the influence of noise should not be neglected and more advanced methods are required.
Then, the conventional MEMD methods are employed to deal with the simulation signal and the result
is plotted in Figure 3. From the analysis result of the three channels shown in Figure 3, it is proved
that MEMD has advantages in guaranteeing the stability of the decomposition results. However,
the characteristic frequencies f1, f2 and the frequency modulation fi ± fr still cannot be identified.
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Figure 3. The result provided by the MEMD method.

Eventually, the proposed method is applied to simulate trivariate signal and the result is drawn
in Figure 4. For clarify the denosing performance, the 3th, 4th, and 7th IMFs are chosen according to
the maximum similarity with the original signal shown in Figure 5. It is obvious that the frequency
modulation fi ± fr can be found in the 3th IMF. In addition, the characteristic frequencies f1, f2 also
can be viewed in the 4th and 7th IMF, respectively. The result provided by the proposed method is
coincides with practical situation and the effective can be demonstrated.
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4. Analysis of the Roll Bearing on the Experimental Bench

Commonly, the measured vibration signal is more complicated than the simulation signal in
the process of actual signal analysis. In order to verify the effectiveness of the proposed algorithm
of trivariate empirical mode decomposition via convex optimization, the outer ring failure signal of
rolling bearing in the experimental device is analyzed. The experimental apparatus and its structure
diagram are drawn in Figure 6, where bench comprises a drive shaft which is driven by 550 W
(220 V/50 Hz) AC motor.
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The electric spark machining method is used to carry out pitting treatment on the outer ring of the
replaceable bearing to simulate the outer faults. A PCB-352C33 acceleration sensor is used to collect the
acceleration signals. The installation position of sensor is located in the horizontal direction, vertical
direction and axial direction of the bearing on the right side of the experimental platform. The bearing
type is deep groove ball bearing with model number of 6207. The external diameter of removable
bearing was D = 72 mm and the inner diameter was d = 35 mm, respectively. The testing flow chart for
experimental bench is demonstrated in Figure 7 and the sampling frequency is determined as 16,000 Hz.
Vibration detection in horizontal (x), vertical (y) and axial (z) directions should be considered as far as
possible, which is aimed to collect the trivariate signal. Suppose there is no relative sliding between the
raceway surface and the rolling elements, and the outer ring is fixed. Then, the outer fault frequency
87.01 Hz can be obtained. The detailed experimental parameters are shown in Table 1.
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Table 1. The experimental parameters and fault frequency.

Rotating Speed
r/min

Rotating
Frequency/Hz

Sampling
Frequency/Hz

Sampling
Time/s

Outer Fault
Frequency/Hz

1450 24.17 16,000 0.3661 87.01

It can be seen from Table 1 that the rotation frequency is fr = 24.17 HZ. According to the theory
of bearing fault diagnosis, the frequency of outer ring fault signal of rolling bearing is calculated as
fo = 87.01 HZ. Then, the time domain and frequency domain plots of the original measured vibration
signal are shown in Figures 8 and 9, respectively.
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The spectral analysis by FFT is applied to the measured trivariate signal in Figure 9 and the result
shows that the signal components are complex. In addition, the fault characteristic frequency and
frequency modulation phenomenon cannot be identified. Then, the conventional MEMD method
is used to analysis the fault signal and the result in frequency-domain is plotted in Figure 10. It is
also noted that all the analyses employed 32 projection vectors to capture the direction of highest
curvature of trivariate signals. By observing the frequency features of each IMFs, the fault characteristic
frequency still cannot be inspected.
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Finally, the proposed method is employed to the measured trivariate vibration signal and the
result in time-domain is shown in Figure 11. For the sake of clarity, the FFT operators to the IMF3 for
all the channels are conducted, and the corresponding results are plotted in Figure 12. Fortunately,
the outer ring fault frequency fo and its doubling 2 fo can be found. Additionally, the special frequency
modulation phenomenon of fault rolling bearing such as fo ± fr and 2 fo ± fr can also be identified.
Thus, we can firmly believe that the fault is located on the outer ring, which is consistent with the
actual situation shown in Figure 13.
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By comparing the results respectively provided by MEMD and the method proposed in this paper,
we can make a conclusion that the proposed method has better performance in trivariate signal mode
decomposition and fault feature extraction.

5. Conclusions

Based on the traditional MEMD method, a novel method of trivariate empirical mode
decomposition via convex optimization for rolling bearing condition identification is proposed and
tested in this paper. The main research works are listed as follows: (1) a low-rank matrix approximation
via convex optimization framework is proposed for the trivariate signal denoising. By introducing
parameterized non-convex function, its performance is improved; (2) the principal component obtained
by SVD operator is employed to indicate the sample directions, thus the non-uniform sample scheme is
presented to meet the requirement of inhomogeneity of the data distribution in high-dimensional space;
(3) through the analysis of the simulation signal and the measured vibration signal, it is demonstrated
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that the proposed method is superior to MEMD in multi-scale feature extraction. It can be regarded as
powerful tool in trivariate signal processing.
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