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Abstract: Unmanned Aerial Vehicles (UAVs) have become very popular in the last decade due to
some advantages such as strong terrain adaptation, low cost, zero casualties, and so on. One of
the most interesting advances in this field is the automation of mission planning (task allocation)
and real-time replanning, which are highly useful to increase the autonomy of the vehicle and
reduce the operator workload. These automated mission planning and replanning systems require a
Human Computer Interface (HCI) that facilitates the visualization and selection of plans that will
be executed by the vehicles. In addition, most missions should be assessed before their real-life
execution. This paper extends QGroundControl, an open-source simulation environment for flight
control of multiple vehicles, by adding a mission designer that permits the operator to build complex
missions with tasks and other scenario items; an interface for automated mission planning and
replanning, which works as a test bed for different algorithms, and a Decision Support System (DSS)
that helps the operator in the selection of the plan. In this work, a complete guide of these systems
and some practical use cases are provided.

Keywords: decision support system; ground control station; mission planning; multi-objective
optimization; QGroundControl; unmanned aerial vehicles

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs), also referred to as drones, has highly increased
in the last decade, becoming very popular in many applications including traffic monitoring [1],
agriculture [2] or disaster and crisis management [3], since they avoid risking human lives while their
manageability permits reaching areas that are hard to access. These vehicles are usually controlled by
a number of operators inside one or more Ground Control Stations (GCSs), depending on the size of
the mission.

Automated mission planning over a swarm of UAVs remains to date a challenging research
trend in regards to this particular type of aircraft. This problem involves generating tactical goals,
commanding vehicles, risk avoidance, coordination and timing. Currently, UAVs are controlled
remotely by human operators using rudimentary planning systems, such as pre-configured plans,
classical planners that are not able to cope with the entire complexity of the problem or manually
provided schedules. Some recent works [4,5] have provided more efficient approaches to solve the
Multi-UAV Cooperative Mission Planning Problem (MCMPP) considering several features of the
problem such as time constraints, fuel constraints, sensor constraints, etc. Due to its complexity and
multiple conflicting criteria (e.g., makespan, cost or risk of the mission), multi-objective solvers such as
Multi-Objective Evolutionary Algorithms (MOEAs) have been used in these works.

One of the most challenging problems in this field is mission replanning, which implies a new
planning for the previous mission plan due to certain incidences, such as a vehicle or sensor failure or
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a new task arrival, during the real-time execution of the mission. A few recent works have developed
systems that deal with automated mission replanning, based on a repair of the previous plan [6],
or performing a full replanning of the mission in a limited runtime [7].

Due to the complexity and multiple conflicting objectives of this problem, several non-dominated
solutions (i.e., the Pareto Optimal Frontier (POF)) are obtained. This situation hinders the process of
decision making for the operator when selecting the final plan. In order to reduce his/her workload,
a Decision Support System (DSS) can be provided to help the operator in the plan selection. This DSS
can work in two steps: first, inside the mission planning algorithm, focusing the search of solutions on
the most relevant ones, which can be made using a knee point-based MOEA [8]. Secondly, once the
most relevant solutions are returned, the solutions are ranked using some Multi-criteria Decision
Making (MCDM) technique based on the operator preferences and filtered based on the similarity of
the obtained solutions.

All of these techniques developed to solve the mission planning and replanning problems must be
properly tested by expert operators in a simulated environment before they are considered apt for real
UAV missions. In this work, QGroundControl [9], an open-source ground control station simulator,
has been extended by adding an automated planning interface, so this framework can work as a
test bed for mission planning and replanning algorithms, and also for decision making methods.
This extension allows operators to automatically plan a mission, simulate this plan and then perform a
replanning during the execution.

Additionally, in order to ease the entry of the definition of the mission and the scenario, a graphical
mission designer has been built inside QGroundControl. This designer permits creating a mission
with all its elements (UAVs, tasks, GCSs, No Flight Zones (NFZs), etc.). After that, the mission can be
automatically planned and the generated plans can be visualized. Finally, one of these plans can be
executed, and the UAVs are monitored all together. The architecture of the proposed framework is
presented in Figure 1. This extended tool is not publicly accessible at the moment due to confidential
issues (if the reader is interested in testing the current version of the framework, please contact the
corresponding author).

Figure 1. Architecture of the framework extended from QGroundControl, including mission
(re)planning and decision support.

The following sections are as follows: Section 2 provides a background and related works on
ground control station frameworks and test bed interfaces. Section 3 describes the mission designer
and its components. Section 4 explains the mission planning problem and how the automated mission
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planner and the DSS have been integrated within QGroundControl. Section 5 explains the mission
replanning problem and how it has been integrated in the simulation environment. Section 6 presents
some use cases that have been performed to prove the functionalities developed by creating, planning,
simulating and replanning a mission. Finally, Section 7 draws some conclusions and future work.

2. Related Work

In the last few years, some works have proposed UAV simulation environments for supervisory
flight control [10], coordination [11] or training [12].

When working with simulation and control of UAVs, there are two types of software that must
be differentiated: the autopilot software and the GCS software. The autopilot automatically controls
the trajectory of the UAV and can provide the telemetry of the vehicle. The most known autopilot
simulators are ArduPilot [13] and PX4 [14].

On the other hand, GCS software focuses on the operator side, providing flight control and manual
path planning of one or multiple vehicles. In order to communicate these GCSs to the autopilots,
a communication protocol is required. The most used protocol, able to provide communication with
both ArduPilot and PX4, is MAVLink [15]. This protocol is used in the most known GCS tools, such
as MAVProxy [16], Mission Planner [17], APM Planner 2 [18], UgCS [19] and QGroundControl [9].
QGroundControl is the only one of them that permits the control of multiple UAVs simultaneously,
although UgCS provides a much more proficient interface with many features such as NFZs and
immersive 3D simulation.

One of the most popular open-source software for small drones is Paparazzi UAV [20],
which provides both the autopilot and the GCS tools. It is a very complete framework and also
allows control of multiple vehicles simultaneously.

QGroundControl is open source and provides full ground station support and flight control
and configuration for multiple UAVs through MAVLink communications, allowing one to control
both ArduPilot and PX4 vehicles. The main power of QGroundControl is that it provides easy and
straightforward usage for beginners, while still delivering high-end feature support for experienced
users. It has an easy-to-use path planning interface (through waypoint insertion) for autonomous
flight. It also allows flight map display showing vehicle position, flight track, waypoints, vehicle
instruments and video streaming.

Nevertheless, QGroundControl, as well as the rest of the GCS software, only permits one to create
manual plans by waypoint insertion for each UAV, i.e., no automated planning algorithm is provided
within the framework. It does not allow one to create tasks, nor NFZs in order to create a mission,
which could be automatically planned. On the other hand, QGroundControl only permits one to see
the waypoint plan of one UAV at a time, so for multi-UAV missions, it is complicated to monitor all
vehicles at once.

A test bed interface (which has been used in many works especially for providing different
artificial intelligence algorithms for games [21] and also for flight control [22]) for automated mission
planning and replanning is a novel requirement that has not been so far implemented inside GCSs.
This interface must allow, through a communications protocol, the use of different automated mission
planning and replanning algorithms. This paper provides an extension of QGroundControl, providing
this test bed and all the lacking capabilities mentioned.

3. Mission Designer

A mission is composed of a set of objectives to be performed by a swarm of UAVs. These objectives
are composed by one or more tasks, where a task is indivisible and must be performed within a specific
time interval using some sensors carried by the vehicle. These tasks may have some dependencies
between them, restricting the order of the tasks. Each mission should be performed in a specific
geographic zone or scenario, where there could be some NFZs that must be avoided by the vehicles.
In addition, one or more GCSs control the swarm of UAVs.
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In order to permit the operators to create new missions and fulfill them with all the elements
involved in the mission (tasks, vehicles, GCSs, etc.), a mission designer has been developed (see
Figure 2). The integration of these new functionalities into QGroundControl requires the modification
of this software in order to extend its functionality. For this, a new tab has been added in the main
menu of the QGroundControl (represented in Figure 2 with a looped path in the top bar). This tab is
used both for the mission designer and the rest of functionalities added in the following sections.

Figure 2. Mission designer in QGroundControl for adding new elements.

The mission designer permits one to create new missions or read already created ones and
provides a set of tools for adding different elements to the mission scenario. In the following
subsections, we explain how to create a new mission and how to add the different elements to it
using the mission designer (represented with a pencil in Figure 2).

3.1. Creating New Missions

To create a new mission, there are several parameters of the mission that must be provided by
the operator:

• The name of the mission: This name will be used later to identify this mission when reading it.
• The bounds of the mission scenario: The upper-right and bottom-left bounds that identify the

limits of the mission, given in latitude and longitude degrees.
• The arc-seconds of the elevation map to be used by the mission planner. The possible values are

30, 15 and 7.5 arc-seconds.
• The start time of the mission (optional), expressed as date and time. If not provided, the time will

be taken from the CPU clock when the simulation starts.

After fulfilling these values, the mission will be created, and an empty scenario inside the defined
bounds will be presented.

3.2. Adding a New UAV

To add a UAV, the first button in the top of the scenario, represented as a plane in Figure 2, is used.
When adding a new vehicle, some properties must be considered:

• The name of the UAV.
• The initial amount of fuel of the UAV, expressed in kg.
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• The position of the UAV (latitude, longitude and altitude in ft).
• The (optional) end position for the departure runway of the UAV, where it must go when

taking off.
• The (optional) start position for the landing track of the UAV, where it must first go when landing.
• The (optional) end position of the UAV, where it must land when the mission ends.
• The (optional) start and end times of use of the UAV. These are expressed as a date and time and

can only be used when the start time of the mission has been defined.
• The type of the UAV. This property defines the type of vehicle used (e.g., HALE, MALE, URAV,

UCAV, etc.). This property is comprised of a set of characteristics of the UAV:

– The mass of the vehicle (in kg).
– The maximum fuel capacity (in kg).
– The cost per hour.
– The maximum altitude limit (in ft).
– The maximum speed limit (in knots).
– The maximum flight time (in hours).
– The maximum range or distance (in NM).
– A set of flight profiles, defining the performance of the vehicle in terms of speed (in knots),

fuel consumption (in kg/h) and altitude (in ft) or angle of climb/descent (in degrees). In this
work, the flight profiles considered for every vehicle are a minimum consumption profile,
a maximum speed profile, a climb profile and a descent profile.

• The configuration of the UAV. This property defines the configuration of the vehicle, specifically
the set of sensors carried by it.

3.3. Adding a New GCS

This function is represented by the second button in the top of the scenario in Figure 2. When
adding a new GCS, some properties must be fulfilled:

• The name of the GCS.
• The position of the GCS (latitude, longitude and altitude in ft).
• The type of GCS. This property defines the type of station used, which is comprised of a set of

characteristics:

– The range of communications (in NM).
– The maximum number of vehicles that the station can control simultaneously.
– The type of vehicles that the station can control.

To facilitate the creation of the mission, GCSs can show a translucent orange circle centered on
the station and with a radius within its range, graphically representing the range of the GCS. This is
shown in Figure 3.
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Figure 3. Range of Ground Control Stations (GCSs) represented as translucent orange circles.

3.4. Adding an Objective or Task

Adding objectives is performed through the third, fourth and fifth buttons at the top of
the scenario, depending on whether the location of the objective is a polygon zone, a path or a
point, respectively.

When adding a polygon objective, the operator will mark in order the vertices of the zone.
This works similarly for the path objective, where the operator marks in order the points of the path.
Point objectives, on the other hand, just need to select the single location on the map. Depending on
the type of objective, a different figure will be used to represent the point objective (a fire flame for fire
extinguishing, a camera for target photographing or an eye for target acquisition).

Objectives have different properties, including:

• The name of the objective.
• The (optional) start and end times of the objective. These are expressed as a date and time and

can only be used when the start time of the mission has been defined.
• The (optional) duration of the objective. This can only be used with zone and point objectives.

When provided, loitering around the zone or the point will be performed during the
specified duration.

• Whether the objective is mandatory or not.
• Whether Line of Sight (LOS) must be maintained during the objective performance or not.
• The (optional) entry and exit points of the zone objective (expressed in latitude and longitude).

These can only be used in zone objectives.
• The vertices of the zone or the path (expressed in latitude and longitude).
• The position of the point (expressed in latitude and longitude). Whether this or the previous

property is used, but not both.
• The type of objective. This property defines the type of objectives (e.g., target photographing,

escorting an individual, fire extinguishing, etc.). Depending on this type, an objective may
comprise one or more tasks, each one needing a specific sensor for its performance. Depending
on the type of task, it must be performed by just one vehicle (e.g., tracking or photographing)
or could be performed by several (e.g., mapping or surveillance). In addition, some time or
vehicle dependency may be established between the tasks of the objective. These dependencies
are discussed in Section 3.6.
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3.5. Adding an NFZ

An NFZ can be added using the sixth button at the top of the scenario. When adding a new
NFZ, the operator will mark in order the vertices of the zone. This element and the rest of the
elements explained in previous sections can be dragged and, thus, their positions and vertices updated.
In addition, each vertex can be also dragged. On the other hand, any element of the mission scenario
can be deleted by just right clicking over it.

3.6. Adding Objective Dependencies

When first entering edit mode, a general Mission Info panel appears on the right, where the
initial definition of the mission (bounds, start time, etc.) can be modified. In this panel, dependencies
between objectives can also be added with the Add Dependency button.

A dependency will consist of the following elements:

• First objective involved in the dependency.
• The type of dependency. The different types are defined in Allen interval algebra (see Table 1).
• Second objective involved in the dependency.
• UAV relation between objectives. This value may be undefined or provided if both objectives

must be performed by the same UAV or by different UAVs.
• Time offset. This property defines the time offset applied between both objectives when considering

the dependency (e.g., if an objective precedes another one, then the time offset sets the minimum
duration that must pass between the end of the first objective and the start of the second).

Table 1. Allen’s interval algebra.

Relation Illustration Interpretation

T1 < T2

X
Y T1 takes place before T2

T1 m T2

X
Y T1 meets T2

T1 o T2

X

Y T1 overlaps T2

T1 s T2

X

Y T1 starts T2

T1 d T2

X

Y T1 during T2

T1 f T2

X

Y T1 finishes T2

T1 = T2

X

Y T1 is equal to T2

4. Automated Mission Planner and DSS

The MCMPP consists of assigning each task of the mission to the vehicle(s) performing it and
the order of performance and to each vehicle the GCS controlling it. In addition, it is also necessary
to specify the flight profiles used by the UAVs in each path, as well as the sensor used in each task,
as there could be several sensors on the UAV able to perform the task.

On the other hand, there exists a set of constraints that must be fulfilled to assure the validity of
the solutions. These constraints include temporal constraints implying the start and end times of tasks,
path constraints assuring that vehicles avoid NFZs in their paths, coverage constraints assuring that
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the UAV is inside the range of the GCS controlling it, LOS is maintained, etc. More information about
this problem is presented in [5].

In addition, the MCMPP is a Multi-Objective Optimization Problem (MOP), as there are multiple
variables that must be optimized, including the makespan or end time of the mission, the cost of
the mission, the risk, the total fuel consumption of vehicles in the mission, the distance traversed,
the flight time, the number of UAVs used and the number of tasks performed. When solving this
problem, most of the existing algorithms focus on the approximation of the POF. Nevertheless,
when the entire POF comprises a large number of solutions, the process of decision making to select
one appropriate solution becomes a difficult task for the Decision Maker (DM). Sometimes, the DM
provides a priori information about his/her preferences, which can be used in the optimization process.
However, very often, the DM does not provide this information, and it is necessary to consider other
approaches for filtering the number of solutions.

Moreover, a DSS is necessary to help the operator in the process of selection of the final plan.
This system should provide at least a ranking system and a filtering system. The ranking system
considers the operator profile, which provides for each decision variable an intensity factor: very low,
low, medium, high or very high. Different MCDM methods have been developed over the years for
this purpose [23].

Once the solutions are ranked, a filtering system based on the distance between the solutions
(i.e., the variables of the encoding: the assignments, orders, etc.) is used to erase similar solutions.
This distance function must consider the importance of each variable, where assignments are the most
important variable, while flight profiles are the least important.

For all this process, since the mission is provided until the ranked and filtered solutions
are returned, a test bed interface has been designed. The communication interface between
QGroundControl and the planning and decision algorithms has been implemented using Apache
Thrift (https://thrift.apache.org/). This frameworks permits an easy communication with most known
programming languages. The interface sends the mission and the operator profile extracted from
QGroundControl as a JSON message. This message includes the different parameters of each element
of the mission explained in Section 3. On the other hand, the message returned by the algorithm
must contain a ranked list of solutions, where each solution defines the assignments for each task,
including the flight profile and sensors used; the GCS assignment, final path and performance variables
(fuel consumption, flight time, etc.) for each UAV and the values of the optimization objectives and
risk factors of the problem. The architecture of these modules is represented in Figure 4.

Figure 4. Architecture of the test bed interface for mission planning and decision support.

https://thrift.apache.org/
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4.1. Operator Profile

Every operator using the QGroundControl has a profile defining the different constraints, fitness
and ranking variables predefined. This profile includes the following settings:

• Whether all tasks must be performed or not.
• Minimum and risk factor distance from the ground: These variables define the interval for the

risk factor distance from the ground, where the minimum represents a risk of 100% and values
higher than the risk represent a 0% risk.

• Maximum and risk factor percentage of fuel usage: These variables define the interval for the risk
factor of fuel usage per UAV, where the maximum represents a risk of 100% and values lower
than the risk represent a 0% risk.

• Minimum and risk factor of distance between vehicles: These variables define the interval for
the risk factor distance between UAVs, where the minimum represents a risk of 100% and values
higher than the risk represent a 0% risk.

• Minimum and maximum risky factor of time out of GCS coverage: These variables define the
interval for the risk factor of time out of GCS coverage, where the minimum represents a risk of
0% and the maximum risk represents a 100% risk.

On the other hand, the operator must also define the importance (very low, low, medium, high or
very high) of the ranking variables to be used by the DSS. These variables include:

• Makespan or end time of the mission.
• Total cost of the mission.
• Total fuel consumption of vehicles in the mission.
• Total flight time of the vehicles in the mission.
• Total distance traversed by the vehicles in the mission.
• Risk of high fuel usage. This considers the UAVs that finish the mission with low fuel.
• Risk of low distance from the ground. This considers the vehicles that fly near the ground

(depending on the route and the altitude of the adopted flight profile).
• Risk of GCS coverage loss. This considers UAVs that fly out of the coverage or LOS of the GCSs

controlling them.
• Risk of UAV closeness. This considers vehicles that fly close to each other, which intuitively

depends on the time constraints between concurrently-performed tasks and eventual spatial
overlaps among routes/flight profiles.

• Number of UAVs employed in the mission.
• Number of tasks performed. This is considered when some tasks or objectives are not mandatory.
• Number of GCSs employed in the mission.

4.2. Mission Planning

Once a mission is defined, the mission planner (button “P” on the left panel in Figure 2) can be
executed in order to find plans for this mission. Additionally, the operator preferences defined in
Section 4.1 can be adapted for this concrete mission. Apart from the preferences explained before,
the operator can also specify some constraints for the mission:

• Maximum makespan: The maximum valid makespan. Plans with higher makespan will be
rejected from the solutions.

• Maximum cost: The maximum valid cost. Plans with higher cost will be rejected from the solutions.
• Maximum flight time: The maximum valid flight time. Plans with higher flight time will be

rejected from the solutions.
• Maximum fuel consumption: The maximum valid fuel consumption. Plans with higher fuel

consumption will be rejected from the solutions.
• Maximum distance traversed: The maximum valid distance traversed. Plans with a higher

distance traversed will be rejected from the solutions.
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Once this information is completed, it is encoded as a JSON message and sent through the
Thrift interface to the automated mission planner, which must detect it as pre-planning and deal with
multiple objectives.

4.3. DSS Ranking and Filtering

After the mission planner finishes, the DSS will take the solutions obtained and rank them
according to the ranking criteria defined by the operator using some MCDM method. Then, the DSS
will filter the solutions that are very similar (only differ in the flight profile used in some path,
the sensor employed, etc.).

After this, the new set of ranked-filtered solutions will be returned as a JSON message to
QGroundControl, which decodes this message and presents the set of plans in a table at the bottom
of the scenario (see Figure 5). This table shows the different objectives optimized in a percentage bar,
where greener bars represent better values for the variable while redder bars represent worse values
for the variable.

Figure 5. Mission plans.

4.4. Plan Visualization

Once the plans have been computed, it is possible to view the paths and some information about
a specific plan by clicking on it. The path for each UAV used in the mission is represented with a
different color (see Figure 5). On the other hand, the right pop-up shows three tabs with different
information about the plan. The info tab shows the different values for the objective variables and risk
factors of the mission plan.

The UAVs tab shows, for every UAV used in the mission (represented in columns), information
about the UAV assignments and performance:

• The assigned tasks (in order) that the UAV performs.
• The GCS assigned to the UAV in the mission.
• The departure time for the UAV in the mission.
• The return time for the UAV in the mission and the return flight profile (FP) used.
• The cost of use of the UAV in the mission.
• The flight time of the UAV in the mission.
• The distance traversed by the UAV in the mission.
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• The fuel consumed by the UAV in the mission.
• The percentage of fuel usage of the UAV.
• The minimum distance to the ground of the UAV during the mission.
• The time spent by the UAV out of the GCS coverage during the mission.

On the other hand, if clicking on the Tasks tab, a table will appear showing the task assignments
in files, where each file provides:

• The objective considered
• The task of the objective considered (at least one)
• The UAV assigned to the task.
• The departure time for the UAV when it starts going to the task zone.
• The flight profile used in the path to reach the task zone.
• The wait loiter duration in case the task has some time restriction and the vehicle must wait until

its start.
• The start time of the task.
• The sensor used for the performance of the task.
• The duration of the task.
• The end time of the task.

By left clicking one of the UAVs used in the mission plan, only the path for this UAV will be
represented. In addition, if there exist some out-of-coverage points for the route of the UAV, these will
be represented in red. The tables of the right panel will also adapt to this selection and only show the
concrete UAV and its tasks assigned.

When clicking the Coordinates tab in the bottom, a table with the different waypoints of the route
of the selected UAV will show every specific parameter of each waypoint, such as the speed, time,
the task associated with it, etc.

On the other hand, when clicking the Altitude Graph tab on the bottom, an altitude profile for the
selected UAV will appear, including the ground altitude.

5. Mission Execution and Replanning

After visualizing the ranked plans, the operator selects the best one according to its criteria
(should be usually the first one), and this plan will be simulated by clicking the play button on the left
panel (see Figure 2).

After this, several instances of the ArduPilot program will be executed (as many as UAVs used in
the mission). Each instance will be connected to the QGroundControl through a MAVLink connection,
and the different UAV figures will be associated with the position of the related ArduPilots. Therefore,
the UAVs will start departing according to the plan.

As the waypoints in the path for each vehicle are passed by, they will turn into a darker color, and
their border will become black. The current waypoint where the UAV is going is highlighted in green.
On the other hand, the tasks that finish their performance become more translucent.

During the execution of the mission, if the operator receives any external notification about an event
involving a new objective, he/she can enter edit mode and add new objectives, as explained in Section 3.

Once the new tasks are added, the mission planner can be executed similarly as in pre-planning.
As a previous plan is being simulated, the JSON message sent to the mission planner must contain this
previous plan, so the planner knows that it must work in replanning mode. In addition, the operator
introduces a concrete time for the planning process. This time will not only limit the planning process,
but also will be considered as the moment where the replanning process is performed (i.e., the status of
the mission passed to the replanner will be the one taking place those seconds after the actual moment).

Then, as in the planning process explained in the previous section, the DSS ranks and filters the
solutions, and these are returned to the operator, where the different paths and assignments can be
seen as before.

Finally, once the operator selects the new plan to be updated, the paths and assignments for the
actual execution of the mission plan will be updated.
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6. Use Cases on the Extended QGroundControl

In this section, we design two use cases to prove the new functionalities added to QGroundControl.
In the first one, a general walk through of the different tools developed is done, creating a mission,
planning, simulating and replanning it. In the second one, a mission that is impossible to solve is
presented, in order to show how the planner informs the operator in this situation.

In order to use the test bed interface, a novel mission planning algorithm [8] has been used.
This algorithm extends Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [24] to focus the search
on “knee point” [25], thereby looking for the most significant solutions in the POF. This approach
checks the validity of solutions through a Constraint Satisfaction Problem (CSP) model developed using
Gecode [26], which is connected to the fitness function of the algorithm. Moreover, the replanning
algorithm used [7] is the same approach as mission planning, but taking into account the previous
plan and the limited time for the algorithm.

On the other hand, for the DSS, VIKOR [27] has been used to rank the solutions returned by the
MOEA, using the factors defined by the operator profile as the weights of the criteria. The VIKOR
method uses the Manhattan distance and the Chebyshev distance and provides a compromise solution,
considering the maximum utility and the minimum individual regret. Finally, the filtering is performed
through a distance function that assigns a weight to each variable based on its importance. When two
solutions are separated less than a filter threshold, the one with the lower rank value is omitted.
The resultant set of ranked and filtered solutions is then returned through the Thrift interface.

6.1. First Use Case: A Walk through the Framework

First, to create a new mission, we use the “M” button in the left panel to access the read or create
mission panel (see Figure A1). Here, we must provide the parameters mentioned in Section 3.1. In this
case, the bounds are latitude between 36.76◦ and 36.85◦ and longitude between −2.396◦ and −2.174◦,
and 7.5 arc-seconds are used in the elevation map. The start time of the mission is not specified. Then,
by clicking the Create Mission button (it will be available as long as all the mandatory values are
fulfilled and correct), the mission will be created, and an empty scenario inside the defined bounds
will be presented.

Now, to recreate the mission presented in Figure 2, it is necessary to add the objectives, UAVs,
GCSs and NFZs. These instances are added using the Mission Designer, selecting the Edit button
represented with a pencil in the left panel. Then, the set of icons at the top of the scenario is used to add
each of the elements of the mission. In this case, we consider 4 UAVs, 1 GCS, 1 NFZ and 5 objectives
(monitoring, surveillance, patrol, tracking and target photographing). To add the vehicles, just clicking
on the corresponding icon at the top and then on the desired position in the scenario, the elements
will be positioned, and a pop-up will appear to specify the mandatory properties of these elements
(e.g., Figure A2 shows this pop-up for a UAV, where a name for this vehicle must be provided, as well
as its type and configuration). For the GCSs and the objectives, this pop-up will require a name and
the type of the station or the objective, while NFZs do not require any parameter, so no pop-up will
appear when creating them. As was mentioned in Section 3.4, when adding zone and path objectives
and also when adding NFZs, after clicking the corresponding icon for these elements, a set of points in
the scenario must be clicked in order to create the desired zone or path.

If the elements created are not properly positioned, all of them can be dragged and, thus,
their positions and vertices updated. In addition, each vertex for path and zone objectives can
be moved using the orange points that appear at each vertex in edit mode. The entry point (yellow)
and exit point (red) for zone objectives can also be dragged. On the other hand, any element of the
scenario can be deleted by just right clicking over it.

Once the elements have been created, to modify their different properties, just left clicking on
them will trigger a panel in the right, showing the properties of the element (e.g., Figure A3 shows the
properties of the monitoring objective, where entry and exit points have been added and a duration of
15 min has been established). Once these properties are modified, the Save button must be clicked
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and a message “Saved successfully” must appear or an error message indicating the possible error.
The tracking objective has a duration of 10 min, and the rest of the objectives have not been modified.
On the other hand, the UAVs considered are a HALE (with Electro-optical or Infra-red (EO/IR)
camera and Synthetic Aperture Radar (SAR) radar) two URAV (with EO/IR camera) and a MAlE(with
Maritime Patrol Radar (MPR) and SAR radars).

When first entering edit mode, a general Mission Info panel appears on the right, where the
initial definition of the mission (bounds, start time, etc.) can be modified. In this panel, dependencies
between objectives can also be added by clicking the Add Dependency button and deleted with the
“X” button above the concrete dependency. As can be seen in Figure 2, we consider two dependencies
for this mission, establishing that the surveillance objective (search area) must precede the target
photographing and tracking objectives, and the tracking objective must be performed by the same
UAV that performs the surveillance. To save the new dependencies added or deleted, the Save button
of the panel must be clicked.

Once the entire mission has been defined, in order to save it in the database, the Save button on
the left (the one with the floppy disk) is used.

Once the mission is defined, the mission planner can be executed in order to find solutions for
this mission. This is done by clicking the “P” button on the left (see Figure A4). Then, a pop-up will
appear showing previous executions of the mission planner at the top and a button for executing the
planner (including a box for indicating the maximum runtime) at the bottom.

Additionally, the Change Configbutton permits one to change the operator preferences defined in
Section 4.1 for this concrete mission (see Figure A5). In this case, the ranking values are assigned a
very high value for the makespan; high values for cost, fuel consumption, flight time, distance and
number of tasks performed; a medium value for the number of vehicles used; and a low value for the
risk factors and the number of stations used. When clicking the Plan Mission button, the automated
mission planner starts running with the mission designed.

After the mission planner gets the solutions, and the DSS ranks and filters them, they are presented
in a table at the bottom of the scenario (see Figure A6). Each row of the table represent a solution,
and each column represents the value of an optimization variable. The cells are filled as a percentage
bar, where the greener a cell is, the better the optimization variable for that solution with respect
to the others. When clicking one of the rows of this table, the paths for each vehicle will be shown,
and a panel on the right will appear presenting some information about the plan, including the risk
factors. This panel has two extra tabs: the UAVs tab presents information about the performance of
every specific UAV, including the departure time of the vehicle, the fuel consumed, the assigned tasks,
etc.; while the Tasks tab presents information about every task, including the vehicles performing it,
the flight profile used by them, the sensor employed, etc.

When selecting one of the UAVs used in the plan, only the path for this UAV will be represented
(see Figure A7). In this situation, the Coordinates tab in the bottom will present a table with the
different waypoints of the selected vehicle, including parameters such as the speed, estimated time of
arrival, etc.

On the other hand, when clicking the Altitude Graph tab on the bottom (see Figure A8), an altitude
profile for the selected UAV (in yellow) will appear, including the ground altitude (in brown).

Now that the returned plans have been studied, we select the best one, which usually should
be the first one as in this case. Then, to simulate this plan, we click the play button on the left
panel (see Figure A9). Then, a pop-up indicates that the ArduPilots simulating the vehicles are being
initialized and the paths are being loaded to them.

Once the simulation starts, it can be seen how the vehicles in the scenario start moving and the
waypoints where they are going are marked in green. Once these waypoints are traversed, their color
becomes darker and their border turns black. Meanwhile, when tasks are completed, they become
more translucent (see Figure A10). When the exact moment comes, in our case it is represented in
Figure A10, we simulate that two new tasks must be performed as soon as possible, so we add them to
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our current mission. To do that, we select the Edit button and add new objectives. In this case, oil leaks
monitoring and new photo objectives have been added.

After the online editing, we click the Planner button and introduce a concrete time for the mission
planning process (usually 1 or 2 min). Then, by clicking the Plan Mission button, the mission replanner
will be executed during the specified time. When this process finishes, new solutions will be returned
in the form of a table (see Figure A11), where the different paths and assignments can be seen as before.

In this case, the optimization process has returned one solution. This new plan involves a new
vehicle to perform the oil leaks monitoring objective and the re-routing of URAV 2 for performing
the new photo objective. Now, we click the Re-Execute button (see Figure A12), and the paths and
assignments for the actual executing mission plan will be updated.

6.2. Second Use Case: Working with Unresolvable Missions

In this case, we consider a new mission, represented in Figure A13, with 3 UAVs, 1 GCSs, 1 NFZ
and 6 objectives. As can be seen, the mission cannot be performed because the range of the GCS does
not cover all the objectives of the mission.

In this case, when performing the planning process, following the same steps as in the previous
case, the mission planner will not return any solution. Instead, a pop-up will appear (see Figure A14),
informing that no solution was found, as well as the errors that occurred most frequently during
the checking in the CSP model, so they represent the most probable problem that presents this
mission, so the operator can reformulate the mission to make it feasible. As can be seen in Figure A14,
the planner informs that the main problem is that the vehicles spent too much time out of the coverage
of the GCS, as was pointed out before. Furthermore, it is appreciable that the fuel of the vehicles may
be insufficient in some plans.

7. Conclusions

In this work, we have extended the QGroundControl framework, adding the functionalities
defined in Figure 1. The contribution of this work consists of:

1. The design and development of a mission designer, which provides an interactive environment
for the creation and visualization of missions, including its objectives/tasks, vehicles, GCSs,
NFZs, etc.

2. Integration of an interface for an automated mission planner and DSS, in order to test
different mission planning and DSS algorithms, which generate, rank and filter plans for the
missions designed.

3. Design and development of a plan visualizer, which permits one to graphically represent the
plans, including the paths for each UAV and the information related to the optimality and risks
of the plan.

4. Design and development of a mission monitoring system, which informs the operator about the
waypoints already passed by and the tasks already performed.

5. Design and development of a replanning system and integration of the automated mission
replanner inside the QGroundControl by reusing the interface for automated mission planning.
This permits the operator to inform the system about new objectives/tasks or incidents during
the execution of the mission and call the mission replanner in order to obtain new plans for the
updated mission.

In future works, this framework will be outperformed adding other novel techniques that are
being developed for UAVs, such as a training system for operators, the use of new controlling
devices (e.g., virtual reality glasses or motion sensing devices) or the inclusion of augmented reality in
the simulation.
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Appendix A. Use Cases (Screenshots)

Here, we provide the different screenshots from the simulator execution, used in the use cases
presented in Section 6.

Figure A1. Panel in the QGroundControl for reading or creating missions.

Figure A2. Adding a new UAV in the mission designer.
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Figure A3. Modifying zone objective properties in the mission designer.

Figure A4. Using the automated mission planner.
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Figure A5. Changing the operator settings for the mission.

Figure A6. Mission plan routes and info.
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Figure A7. Route for URAV 2, including the waypoint table and UAV info.

Figure A8. Altitude Profile for URAV 2 and the task table.
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Figure A9. Mission execution.

Figure A10. Mission online edition. Adding new objectives during execution.
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Figure A11. Solution of the mission replanning.

Figure A12. Mission update with the replanned solution.
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Figure A13. Mission considered in the second use case.

Figure A14. No solutions obtained for the mission in the second use case.
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