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Abstract: The place of driving assistance systems is currently increasing drastically for road vehicles.
Paving the road to the fully autonomous vehicle, the drive-by-wire technology could improve the
potential of the vehicle control. The implementation of these new embedded systems is still limited,
mainly for reliability reasons, thus requiring the development of diagnostic mechanisms. In this paper,
we investigate the detection and the identification of sensor and actuator faults for a drive-by-wire
road vehicle. An Interacting Multiple Model approach is proposed, based on a non-linear vehicle
dynamics observer. The adequacy of different probabilistic observers is discussed. The results,
based on experimental vehicle signals, show a fast and robust identification of sensor faults while the
actuator faults are more challenging.

Keywords: Interacting Multiple Model; fault detection and isolation; drive-by-wire; extended
Kalman filter

1. Introduction

To enable advanced driver-assistance systems (ADAS) to operate more efficiently without
disrupting the driver, decoupled control systems, known as drive-by-wire technologies, have been
developed for the control of the steering or braking systems.

The drive-by-wire technology (DBW) consists in introducing electronic control systems between
the driver interfaces (steering wheel and pedals) and the vehicle actuators (motor, brakes, and steering
rack) in substitution for the conventional mechanical or hydraulic physical connections. According to
the driver actions on both the steering wheel and the pedals, these systems automatically adapt and
control the actuators to produce the desired vehicle behaviour.

The DBW systems present many advantages when compared to conventional systems, in terms of
safety (via the active steering), comfort (configurable haptic feedback), vehicle design and costs (see [1]).
However, by-wire systems pose significant challenges to manufacturers for their implementation.
On the one hand, electrical systems are subject to failure in a less predictable and more frequent
manner than mechanical systems. While the throttle-by-wire (or electronic throttle control) was
successfully introduced to the market at the end of the 1990s, car manufacturers have faced many
reliability and safety issues during the implementation in the market of other DBW systems, such as
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brake-by-wire (BBW) and steer-by-wire (SBW). For example, the first introduction of a SBW system by
the manufacturer Infinity on the Q50 model led to a recall in 2013. This explains why the development
of the DBW technology is still very limited.

In the aeronautic domain, the development of the fly-by-wire technology has been made possible
by the use of the redundancy of sensors and actuators. This solution is however not compatible with
cost-effectiveness constraints inherent to vehicles mass production, and the systems developed are
generally limited to high-end models.

For a road vehicle, the steering and braking systems are independent, however they both take
part in the control of the vehicle trajectory. We propose to take advantage of this diversity of control
strategies to maintain a controllability (even though reduced) of the vehicle if a default occurs on one
of these systems, as in [2]. For instance, if a fault occurs in the braking system, asymmetrical braking
forces will disrupt the vehicle trajectory. In this case, the steering controller could automatically reject
this perturbation. Similarly, if the steering system is faulty, differential braking could help to maintain
the desired trajectory.

Such a reconfigurable control mechanism requires the real time diagnosis of a fault before its
effect leads the vehicle to an uncontrollable state. As this fault may concern either the SBW or the
BBW systems, both systems have to be supervised. Published research in the field of fault detection
and isolation (FDI) applied to drive-by-wire vehicles treats separately the case of SBW [3–10] or
BBW [3,11,12] system faults.

In this paper, we investigate a fast and reliable FDI scheme applied to a drive-by-wire vehicle.
Both SBW and BBW systems fault are processed in a unique fault detection algorithm. To cope with the
diversity of possible faults, the FDI algorithm relies on an Interacting Multiple Model (IMM) approach.

The considered DBW vehicle architecture is composed of different components:

• The human–machine interfaces (HMI) are typically the steering wheel and the pedals (brake and
throttle). They collect the driver’s input and provide him with haptic feedback (wheel alignment
torque for instance) and eventual incentive information.

• The sensor set corresponds to a standard vehicle equipped with an ESC (electronic stability control)
system: wheel speed sensors, an inertial navigation system (INS), including accelerometers and
gyrometers, a steering wheel angle sensor (SAS), pedals stroke and braking pressure sensors.
Moreover, a sensor for the steering angle of the front wheels is required as it is subjected to differ
from the steering wheel angle.

• The actuators include the brakes (electronic or electro-hydraulic) and the electronic steering
system.

• The control unit supervises the system, i.e., estimates the vehicle dynamics, identifies eventual
faults, and controls the actuators consequently.

Faults are subjected to occur on each of these systems. However, the faults occurring on the
electronic control unit or on the HMI sensors (pedal stroke and SAS) are generally difficult to process
without physical redundancies [13,14]. In this paper, we focus on the detection of abrupt partial and
total faults on the following sensors and actuators:

• Sensor faults: X- and Y-accelerations, vehicle yaw rate, wheel turn rates and the steering angle of
front wheels.

• Actuator faults: Steering actuator and brakes.

While the detection of multiple faults is compatible with the IMM approach, this subject is not
addressed in this study. We consider the subsystems (sensors and actuators) are independent, so a fault
is unlikely to affect two subsystems, and that a single failure will be detected before the occurrence of
a second fault.

Many FDI approaches have been proposed in the literature (see [15–19]). On the one hand,
data-based methods are based on the knowledge of a priori observation of the system. Quantitative
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approaches use artificial intelligence algorithms (neural networks and Bayesian frameworks) or
the statistical processing of the data, while qualitative methods generally consist of expert systems.
These approaches do not require any analytical or structural knowledge on the physical system.

On the other hand, model-based methods involve the physical knowledge of the monitored
system. This knowledge leads to one or many models (analytical or graphical), which describes the
system operating in normal state or under a degraded mode (for instance, see [20–23]).

Qualitative methods rely on the modelling of the input–output relationships in terms of
quantitative functions. These methods are relatively easy to implement because they do not require
information of the internal physical relations of the system, but are limited to commutative systems.

Quantitative model-based methods are based on the analytical modelling of the relations between
the input and the output of the system, generally via a state analysis.

In the field of automotive control, the observation of the vehicle dynamics has been intensively
investigated, and several evolution models are available. This explains why the literature on FDI
schemes dedicated to SBW or BBW systems mainly rely on model-based methods [4–8,10,22,24].

Model-based FDI generally implies the generation of fault indicators, called residuals, obtained by
comparing the predicted state of the system to the actual observed state. If the system is in the normal
state, the residuals remain close to zero, else a fault is detected. The classification of the residuals
eventually leads to the fault identification.

When an abrupt fault occurs on a system, its behavior may be radically altered and compromised.
Thus, it is difficult to model this system both in the normal state and in the different degraded modes
with a unique model. Multiple model (MM) approaches have been developed to cope with this issue
(see [25,26]). They consist in implementing different observers in parallel; each observer corresponds
to a specific system state (normal or degraded).

Originally, the observers were running independently, without any mutual interaction. This method
is adequate when the model structure is not or slightly modified (for instance, parameter estimation
problems), but if the models differ radically (which is generally the case in a FDI scheme), the transition
from one state to another may be difficult to evaluate, thus jeopardizing the fault detection or increasing
the detection time.

The Interacting Multiple Model (IMM) approach has been introduced to solve this problem
(see [27–31]). The different system states are modelled in a Markov chain. Before each algorithm
iteration, the estimates for each mode are updated according to the transition probabilities from one
mode to another.

In the case of road vehicles, precise analytical models are already available in the literature.
They are mainly based on the modelling of the forces between the tyre and the road to estimate the
vehicle dynamics.

For this study, we implemented an IMM-based FDI approach to investigate the detection and the
isolation of faults occurring on a DBW vehicle.

The paper is organized as follows: Section 2 introduces the IMM algorithm and its implementation
for a FDI purpose. Section 3 presents the probabilistic observers, which have been considered for
the IMM implementation. The non-linear vehicle model is detailed in Section 4, and finally the
experimental validation tests are shown in Section 5.

2. The IMM Approach for the Fault Detection and Isolation

2.1. Principles of the IMM Estimation

In an IMM scheme, each system state is modelled in a separate model. To enable the interactions
between the different modes, the transition probabilities from one mode to the others are considered.
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The interaction implies to correct the state estimates x̂i for different modes towards the most likely
estimate according to the transition probabilities πij defined by:

πij = p{mj,k+1|mi,k}, ∀[mi, mj] ∈ S2 (1)

and
s

∑
j=1

πij = 1, ∀i ∈ [1, s] (2)

where S = {m1, m2, . . . , ms} is the set of system modes, πij is the transition probability from mode mi
to mode mj, and mi,k denotes that the system is in mode mi at time k.

The IMM estimator is a recursive algorithm. For each cycle, four steps are carried out:

1. First, the different estimates and their covariance matrices are mixed, according to the probabilities
of activation µi of the model at the current time k. The predicted mode probability µj, defined by:

µj,k+1|k = ∑
i

πijµi,k (3)

enables computing the mixed probability µi|j,k:

µi|j,k =
πijµi,k

µj,k+1|k
(4)

The mixed estimates x̂0
j,k−1 are then defined by:

x̂0
j,k =

s

∑
i=1

µi|j,k x̂i,k (5)

and their covariance matrices P0
j,k−1 by:

P0
j,k =

s

∑
i=1

[
Pi,k + ∆x̂i|j

]
µi|j,k (6)

where ∆x̂i|j is the model uncertainty:

∆x̂i|j =
(

x̂0
j,k − x̂i,k

) (
x̂0

j,k − x̂i,k

)t
(7)

2. Second, a probabilistic filter is performed for each mode in parallel to obtain the updated estimates
x̂j,k+1 and their covariance Pj,k+1. Starting from each mixed estimate x̂0

j,k, an evolution model
is used to predict the next state vector, and then this prediction is corrected according to the
last measured data. In Section 3, different probabilistic filters are investigated: the extended
Kalman filter (EKF), the unscented Kalman filter (UKF), and the (first-order) divided differences
filter (DD1).

3. The activation probability update is done with the computation of the likelihood Lj:

Lj,k =
1

(2π)d/2
√

det Λj,k

exp
[
−1

2
νT

j,kΛ−1
j,k νj,k

]
(8)
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where Λj,k is the residual covariance matrix, as defined in Equation (17), and d is the dimension
of the residual vector νj,k. The updated probability for the mode j is obtained from the current
likelihood and the past activation probability:

µj,k+1 =
µj,k+1|kLj,k+1

∑i µi,k+1|kLi,k+1
(9)

4. Finally, the overall estimate x̂k+1 and an overall covariance matrix Pk+1 are computed by
weighting the different estimates by their respective probabilities. This step is optional and
is required only if an overall estimate is needed, for instance for control purpose.

x̂k+1 = ∑
j

µj,k+1 x̂j,k+1 (10)

Pk+1 = ∑
j

µj,k+1

[
Pj,k+1 + ∆x̂j∆x̂t

j

]
(11)

where
∆x̂j = x̂j,k+1 − x̂k+1 (12)

2.2. Dedicated Implementation for FDI Purpose

The first mode m1, called nominal mode (NOM), corresponds to the normal (i.e., fault-free) state
of the system. Next to the nominal mode, an additional faulty mode is implemented for each of the
investigated faults.

A typical SBW vehicle is equipped with four wheel turn rate sensors, an inertial sensor (x and y
accelerations and the vehicle yaw rate) and a steering angle sensor at the front wheels. Consequently,
for the sensor faults detection, eight additional modes are proposed; their names are preceded by an
“S” (for sensor):

• Four modes (m2,3,4,5) (called S ΩFR, S ΩFL, S ΩRL and S ΩRR) correspond to a fault on the wheel
turn rate signals (respectively at the front right, front left, rear left and rear right wheels.

• Three modes (m6,7,8) are for the inertial sensor faults (S AX and S AY for the longitudinal and
lateral accelerations, and S YR for the yaw rate).

• One mode (m9) is for a fault on the front steering angle signal (S δ).

Likewise, five modes are introduced for the actuator fault detection (preceded by an “A”
for actuator):

• One mode (m10) is for a fault on the steering angle actuator (A δ).
• Four modes (m11,12,13,14) (called A BrFR, A BrFL, A BrRL and A BrRR) correspond to a fault on the

braking system (respectively, at the front right, front left, rear left and rear right wheels).

In total, 14 modes have been considered.
No hypothesis is made on the presence of a fault at the start of the algorithm. Therefore,

the different activation probabilities are initialized to the same value µ0 = 1/n (where n is the
number of modes).

In the fault-free state, the likelihood of the nominal mode should largely exceed those of the other
(faulty) modes, thus the probability µ1 should rapidly rise to 100%.

When a fault occurs, the likelihood of all modes should be affected, except the mode corresponding
to the affected sensor. The probability µ1 should then drop to 0 and the probability of the faulty mode
should rise to 100%.
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The detection and the isolation of the faults can consequently be carried out at the same time by
comparing the probabilities of activation to a threshold µT .

µj = max
i

µi

{
≥ µT ⇒ Hj
< µT ⇒ H0

(13)

where Hj(j>0) means that the ith state has been identified. H0 means that the current state cannot
be identified. The threshold µT must be above 50% to prevent that the activation probabilities of
two different modes exceed the threshold at the same time (as the sum of the activation probabilities is
100%). The value of the threshold can empirically be selected strictly between 50% and 100% by doing
a compromise between time to detection and robustness to false detection. A low value makes the
fault detection faster, while a higher value increases the robustness to false positives.

In this study, µT was empirically set to 95%.

2.3. Transition Probabilities

The transition matrix πij indicates the probability for switching from a previous mode i to another
mode j. These transition probabilities are implemented in the first IMM step to mix the previous
estimates. For each line, the sum of the terms is equal to 1. The first line represents the transition from
the nominal mode to another, and the diagonal terms indicate the probability that the system remains
in the same mode between two algorithm iterations.

The terms of this matrix can be chosen to reach the best compromise between a rapid time to
detection and a good robustness to false positive. Two extreme example can be highlighted:

• If πij is set equal to the identity matrix, we show easily from Equations (4) and (5) that the
mixed probabilities and the mixed estimates remains equal to the previously estimated ones.
This results in skipping the first step of the IMM algorithm. In this case, the IMM behaves exactly
like a standard multiple model approach, with the risk of late detection explained the introduction.

• If each term is set equal to 1/n (where n is the number of modes), then, in Step 1, the mixed
estimates for all modes becomes equal to the previous overall estimate, and the mixed probabilities
of activation becomes equal to 1/n. In this case, the previous iterations are totally forgotten,
and the fault detection only relies on the current iteration. Thus, increasing the risk of
false detection.

The transition matrix is generally empirically tuned between these two extreme cases. The algorithm
becomes more robust to false positive if the transition matrix is close to the identity matrix. The fault
detection can be made faster by increasing the non-diagonal terms. For the experimental part of this
study, we adopted the following transition matrix:

(πij) =



0.5 0.5
n−1 . . . . . . 0.5

n−1
0.1 0.9 0 . . . 0

... 0
. . . . . .

...
...

...
. . . . . . 0

0.1 0 . . . 0 0.9


2.4. Immunization to Faults

To make the modes insensitive to a defined fault, the corresponding model has to be modified,
compared to the nominal model.

For sensor fault, different immunization methods have been proposed:

• For a total default, the easiest way is to cancel the corresponding line in the measurement matrix H.
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• For a partial default, the corresponding parameter can be increased in the measurement noise
covariance matrix R.

We opted for the second solution to detect partial faults. Figure 1 displays the range of the sensor
data. In the nominal state, the sensor data is close to the actual measured value; the error variance can
be set according to the nominal sensor noise standard deviation σ: VarNOM = σ2.

To set the variance Varfault for the immunized mode, we have to define minimal and maximal
values, above which the measurement are incoherent and can be easily rejected. For instance,
the steering angle is not supposed to exceed the maximal actuator amplitude. For the acceleration,
the typical maximal value is ±15 m/s2.

Sensor data 
Max value Min value Actual value 

Sensor noise (σ) 

Incoherent 

 values 
Incoherent 

 values 
Faulty value Faulty value 

Figure 1. Sensor fault range.

The faulty mode standard deviation σmax is tuned to cover the whole coherent range. We get:
Varfault = σ2

max.
A similar method has been adopted for the actuator faults. The parameter of the model

noise covariance Q is increased for the line of the evolution function which is affected by the
corresponding actuator.

3. Probabilistic Vehicle State Observer

As explained in the previous section, the IMM algorithm compares the likelihood of different
state estimations to identify system faults. The computation of the likelihoods requires an estimation
of both the system state and the error on the prediction. This is typically provided by the probabilistic
state observers such as the Kalman filters family.

The Kalman filter is a well known method for the state estimation of a linear system. It is based
on a linear evolution model of the system, and provides both the estimate of the state vector and the
covariance information about the error of this estimate.

This filter is considered recursive, as it only takes into account the previous state estimate and the
current measurement.

It consists of a two-step process. In the prediction step, the previous state estimate is updated
according to the evolution function. The linearity properties of the evolution function enable to directly
compute the predicted error covariance from the previous one.

Then, the update step corrects the predicted state according to the current measurement.
The correction gain depends on the relation between the estimation and the measurement error covariance.

For non-linear system, however, the evolution function cannot be applied to the covariance
directly. To cope with non-linear system, different variants have been proposed, such as the extended
Kalman filter [32], the unscented Kalman filter [33] and the divided differences filters [34]. This section
introduces these filters.

3.1. The Extended Kalman Filter

To cope with non-linearity of the evolution function, the EKF linearises the function in the
vicinity of the current state. The derivation, based on the first order Taylor development, involves the
computation of the partial derivatives matrix (the Jacobian) of the evolution function. It consists of
a two step process.
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1. During the prediction step, the predicted state estimate x̂(k + 1|k) and its predicted covariance
P(k + 1|k) are estimated following the non-linear evolution function f and its Jacobian matrix F,
according to Equations (14) and (15).

x̂k+1|k = f (x̂k, uk) (14)

Pk+1|k = FPkFt + Q (15)

2. In the update stage, the predicted estimate is corrected according to the updated output vector
yk+1. The residual ν and its covariance Λ are evaluated according to the measurement matrix H.

νk+1 = yk+1 − Hx̂k+1|k (16)

Λk+1 = HPk+1|k HT + R (17)

The filter gain K can then be calculated according to Equation (18).

Kk+1 = Pk+1|k HTΛ−1
k+1 (18)

Finally, the updated state estimate x̂k and the updated covariance Pk can be computed following
Equations (19) and (20).

x̂k+1 = x̂k+1|k + Kk+1νk+1 (19)

Pk+1 = Pk+1|k − KΛKT
k+1 (20)

Q and R are, respectively, the model and the measurement noise covariance matrices.

3.2. The First-Order Divided Differences Filter

The DD1 filter locally linearises the system and measurement dynamics via first-order divided
differences, rather than the first order Taylor development used in the EKF. The computation of the
Jacobian matrices is also no longer needed.

First, we have to define the Cholesky (or square root) decomposition of the predicted state
covariance Pk+1|k, the updated state covariance Pk, the process noise covariance Q and the measurement
noise covariance R:

Q = SvST
v R = SwST

w
Pk+1|k = Sxk+1|k ST

xk+1|k
Pk = Sxk ST

xk

(21)

The first-order divided differences matrices are defined as:

Sxx̂(i, j) =
fi(x̂k+ξSxk ,j ,vk)− fi(x̂k−ξSxk ,j ,vk)

2ξ

Sxv(i, j) =
fi(x̂k ,vk+ξSv,j)− fi(x̂k ,vk−ξSv,j)

2ξ

Syx̂(i, j) =
gi(x̂k+ξSxk+1|k ,j ,nk)−gi(x̂k−ξSxk+1|k ,j ,nk)

2ξ

Syv(i, j) =
gi(x̂k ,nk+ξSv,j)−gi(x̂k ,nk−ξSv,j)

2ξ

(22)

where ξ is the disrupting parameter.
The two algorithm steps become:

1. In the prediction step, the predicted state vector x̂k+1|k and its covariance Pk+1|k are computed
according to:

x̂k+1|k = f (x̂k, uk) (23)

Pk+1|k = (Sxx̂)(Sxx̂)
T + (Sxv)(Sxv)

T (24)
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The state covariance prediction can be factored using the square root decomposition
Pk+1|k = Sxk+1|k ST

xk+1|k
to yield:

Sxk+1|k = H
([

Sxx̂ Sxv

])
(25)

whereH (.) is the Householder transformation.
2. In the update step, the predicted state will be corrected according to the new measured data y.

The residual νk+1 and its predicted covariance Λk+1 are defined by:

νk+1 = yk+1 − Hx̂k+1|k (26)

Λk+1 = (Syx̂)(Syx̂)
T + (Syv)(Syv)

T (27)

Λ can be decomposed into Λk+1 = SyST
y to yield:

Sy = H
([

Syx̂ Syv

])
(28)

The DD1 gain matrix K which minimizes the trace of Pk+1 is defined by:

Kk+1 = Sxk+1|k Syx̂Λ−1
k+1 (29)

Finally, the updated state vector x̂k+1 and its error covariance matrix Pk+1 are calculated with:

x̂k+1 = x̂k+1|k + Kk+1νk+1 (30)

Pk+1 = Pk+1|k − Kk+1Λk+1KT
k+1 (31)

Here, again, the error covariance matrix can be decomposed into Pk+1 = ŜxŜT
x with:

Sxk+1 = H
([

Sxk+1|k − Kk+1Syx̂ Kk+1Syv

])
(32)

3.3. The Unscented Kalman Filter

The UKF is a derivative-free filter based on a constellation of 2n + 1 points (the sigma points) in
the vicinity of the current state vector (where n is the length of the state vector).

Instead of derivating the non-linear evolution function, the predicted covariance is estimated
according to the weighted distribution of the predicted evolution of the sigma points.

The first step consists in calculating the sigma points Xk−1 and the corresponding weights:

Xk =
[

x̂k x̂k + γ
√

Pk x̂k − γ
√

Pk

]
(33)

where
√

Pk is the Cholesky decomposition of Pk.
The weights W(m)

i and W(c)
i are defined according to the parameters κ and η:

W(m)
0 = κ

η+λ W(c)
0 = κ

η+λ + 1− α2 + β

W(m)
i = W(c)

i = 1
2(η+λ)

∀i ∈ [1, 2n]
(34)

1. In the prediction step, the predicted state vector x̂k+1|k and its covariance Pk+1|k are computed
according to:

X ∗k+1|k = f (Xk, uk) (35)
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The estimated state is the weighted centre of the sigma points.

x̂k+1|k =
2n

∑
i=0

W(m)
i X ∗i,k+1|k (36)

The estimated covariance is estimated from the distribution of the sigma points:

Pk+1|k =
2n

∑
i=0

W(c)
i

[
X ∗i − x̂k+1|k

] [
X ∗i − x̂k+1|k

]T
+ Q (37)

2. In the update step, new sigma points Xk+1|k are drawn with the estimated covariance to estimate
the predicted measurement vector ŷk.

Xk+1|k =
[

x̂k+1|k x̂k+1|k ± γ
√

Pk+1|k

]
(38)

Yk+1 = HXk+1|k (39)

ŷk+1 =
2n

∑
i=0

W(m)
i Yi,k+1 (40)

The residual covariance Λ is estimated by:

Λk+1 =
2n

∑
i=0

W(c)
i [Yi,k+1 − ŷk+1] [Yi,k+1 − ŷk+1]

T + R (41)

The filter gain K is then computed with:

Kk+1 = Px̂ŷk+1 Λ−1
k+1 (42)

where

Px̂ŷk+1 =
2n

∑
i=0

W(c)
i

[
Xi,k+1|k − x̂k+1|k

]
[Yi,k+1 − ŷk+1]

T (43)

Finally, the state estimate and its covariance are updated according to the gain and the current
measurement vector y:

x̂k+1 = x̂k+1|k + Kk+1 (yk+1 − ŷk+1) (44)

Pk+1 = Pk+1|k − Kk+1Λ−1
k+1KT

k+1 (45)

4. Vehicle Dynamics Model

Model-based FDI schemes for SBW systems generally rely on a simplified linear single-track
model, generally called the bicycle model (see [5,35,36]). However, BBW systems generates
asymmetrical braking forces, which cannot be treated with the bicycle model. Moreover, this linear
model does not cope with the non-linearities due to large tyre slips, which are likely to occur in case of
braking failure.

Thus, we have opted for simplified non-linear two-track model, which is presented in this section.

4.1. Two-Track Vehicle Model

Based on Newton’s second law of motion (see Equation (46), the longitudinal, lateral and yaw
accelerations ax, ay, and ψ̈ at the centre of gravity G are expressed according to the estimated tyre–road
forces Fxi , where i ∈ [1, 2, 3, 4] indicates the wheel index, as represented in Figure 2. Iz is the vehicle
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moment of inertia, Fext represents the external forces acting on the vehicle (rolling and air resistance),
supposed longitudinal and steady.

ax = 1
M

(
Fext + ∑4

i=1 Fxi

)
ay = 1

M ∑4
i=1 Fyi

ψ̈ = 1
Iz

∑4
i=1 ‖
−→
GPi ∧

−→
Fi ‖

(46)

The evolution of the vehicle longitudinal and lateral velocities vx and vy at point G are then
expressed according to Equation (47). {

v̇x = ax + vyψ̇

v̇y = ay − vxψ̇
(47)

x
vG

2

1

2
P

y
v

2xF
2vF

2uF
2yF

f
l

r
l

f
L

r
L

1uv
1v

v
4

P

3
P

1
P

Figure 2. The two-track model.

4.2. Tyre–Road Force Estimation

Several models have been presented in the literature to estimate the tyre–road forces, according to
the tyre longitudinal and lateral tyre slip rates λi and αi defined by Equation (48). λi =

Riωi−vui
max(Riωi ,vui )

αi = δi − arctan
( vvi

vui

) (48)

where vui and vvi are the expression of the wheel velocity −→vi along the wheel main axis. This velocity
is computed from the vehicle velocity at point G and its turn speed vector

−→
Ω .

−→vi = −→vG +
−→
Ω ∧−→GPi (49)

where Pi is the position of the centre of the wheel.
The model proposed by Dugoff et al. [37] has the advantages of relying on only two parameters,

the longitudinal and lateral tyre stiffness Cx and Cy, which can be easily estimated with experimental
tests.

The road–tyre force, which presents a saturation for high values of λi and αi, is expressed in the
wheel main axis by: {

Fui = Cx
λi

1−λi
ki

Fvi = Cy
tan αi
1−λi

ki
(50)
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with

ki =

{
(2− σi)σi i f σi < 1

1 i f σi ≥ 1
(51)

and

σi =
(1− λi)µiFzi

2
√

C2
xλ2

i + C2
y tan2 αi

(52)

The repartition of the normal forces Fzi on the wheels is given by:

Fz1 = M
l f +lr

[
lrg− hax

(
1
2 +

hay
L f g

)]
Fz2 = M

l f +lr

[
lrg− hax

(
1
2 −

hay
L f g

)]
Fz3 = M

l f +lr

[
l f g + hax

(
1
2 −

hay
Lr g

)]
Fz4 = M

l f +lr

[
l f g + hax

(
1
2 +

hay
Lr g

)] (53)

where l f (respectively, lr) is the distance between G and the front (respectively, rear) axle, h is the
height of the centre of gravity, and L f and Lr the front and rear axle widths. Finally, the forces are
expressed in the vehicle referential according to the steering angle δi.{

Fxi = Fui cos δi − Fvi sin δi
Fyi = Fvi cos δi + Fui sin δi

(54)

4.3. Actuators Models

To detect actuator faults, it is mandatory to take into account the actuators in the model. In our
case, the actuators are the brake callipers, and the motor on the steering rack to settle the front steering
angle.

The steering motor is directly controlled by angle. Its response is very fast compared to the vehicle
dynamics, so that the actuation delay can be neglected. The actual angle δi is then supposed equal to
the commanded angle δu.

δi = δu (55)

Concerning the brakes, the evolution of the wheel dynamics requires the estimation of the braking
torque which is generally not measurable.

In the case of an electromagnetic braking (for instance, for regenerative braking), which are
standard devices on electric vehicles, the torque can be estimated from the voltage and the current
applied to the solenoid.

In the case of conventional hydraulic brakes, the braking torque in controlled according to the
hydraulic pressure on the calliper. This braking pressure is typically measured by the ESC control unit
and could be used to estimate the braking torque.

In our test vehicle (see Section 5), which was originally not fitted with an ESC system, a hydraulic
unit was integrated into the braking circuit to maintain a commanded slip rate. However, the braking
pressure cannot be measured and, therefore, the estimation of the actual braking torque is more
difficult. The following model, detailed in [38], was consequently implemented.

The ESC control unit contains 12 solenoid valves and a pump. According to the combination of
activated valves, the hydraulic pressure at the callipers can be controlled in the following four different
modes:

• “normal” mode: The pressure from the master cylinder is normally transmitted to the calliper.
• “maintained” mode: The calliper pressure is maintained constant.
• “released” mode: The pump is activated to release the pressure.
• “braked” mode: The pressure is increased, without any driver action.
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In a first step, the resulting braking torque Tbi
is supposed to vary linearly according to the state

(see Equation (56). The parameters ∆Tb and ∆Tr are set experimentally. Of course, the braking torque
cannot be negative.

Tbi
(t + ∆t) =


Tbi

(t) + ∆Tb if state is “braked”
Tbi

(t) if state is “maintained”
Tbi

(t)− ∆Tr if state is “released”
(56)

Finally, the wheel turn acceleration is computed from the estimated braking torque, the tyre–road
longitudinal force and the effective wheel radius Ri:

ω̈i =
1

Iwi

(
Tbi
− RiFui

)
(57)

4.4. Implementation of the Probabilistic Observers

The output vector is composed of the different sensor output variables: y = [ax, ay, ψ̇, ω1, ω2,
ω3, ω4, δi]

t.
For a vehicle dynamics observer, the state vector x̂ is composed of the estimates of the velocities

v̂x and v̂y. To allow the sensor fault detection, x̂ has been augmented to obtain an estimate of each
sensor data. Then, we obtain: x̂ = [v̂x, v̂y, âx, ây, ˆ̇ψ, ω̂1, ω̂2, ω̂3, ω̂4, δ̂i]

t.
According to the previously mentioned vehicle model (see Equations (46), (47), (55) and (57),

the following evolution function f is adopted for the observers implementation:

f =



v̂x(k + 1) = v̂x(k) +
(

âx(k) + v̂y(k) ˆ̇ψ(k)
)

∆t

v̂y(k + 1) = v̂y(k) +
(

ây(k)− v̂x(k) ˆ̇ψ(k)
)

∆t

âx(k + 1) = 1
M

(
Fext + ∑4

i=1 Fxi

)
ây(k + 1) = 1

M ∑4
i=1 Fyi

ˆ̇ψ(k + 1) = ˆ̇ψ(k) + ψ̈(k)∆t
ω̂1(k + 1) = ω̂1(k + 1) + ∆t

Iw1

(
Tb1 − R1Fu1

)
ω̂2(k + 1) = ω̂2(k + 1) + ∆t

Iw2

(
Tb2 − R2Fu2

)
ω̂3(k + 1) = ω̂3(k + 1) + ∆t

Iw3

(
Tb3 − R3Fu3

)
ω̂4(k + 1) = ω̂4(k + 1) + ∆t

Iw4

(
Tb4 − R4Fu4

)
δ̂(k + 1) = δu(k + 1)

(58)

The same evolution model (Equation (58)) is implemented for each of the 14 considered modes.
The only differences between the different observers are the parameters of the noise matrices:
measurement noise matrix R for the immunization to sensor faults, and model noise matrix Q for the
actuator faults, as explained in Section 2.4.

5. Experimental Validation

The FDI algorithm was validated with experimental data, recorded with an experimental test
vehicle on the Satory test tracks, in Versailles (France). The test scenarios included standards driving
situations (normal urban driving) and critical maneuvers (emergency braking).

5.1. Experimental Vehicle

The test prototype was a SECMA f16, a leisure convertible rear-wheel drive vehicle. This prototype
was modified to integrate drive-by-wire functionalities (SBW and BBW).

The vehicle has been fitted with proprioceptive sensors:
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• an inertial measurement unit (IMU) with three-axis accelerometer and gyrometer (type Xsense
MTI-G);

• four wheel turn rate sensors;
• a front wheel steering angle sensor; and
• a steering wheel angle sensor.

Thanks to an ESC hydraulic control unit, integrated on the braking hydraulic circuit between the
master cylinder and the callipers, the braking pressure can be adapted to maintain a commanded slip
rate for each wheel. More information on this system can be found in [38].

The sensor acquisition and the actuator control is ensured by a programmable electronic control
unit (ECU, type AFT PROtronic), which integrates a micro-controller, standard interfaces (PWM, A/D
converters) and CAN interfaces for communication between PC and data logging. The data logging
sampling frequency is limited by the CAN interface features (max: 100 Hz).

5.2. Comparison of the Probabilistic Observers

A fast and reliable fault detection via a model-based FDI algorithm requires an accurate observation
of the vehicle state. Moreover, to avoid false detection, the observation has to remain consistent, i.e., that
the predicted error covariance stays compatible with the actual estimation error.

On another side, a major concern in the Multiple Model approaches is the computational load.
Indeed, the probabilistic filters are computed for each model in parallel, thus multiplying the operation
numbers. The observer has to achieve a reasonable computational time to stay compatible with an
embedded real time architecture.

In a first step, we selected among the different considered observers (EKF, UKF and DD1) the one
which suits the most the IMM approach, regarding the accuracy and the consistency of the observation
and the computational time efficiency.

5.2.1. Observation Accuracy

The estimated state is composed of the longitudinal and the lateral speeds, and the estimates of
the eight proprioceptive sensors (X- and Y-accelerations, yaw rate, wheel speeds and steering angle).
To check the observers accuracy, we compared the estimates to reference sensor signals during highly
dynamical driving situations like an emergency braking and sharp turns.

Figure 3 compares the estimation of the longitudinal speed during an emergency braking
maneuver, with the three considered observers. The reference speed is given by a Correvit sensor
(KISTLER S-350). The estimates given by the EKF, UKF and DD1 observers are, respectively, plotted
in black, green and blue.

The driving maneuver consisted of a slight acceleration (from 1 s to 8 s), followed by a sharp right
turn (from 8 s to 11 s), then a strong acceleration (from 11 s to 17 s), and finally an emergency braking
(from 17 s to 20 s), with activation of the ABS system on the front wheels during the braking.
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Figure 3. Longitudinal and lateral speed estimates during an emergency braking.
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The three observers give a very good estimation of the vehicle velocity; the difference with the
reference sensor remains below 0.3 m/s, and it is difficult to draw clear distinctions between the curves.
Consequently, no significant differences can be made in terms of accuracy. The same conclusion can
be made for the other estimated data. Table 1 details the root mean square (RMS) of the difference
between the raw sensor signal and the estimated data for the vehicle sensors during the same maneuver.
The estimation error remains of the order of the sensor noises.

Table 1. Estimation error RMS during normal driving situation.

Sensor ωi ax ay ψ̇ δ

EKF 0.1261 0.1199 0.1093 0.0046 0.00045
UKF 0.1215 0.1191 0.1234 0.0045 0.00046
DD1 0.1217 0.1198 0.1234 0.0045 0.00046
unit rad/s m/s2 m/s2 rad/s rad

To sum up, EKF, UKF and DD1 provide accurate estimation of the vehicle state, even in the case
of a highly dynamic driving situation.

5.2.2. Observer Consistency

Figure 4 compares the estimation error for the different vehicle sensors to the estimated precision
margin. The precision margin correspond to ± 3σ where the standard deviation σ is issued from the
covariance matrix. Only the results for the EKF observer are displayed. The other observers present
very similar results.
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Figure 4. Estimation error consistency check during an emergency braking.

All signals remain inside the estimated precision margin, even during the ABS activation,
observable at time 17 s on the front wheel speed signals. The observer is consistent.

5.2.3. Computational Time

The computational load has been measured with the Matlab function profile with the same input
signals as previously (see Table 2).



Sensors 2018, 18, 2332 16 of 22

Table 2. Computational load of the filters.

Observer Call of the Evolution Function per Algo Cycle Total Computational Time

EKF 1 1.37 s
UKF 21 11.5 s
DD1 37 26.6 s

The UKF needs six times more resources than the EKF. This is even more spectacular with the
DD1, which is 15 times more time-consuming. This can be explained by the number of call of the
evolution function during each algorithm cycle. The UKF does not require the computation of the
Jacobian matrix, however the evolution function, which is quite complex in our case (computation of
the tyre/road forces), has to be evaluated for each of the 21 sigma points, thus increasing dramatically
the computational costs. The DD1 algorithm necessitates many calls of the evolution function for
the computation of the divided differences matrix, together with the required resources for the
Cholesky triangulations.

5.2.4. Conclusion on the Observers Comparison

This study has shown no significant differences regarding the accuracy and the consistency of the
considered observers. However, in terms of computational time, the EKF is in our case much more
efficient and therefore more adequate for the IMM implementation. In the following, we consequently
implement the EFK for the IMM-based FDI algorithm.

5.3. Sensor Fault Detection Performances

The test scenario consists of an urban driving situation with a slight acceleration followed by
a right turn.

For each sensor, a partial fault has been simulated by adding an offset to one of the initially
measured data. The amplitude of this fault has been varied to investigate the detection of partial faults.
The fault occurs at time t = 4 s and disappears at time t = 5 s.

For the first simulation (see Figure 5 , zoomed in at Figure 6), a fault on the X-acceleration sensor
is simulated with a 5 m/s2 amplitude.

The curves at the top display the estimates of X-acceleration for each mode. Before the
fault occurrence, all the modes follow precisely the measured signal, except for the SAX mode,
which considers a very large noise for this sensor, thus estimating only roughly the actual signal.
By looking at the likelihood (curves in the middle, with logarithmic scale), the nominal mode present a
very good likelihood (value close to 1), while for the other modes, the likelihood is quite poor (<0.1),
so that the probability of activation (at the bottom) of the nominal mode stays close to 100%.

When the fault occurs (time = 4 s), the estimate of all modes (except the SAX mode) stick to
the faulty sensor value, so that the likelihoods drop rapidly. The mode SAX, which is almost not
affected by the sensor fault, presents the best likelihood. Consequently, its probability of activation
rises progressively to 100%, meaning that a fault occurred on the X-acceleration sensor: the sensor
fault is thus correctly detected. The time to detection reaches 60 ms, i.e., six algorithm cycles.

Similar results are obtained with the other vehicle sensors.
To investigate the limit of the detectable faults, the same simulation was carried out with different

fault amplitudes for each sensor. The detectable faults thresholds are given in Table 3.

Table 3. Amplitude of detectable sensor faults.

Sensor ωi ax ay ψ̇ δ

ampl. 5.0 rad/s 1.6 m/s2 2.7 m/s2 0.35 rad/s 0.055 rad
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Figure 5. Fault on the X-acceleration sensor.
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5.4. Actuator Fault Detection

The detection of actuator faults is generally more complicated than for sensor faults, as it requires
a precise model of the actuator operation.



Sensors 2018, 18, 2332 18 of 22

Concerning the steering actuator, the steering control system is supposed to be very accurate
and fast, compared to the vehicle dynamics, so that the actuator delay can be neglected, as shown in
Equation (55). To simulate an actuator fault, the target steering angle δu has been modified by adding
an offset value, while the actual steering angle is not modified. The scenario is the same as for the
sensor faults, the fault is activated between time = 4 s and 5 s with an amplitude of 0.1 rad.

The results are displayed in Figure 7. When the fault occurs, all the modes present a large
likelihood drop, except the modes Sδ and Aδ which are, respectively, insensitive to steering sensor and
steering actuator faults, for which the likelihood drop is weak. For the Sδ mode, the estimated steering
angle sticks to the target angle, as the measured angle is almost not taken into account, while the Aδ

estimate correctly the actual angle. Its likelihood remains consequently better than the Sδ mode and
the corresponding probability of activation rises to 100%. The fault detection threshold is crossed after
40 ms, confirming the correct detection and identification of the actuator fault.
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Figure 7. Fault on the steering actuator.

Concerning the brakes, as explained in Section 4.3, as no information on the braking pressure is
available for the test vehicle, the actual braking torque is very difficult to estimate. The implemented
model provides only a rough prediction of the braking torque. The detection of a brake actuator requires
consequently a very sensitive setting for the corresponding modes. Under this condition, it was not
possible to find a satisfying compromise between fault detection and robustness to false detection.

In future work, an implementation of this algorithm on a driving simulation software is planned
to investigate the detection of brake faults under more favourable conditions (e.g., availability of the
braking pressure and precise knowledge of the actuator properties).

5.5. Robustness to False Detection

To check the robustness to false detection, the sensor signals have been recorded during an
urban driving scenario (150 s), including sharp turns, roundabout, emergency braking and road
bumps. No false detection has been reported during this test (see Figure 8). The passing of a pothole
(time = 14 s) and a speed bump (at time 84 s) provokes a slight nominal probability drop.
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Figure 8. Robustness to false detection in urban driving.

5.6. Fault Tolerant Velocity Estimation

Next to the fault detection, the IMM algorithm provides a fault-tolerant observation via the
overall estimate. This can be precious when implementing active fault-tolerant control of the vehicle,
which relies on the velocity of the vehicle.

We check here the sensitivity of the velocity estimation to sensor faults. Figure 9 (respectively,
Figure 10) shows the overall estimate of the longitudinal (respectively, lateral) vehicle velocity in case
of a strong X-acceleration (respectively, Y-acceleration) sensor fault (+5 m/s2 offset). For information,
the estimate given by a simple model EKF observer is displayed.

It shows that the velocity estimation remains very accurate, even during a strong sensor fault.
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Figure 9. Longitudinal speed estimate with X-acceleration sensor fault.
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Figure 10. Lateral speed estimate with Y-acceleration sensor fault.

6. Conclusions

In this study, we discussed the detection and the isolation of embedded sensor and actuator faults
for a drive-by wire vehicle via an adapted IMM algorithm. The compatibility of different probabilistic
observers was investigated: the extended Kalman filter, the unscented Kalman filter and the first-order
divided differences filter. If the three filters give similar performances, the EKF outperforms the others
in terms of computational costs. The results, based on experimental data, show that total and partial
faults for each of the proprioceptive sensors can be detected and identified within a short number
of algorithm cycles. The detection of actuator faults seems more tedious: while a steering actuator
fault can be identified correctly, the detection of braking faults has not been achieved and would
require more investigations. The robustness of the detection (false detection rate) seems to be adequate,
and should be confirmed with complementary experimental data.

In parallel, this approach allows a fault-tolerant estimation of the vehicle dynamics, which is
interesting for vehicle control purpose. Future work will focus on the implementation of a fault-tolerant
control strategy, which could take into consideration the identified faults to maintain a degraded
vehicle controllability state in case of faults.
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Abbreviations

The following abbreviations are used in this manuscript:

LIVIC Laboratory on Interactions Vehicle-Infrastructure-Driver
IBISC Informatique, Biologie Intégrative et Systèmes Complexes
DBW Drive-By-Wire
BBW Brake-By-Wire
SBW Steer-By-Wire
FDI Fault Detection and Isolation
IMM Interacting Multiple Models
HMI Human Machine Interface
ESC Electronic Stability Control
INS Inertial Navigation Sensor
SAS Steering wheel Angle Sensor
MM Multiple Models
EKF Extended Kalman Filter
DD1 First-order Divided Differences
UKF Unscented Kalman Filter
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