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Abstract: The GNSS/INS (Global Navigation Satellite System/Inertial Navigation System) navigation
system has been widely discussed in recent years. Because of the unique INS-aided loop structure,
the deeply coupled system performs very well in highly dynamic environments. In practice,
vehicle maneuvering has a big influence on the performance of IMUs (Inertial Measurement Unit),
and determining whether the selected IMUs and receiver parameters satisfy the loop dynamic
requirement is still a critical problem for deeply coupled systems. Aiming at this, a new parameter
self-calibration method based on the norm principle is proposed which explains the relationship
between IMU precision and the velocity error of the system; the method will also provide a detailed
solution to calculate the loop steady-state tracking error, so it will eventually make a judgment
about the stability of the tracking loop under present system parameter settings. Lastly, a full
digital simulation platform is set up, and the results of simulations show good agreement with the
proposed method.

Keywords: deeply coupled; highly dynamic environments; norm; parameter self-calibration

1. Introduction

GNSS/INS deeply coupled technology is an important branch of current research in the field of
integrated navigation systems. The theory around the loop assistance mechanism and the navigation
performance improvement is quite mature, and the deeply coupled system has been applied in the
field already.

The deeply coupled system introduces the inertial information into the tracking loop of the
receiver, which means that the dynamic stress on the receiver could be highly reduced. Hence, this
kind of system performs very well in highly dynamic environments. Around this topic, many research
institutions and scholars have been working hard to improve the system performance. In terms of loop
theory research, Zhang T. proposed an error analysis method to make the connection between most
error sources and the PLL (Phase Lock Loop) tracking loop in 2015 [1]. Liu G. studied the relationship
between MEMS (Micro Electro Mechanical Systems) IMU precision and tracking loop stability in 2013,
and the bias stability of the IMUs was proposed from the angle of usability [2]. Zeng Q. studied the
loop control scheme between loop measurements and INS navigation data in 2016, and two control
schemes were derived which were proved to be correct [3]. In 2014, Kirkko-Jaakkola studied the
jamming mitigation performance of a deeply coupled GNSS-INS system with a low-cost MEMS IMU
and gave actual experimental results instead of simulations [4]. Adeel developed a good structure
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for a tracking loop containing a multicarrier VPLL (Vector PLL) in 2015, and the performance of the
proposed architecture was validated by means of tests under different conditions [5].

Moreover, the implementation of actual deeply coupled systems has been under development.
In 2014, KIT (Karlsruhe Institute of Technology) set up a highly dynamic and deeply coupled
verification prototype; a Simulink software receiver was used to complete the algorithm verification
on the Matlab platform for the first time, and a real-time solution for deeply coupled architecture
was achieved [6]. In 2015, the Rockwell Collins Company launched the NavFire-E Series of
high-performance integrated navigation systems, which represent the highest standards of the current
practical applications. The highly integrated micro-inertial and anti-jamming receiver technology were
used to achieve high output accuracy and high reliability of the system [7].

However, the performance of inertial devices will be affected seriously by highly dynamic
environments. The key point is to make sure that the assistance information used to reduce the
dynamic stress is reliable. How to select correct inertial devices and receiver parameters to satisfy the
loop dynamic requirement is still a problem for the system. However, quite a few articles have studied
this: Liu G. discussed the usability of a MEMS IMU in a deeply coupled system, but the g-sensitivity
error of gyroscope under high dynamic environments was ignored [2]; Kirkko-Jaakkola built an actual
experimental platform with a MEMS IMU, but it was not clear how to select the appropriate IMU
devices [4]. In this paper, a mathematic model of the deeply coupled system including the g-sensitivity
error of gyroscope is introduced. Then, according to the norm principle, the error propagation
properties are analyzed by mathematical deduction and this process gives the quantitative velocity
error caused by IMU error. In addition, a new method which combines with the tracking error model
to determine the loop stability is introduced. It will eventually make a judgment about the stability of
the tracking loop under certain parameter settings. Finally, the correctness of the proposed method
was verified by several simulations based on a digital simulation platform.

2. Mathematical Model of a Deeply Coupled Navigation System

The core concept of the deeply coupled system aided by an IMU is to extract the doppler
frequency and code phase deviation based on the inertial information and satellite ephemeris, and
this can help to control the code/carrier NCO (Numerically Controlled Oscillator) in the tracking
loop. This structure can ensure the system maintains high performance of the tracking loop in narrow
bandwidth conditions. The overall architecture of the system is shown in Figure 1.
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Figure 1. Structure diagram of the GNSS/INS deeply coupled system.

The performance of the inertial devices is obviously affected by highly dynamic circumstances,
so the IMUs’ error model should be established first. Due to the smaller and lighter tendency of the
deeply coupled system, this article mainly discusses the MEMS device.

The error model of gyroscope and accelerometer are given as follows:

ω̃b
ib = ωb

ib + bg + gs f b
ib + ηg, (1)
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f̃ b
ib = f b

ib + ba, (2)

where ω̃b
ib is the angular velocity measurement of the gyroscope, i denotes the inertial coordinate

system, b denotes the body coordinate system, bg is the gyroscope bias, gs is the matrix of g-sensitivity
coefficients, f b

ib is the specific force, ηg is the measurement error of gyroscope, f̃ b
ib is the specific force

measurement of the accelerometer, and ba is the accelerometer bias [8,9].
In order to analyze the relationship between the IMU errors and the INS navigation errors in the

deeply coupled system, the state variables related to the inertial system in the integrated navigation
filter could be expressed as follows:

X =
[

δRe δVe δψe δωb δAb δT
]T

, (3)

where δRe are the error vectors of the 3D position, δVe are the error vectors of 3D velocity, and δψe are
the error vectors of 3D attitude; e denotes the ECEF coordinate system; δωb are the error vectors of the
gyroscopes; and δAb are the error vectors of the accelerometers in the body coordinate system. δT are
the clock error vectors including clock bias error δTbias and clock drift error δTdri f t [10,11].

The equation of state is given as follows:

δ
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Ω̃e =

 0 ωe 0
−ωe 0 0

0 0 0

 F̃e =

 0 fz − fy

− fz 0 fx

fy − fx 0

 Λ =

[
0 1
0 0

]
(6)

where G denotes the parameter of gravity, µ = 3.986005× 1014(m3/s2), which represents the product
of the gravitation constant and the mass of earth;

[
x y z

]
denote the position vectors in ECEF

coordinates, r =
√

x2 + y2 + z2, which is the distance to the center of the Earth; Ω̃e is the matrix of the
Earth’s rotational angular velocity, ωe = 7.292115× 10−5(rad/s); F̃e is the matrix of specific force in
the ECEF coordinate system; Ce

b is the direction cosine matrix between the body coordinate system and

the ECEF coordinate system; Λ is the clock error coefficient matrix; ωT =
[
0 ω f

]T
is the clock error

vectors; and ω f is the clock drift error vectors.
To make sure that the system stability could be analyzed, Wagner J. F. studied the observability of

the integrated system [12]. According to his conclusion, when the system consists of three antennas
which form a triangle of sufficient area, observability would be guaranteed under all circumstances.
Thus, this paper continues on the premise that the observability of the system is guaranteed by the
system hardware.
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3. Parameter Self-Calibration Method for Loops in Deeply Coupled Systems Based on Norm
Analysis

According to the analysis in the above section, the position and velocity of the vehicle calculated
by INS are directly involved in the feedback to the receiver tracking loop, and the carrier frequency
error is mainly related to the velocity error, while the code phase error is only related to the position
error. When the closed-loop Kalman filter is run to the steady state, the estimation error is convergent,
and the accuracy of the filtering result is mainly determined by the covariance matrix of the state
noise. Therefore, what needs to be considered is the INS error in one calculation cycle. Because the
code phase error caused by the position error is much smaller than the carrier frequency error and
leads to a quite small influence on the system, this article focuses on the discussion of the INS velocity
error analysis.

3.1. Norm Analysis to the IMU Error Propagation Properties

Before the norm analysis referring to the INS error, the definition of the two kinds of norms should

be made clear [13]. If A is a vector, the Euclid norm, or 2-norm, of A is ‖A‖2 = (
n
∑

i=1
|Ai|2)1/2. If B is

a matrix, the Frobenius norm, or F-norm, of B is ‖B‖F = (
m
∑

i=1

n
∑

j=1

∣∣Bij
∣∣2)1/2. Both of these two norms

represent the meaning of spatial distance and satisfy the following axioms:

(1) ‖X‖ ≥ 0; further, ‖X‖ = 0 if, and only if, X = 0. (Positive-definiteness)
(2) ‖aX‖ = |a|‖X‖ for any scalar a. (Homogeneity)
(3) ‖X + Y‖ ≤ ‖X‖+ ‖Y‖. (Triangle inequality)

The constant coefficients theorem is described as follows: Let A be an matrix of m×m scalars,
X be an m × n matrix of unknowns, and B be an m × n matrix of given functions. Then the
differential equation

.
X = A·X + B, (7)

with initial value X(t0) = X0 has the solution

X(t) = e(t−t0)AX0 +
∫ t

t0

e(t−t0)AB(τ)dτ, (8)

where t0 denotes the initial moment.
According to the theorem above, Equation (4) could be expressed briefly as the following

differential equation:
.

X = F·X + W, (9)

and the approximate analytical solution of Equation (7) is

X(t0 + ∆T) = e∆TFX0 +
∫ t

t0

e∆TFWdτ, (10)

where ∆T denotes the time interval between two consecutive estimations.
From Equation (4), the velocity and position differential equation could be expressed as follows:

δ
.
R

e
= δVe, (11)

δ
.

V
e
=
[

G− (Ω̃e)
2
]δRe − 2Ω̃eδVe + F̃eδψe + Ce

bδAb , (12)

where δ
.
R

e
and δ

.
V

e
represent the derivatives of position and velocity error vectors, respectively.
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From Equation (11), the position error δRe in one time interval should be δVe∆T. Thus,
Equation (12) could be expressed as follows:

δ
.

V
e
=
[(

G− (Ω̃e)
2
)∆T − 2Ω̃e]δVe + F̃eδψe + Ce

bδAb . (13)

Combining with Equation (10), the velocity error caused by the accelerometer error is

(δVe)acc−bias =
1

F∗
eF∗tCe

bδAb, (14)

F∗ = (G− (Ω̃e)
2
)∆T − 2Ω̃e. (15)

Thus, from Equation (14), the velocity error caused by the accelerometer error is

(δVe)acc−bias ≈
[

∆TI − ∆T2Ω̃e + ∆T3

2 (G− (Ω̃e)
2
) + ∆T3((G−(Ω̃e)

2
)∆T−2Ω̃e)

2

6

]
Ce

bδAb

≈
[

∆TI − ∆T2Ω̃e + ∆T3

2 G + ∆T3(Ω̃e)
2

6

]
Ce

bδAb
, (16)

and it should be noted that the small quantities of high order (∆T≥4) in this step have been ignored.
Both sides of Equation (16) could be expressed in the norm form as follows:

‖(δVe)acc−bias‖2 ≈ ‖
[

∆TI − ∆T2Ω̃e +
∆T3

2
G +

∆T3(Ω̃e)
2

6

]
Ce

bδAb‖
2

. (17)

According to the norm property, Equation (17) could be transformed into the following expression:

‖(δVe)acc−bias‖2 ≤
[

∆T + ∆T2‖Ω̃e‖F +
∆T3

2
‖G‖F +

∆T3

6
‖(Ω̃e)

2‖F

]
‖Ce

b‖F‖δAb‖2, (18)

where Ce
b is the unitary matrix, so ‖Ce

b‖F =
√(

tr(Cb
e Ce

b)) =
√

3.
Equation (18) could be transformed into the following expression:

‖(δVe)acc−bias‖2 ≤
√

3

[
∆T +

√
2ωe∆T2 +

√
6µ∆T3

2r2 +
µ2∆T3

r4

]
‖δAb‖2, (19)

because ‖Ω̃e‖F =
√

2ωe and ‖G‖F =
√

6µ

r2 , according to the definition of F-norm.
Also according to Equation (4), the velocity error caused by the gyro error could be concluded as

follows with the same analysis idea above:

(δVe)gyro−bias = e−Ω̃e∆T∆T
−Ω̃e F̃eCe

bδωb

≈ (∆T2 − ∆T3Ω̃e

2 )F̃eCe
bδωb

, (20)

where both sides of Equation (20) could be expressed in the norm form as follows:

‖(δVe)gyro−bias‖2
≈ ‖(∆T2 − ∆T3Ω̃e

2 )F̃eCe
bδωb‖2

= (∆T2 + ∆T3

2 ‖Ω̃e‖F)‖F̃e‖F‖Ce
b‖F‖δωb‖2

≤
√

6( f 2
x + f 2

y + f 2
z )(∆T2 +

√
2ωe∆T3

2 )‖δωb‖2

. (21)
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From Equations (19) and (21), the relationship between the IMU errors and the related velocity
error is clear. It could be concluded that the INS velocity error mainly depends on four factors: the gyro
error δωb, the accelerometer error δAb, the time interval ∆T, and the vehicle maneuvering which can

be expressed as
√

f 2
x + f 2

y + f 2
z .

Through the mathematical deduction above, the quantitative velocity error can be calculated
directly when the IMUs’ precision and the dynamic requirement for the system are determined.
This will do great favors for the stability judgement of the tracking loop in the next step.

3.2. Parameter Self-Calibration Method for the Tracking Loop in a Deeply Coupled System

A method based on the norm property was proposed to analyze the relationship between the
IMU errors and the system velocity error above; the next step is to make the judgement on the stability
of the tracking loop in deeply coupled systems in highly dynamic environments.

For the deeply coupled system, the total tracking error of carrier loop could be given as follows:

σPLL =
√

σtPLL2 + σv2 + σA
2 +

θe

3
, (22)

σtPLL =
180
π

√
BL

C/N0

[
1 +

1
2Tcoh·C/N0

]
, (23)

σA = 360
c
λ

TcohσA(τ), (24)

θe = 360
an

nR(n)

λBLn , (25)

where σtPLL is the standard deviation of phase error caused by the thermal noise, σv is the standard
deviation of phase error caused by the jitter of the reference oscillator frequency, σA is the standard
deviation of phase error caused by the frequency drift of the Allan crystal oscillator, and θe is the
dynamic stress error caused by the relative movement.

Further, BL is the equivalent bandwidth of the loop, C/N0 is the carrier-to-noise ratio, Tcoh is
the coherent integration time, c is the speed of light, λ is the carrier wavelength, σA(τ) is the Allan
standard deviation of the frequency, and an is filter parameters of the loop; n is the loop order,
a1 = 0.25, a2 = 0.53, a3 = 0.7845 [8].

It needs to be emphasized that R(n) = dnR
dtn , where R(n) is the nth-order derivative of the distance

between the vehicle and the satellite.
Because the second-order locked loop is sensitive to the accelerated movement and the third-order

loop is sensitive to the jerk movement, the velocity error should be transformed to the equivalent
relative movement. Assuming that the INS-aided velocity error in one loop-aided cycle is δve,
the (n − 1)th-order derivative is as follows:

(δVe)(n−1) = R(n), (26)

where R(n) represents the nth-order derivative of the position error vectors.
In order to keep the tracking loop stable, 3 times the variance of the phase measurement error

should be less than 45◦ [14]. According to Equations (22), (25) and (26), the following inequation could
be inferred: √

σtPLL2 + σv2 + σA
2 + 120

an
n(δVe)(n−1)

λBL
n ≤ 15. (27)

Furthermore, according to Equations (19) and (21), the (n − 1)th-order derivative of the INS-aided
velocity error is

(δVe)(n−1) =
{√

3
[
∆T +

√
2ωe∆T2 +

√
6µ∆T3

2r2 + µ2∆T3

r4

]
‖δAb‖2 +

√
6a2(∆T2 +

√
2ωe∆T3

2 )‖δωb‖2

}(n−1)
(28)
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where σv is about 2◦, n is the loop order, a is the sum acceleration of the vehicle, and ∆T is the time
interval between two INS-aided moments.

So far, all the key parameters of the receiver are involved in Equations (27) and (28), and the whole
deeply coupled system can be configured to satisfy the engineering requirement in consideration of
the vehicle maneuvering. If the IMU precision related to δAb/δωb and the dynamic requirement of
the deeply coupled system related to a are defined, it can be directly determined whether the system
can guarantee the stability of the tracking loop or not. The entire parameter self-calibration method is
proposed above; the correctness and advantages will be proved next.

4. Highly Dynamic Simulations and Results

In order to prove the correctness and advantages of the proposed method, a full digital simulation
platform based on Matlab was constructed. The orbital distribution and operation cycle of GPS (Global
Position System) is generated according to actual GPS parameters; the IMUs’ information is selected
from the data book of Analog Devices Inc. In this part, the norm-based analysis method is verified
first, and after combining with three different kinds of MEMS gyros’ parameters, the actual result of
the parameter self-calibration method is put forward.

4.1. Simulation Conditions and Track Settings

According to the data book of ADI Co., Ltd. product, three typical gyroscopes are selected;
they are the high-precision gyroscope ADIS16490, the middle-precision gyroscope ADIS16448, and
the low-precision gyroscope ADIS16300 (Analog Devices, Norwood, MA. USA). The main error
parameters of the gyroscopes are shown in Table 1, and the bias errors of accelerometers are set as
16 mg/20 mg/60 mg.

Table 1. Error parameters of three typical gyroscopes from ADI Co., Ltd.

Gyros ID Bias Repeatability
(◦/s)

White Noise
(◦/s)

g-Sensitivity
(◦/s/g)

50 g-Sensitivity
(◦/s)

ADIS16490 0.05 0.05 0.005 0.25
ADIS16448 0.50 0.27 0.015 0.75
ADIS16300 2.00 1.10 0.050 2.50

The parameters of the GPS system are as follows: the carrier-to-noise ratio (CNR) is 50 dB-Hz,
the bandwidth of the carrier tracking loop is 20 Hz, the coherent integration time is 1 ms, the Allan
standard deviation of the frequency is 10−6 Hz, and the carrier wavelength of GPS L1 is 0.19 m. For the
deeply coupled system, the calculation cycle of INS and the cycle of INS-aided loop control are both
10 ms, and the filter cycle time is 0.1 s. A typical dynamic trajectory of an X-43 hypersonic aircraft is
set as the reference track from running take-off until level flight [15]. The initial position is in Nanjing
where the coordinate is (18.80◦, 32.03◦, 10.00 m), the initial velocity is 0 m/s, and the initial heading
angle is 90◦. The 3D trajectory is as shown in Figure 2, and each stage of the dynamic trajectory is as
shown in Table 2.
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Table 2. Parameters of the X-43 hypersonic aircraft’s dynamic trajectory.

Movement State Time (s) Forward Acceleration
(m/s/s) Pitch Rate (◦/s) Final Velocity

(m/s)

Accelerative running 0–20 4.00 0 80.000
Accelerative taking-off 20–35 1.00 1 95.000
Accelerative climbing 35–75 2.00 0 175.00

Steady climbing 75–100 0 0 175.00
Change to level flight 100–115 0 −1 175.00

Steady level flight 115–145 0 0 175.00
Separation from carrier 145–150 0.68 0 178.40

Ignition of the rocket 150–153 10.0 0 208.40
Accelerative head-up 153–163 19.0 1 398.40
Accelerative climbing 163–250 19.0 0 2051.4
Change to level flight 250–260 0 −1 2051.4
Quick popup of X-43 260–265 19.0 0 2146.4

High acceleration of X-43 265–270 300 0 3646.4
Steady level flight 270–300 0 0 3646.4

4.2. Simulation of Inertial Calculation

In this part, the correctness of the proposed norm analysis method will be proved from the aspect
of inertial calculation. The calculated velocity error by norm analysis is compared with the Monte Carlo
simulation result of the inertial calculation in one cycle.

4.2.1. Norm Analysis Simulation

In order to prove the correctness of the norm analysis method above, the first 10 ms of the
acceleration of the X-43 are picked up; these 10 ms give the greatest dynamic movement in the whole
trajectory. The initial velocity of the vehicle is set as (2146.4 m/s, 0, 0). Ten Monte Carlo simulations
were conducted and the root-mean-square errors (RMSEs) of three velocity errors were compared
with the calculated velocity error from Equation (28). A histogram of the RMSE is shown in Figure 3,
and the detailed statistical analysis of Figure 3 is shown in Table 3.
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Table 3. RMSEs of the velocity errors in one cycle.

RMSE of Velocity Errors High-Precision IMU Mid-Precision IMU Low-Precision IMU

East 0.0150 0.0206 0.0805
North 0.0222 0.1241 0.5268

Up 0.0456 0.2267 0.6751
Calculated by Equation (28) 0.0601 0.1574 0.5724

From Figure 3 and Table 3, the velocity error calculated by Equation (28) matches well with the
RMSE of the velocity errors from the Monte Carlo simulation. Hence, the proposed norm analysis
method is correct and the calculated velocity error can be trusted to work in the loop stability analysis.
Further, the calculation times of the norm analysis method and the Monte Carlo method were compared
by Matlab platform as performed on a PC equipped with an I7-7700 CPU; the result shows that the
norm analysis method only takes 0.01 s to get the velocity error while the Monte Carlo method needs
0.42 s. So, from this part, we can see that the proposed norm analysis method is more concise, efficient,
quantitative, and precise.

4.2.2. Stability Simulation under Highly Dynamic Circumstances

With the help of the simulation above, the velocity error caused by the inertial calculation has
been quantized, and the stability of the tracking loop is related to Equation (27) directly. So, in this
part, the correctness of Equation (27) will be proved.

The parameters of both the INS and GNSS systems are set as the same as before; it should be
mentioned that the Kalman Filter (KF) parameters should be configured according to the system and
measurement parameters, and this article will not discuss the setting of KF parameters. The structure
of the carrier loop is determined as the third-order phase-locked loop aided by the second-order
frequency-locked loop, so n in Equation (27) is 3. The phase detection results of one picked tracking
channel aided with three different precision IMUs are shown in Figure 4, and the phase errors calculated
by the left-hand side of Equation (27) are shown in Table 4.
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Figure 4. Comparison diagram of phase detecting error aided by three kinds of IMUs.

Table 4. The phase errors calculated by the left-hand side of Equation (27) for the three kinds of IMUs.

IMUs Calculated Phase Error (◦)

High-precision 5.08280 (<15)
Mid-precision 11.7625 (<15)
Low-precision 34.1919 (>15)

Figure 4 shows that the high-precision IMU helps maintain tracking through almost all the process.
Only at the times of 265 s and 270 s does there exist a phase detecting error saltation, because the
acceleration changed from 19 m/s/s to 300 m/s/s suddenly and the tracking loop cannot adjust
to the great jerk instantly. During the 5 s acceleration of X-43, the high-precision IMU can help
maintain tracking, and the middle-precision IMU performs worse than the high-precision IMU, but the
low-precision IMU cannot guarantee the stability of the tracking loop even when the vehicle is under
a low dynamic environment. Further, according to Table 4, the calculated phase errors show that both
high-precision and middle-precision IMUs could satisfy the stability condition of Equation (27) but the
low-precision IMU could not; this result agrees well with the phenomenon observed in Figure 4.

The navigation results aided by the three kinds of IMUs are further compared in Figures 5 and 6.
The detailed statistical analysis of Figures 5 and 6 is shown in Table 5.
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Table 5. RMSEs of the deeply coupled system errors aided by the three kinds of IMUs.

RMSE of System Errors High-Precision Mid-Precision Low-Precision

East-position (m) 1.9686 7.0726 407.51
North-position (m) 2.8281 6.9240 279.73

Up-position (m) 5.5569 11.482 210.98
East-velocity (m/s) 0.0740 0.4287 6.5085

North-velocity (m/s) 0.1307 0.4583 30.695
Up-velocity (m/s) 0.2115 0.8553 13.535
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Figures 5 and 6 and Table 5 show that with the help of the high-precision IMU, the deeply coupled
navigation system performs very well in highly dynamic environments. The middle-precision IMU
can guarantee the navigation precision of the system but performs worse than the high-precision
IMU. However, the low-precision IMU causes the system to lose positioning ability throughout the
whole process.

In all, the simulation results above have proved that Equation (27) could make a correct judgment
about the stability of the tracking loop in consideration of the IMUs’ precision, the system parameters,
and the vehicle maneuvering.

5. Conclusions

A new mathematical model of a deeply coupled system including the g-sensitivity error of the
gyroscope was proposed. According to the system model, the error propagation properties were
analyzed by mathematical deduction from the perspective of the norm principle. Then, an inequality
considering most of the deeply coupled navigation system parameters was proposed to judge the



Sensors 2018, 18, 2341 13 of 14

stability of the tracking loop. All the above theories were verified by a full digital simulation platform,
and the simulation results proved the correctness of the relevant conclusions.

The proposed method can provide basic guidance for the design of deeply coupled systems.
The stability judging process is reliable and flexible, and so can provide new ideas for the engineering
realization of deeply coupled navigation systems. Also, the actual effect of the theory in practical
systems will be checked in the near future.

Author Contributions: Data curation, R.L.; Investigation, Z.C.; Software, G.J.; Supervision, J.L. (Jianye Liu);
Writing—original draft, Z.C.; Writing—review & editing, J.L. (Jizhou Lai).

Funding: This research work has been funded by the National Natural Science Foundation of China
(61273057/61374115), Funding of Jiangsu Innovation Program for Graduate Education (KYLX_0284),
the Fundamental Research Funds for the Central Universities, Jiangsu provincial Six Talent-Peaks (Jizhou Lai,
grant number 2015-XXRJ-005), and the Jiangsu Province Qing Lan Project. The author thanks the anonymous
reviewers for helpful comments and valuable remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, T.; Niu, X.; Ban, Y.; Zhang, H.; Shi, C.; Liu, J. Modeling and development of INS-aided PLLs in
a GNSS/INS deeply-coupled hardware prototype for dynamic applications. Sensors 2015, 15, 733–759.
[CrossRef] [PubMed]

2. Liu, G.; Guo, M.; Zhang, R.; Peng, Z.; Luo, S. MIMU precision’s influence on GNSS/MINS integrated
navigation system performance by simulation analysis. J. Chin. Inert. Technol. 2013, 21, 786–791.

3. Zeng, Q.; Meng, Q.; Liu, J.; Feng, S.; Wang, H. Acquisition and loop control of ultra-tight INS/BeiDou
integration system. Optik 2016, 127, 8082–8089. [CrossRef]

4. Kirkko-Jaakkola, M.; Ruotsalainen, L.; Bhuiyan, M.Z.H.; Soderholm, S.; Thombre, S.; Kuusniemi, H.
Performance of a MEMS IMU Deeply Coupled with a GNSS Receiver under Jamming. In Proceedings of the
Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), Corpus Christi, TX, USA,
20–21 November 2014.

5. Adeel, M.; Chen, X.; Yu, W.; Ying, R.; Liu, P. Performance Analysis of Deeply Coupled INS Assisted
Multi-Carrier Vector Phase Lock Loop for High Dynamics. In Proceedings of the 28th International
Technical Meeting of The Satellite-Division-of-the-Institute-of-Navigation (ION GNSS+), Tampa, FL, USA,
14–18 September 2015.

6. Langer, M.; Trommer, G.F. Multi GNSS constellation deeply coupled GNSS/INS integration for automotive
application using a software defined GNSS receiver. In Proceedings of the 2014 IEEE/ION Position, Location
and Navigation Symposium (PLANS 2014), Monterey, CA, USA, 5–8 May 2014; pp. 1105–1112.

7. Slater, C.; Creaghan, M.; Lamce, O. Six-Axis Monopropellant Propulsion System for Picosatellites; Massachusetts
Instritute of Technology Press: Cambridge, MA, USA, 2016; p. 39.

8. Chen, Z. Analysis of the IMU precision’s influence on the loop of deeply-coupled GNSS/INS navigation
system in high-dynamic environment. Optik 2016, 127, 11379–11385. [CrossRef]

9. Bancroft, J.B.; Lachapelle, G. Estimating MEMS Gyroscope G-Sensitivity Errors in foot mounted navigation.
In Proceedings of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS),
Helsinki, Finland, 3–4 October 2012.

10. Qin, F.; Zhan, X.; Zhan, L. Performance assessment of a low-cost inertial measurement unit based ultra-tight
global navigation satellite system/inertial navigation system integration for high dynamic applications.
IET Radar Sonar Navig. 2014, 8, 828–836. [CrossRef]

11. Zeng, Q.; Chen, W.; Liu, J.; Wang, H. An Improved Multi-Sensor Fusion Navigation Algorithm Based on the
Factor Graph. Sensors 2017, 17, 641. [CrossRef] [PubMed]

12. Wagner, J.F. GNSS/INS integration: Still an attractive candidate for automatic landing systems? GPS Solut.
2015, 9, 179–193. [CrossRef]

13. Xing, L.; Hang, Y.; Xiong, Z.; Liu, J.; Wan, Z. Accurate Attitude Estimation Using ARS under Conditions of
Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction. Sensors 2016,
16, 1726. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s150100733
http://www.ncbi.nlm.nih.gov/pubmed/25569751
http://dx.doi.org/10.1016/j.ijleo.2016.06.009
http://dx.doi.org/10.1016/j.ijleo.2016.09.004
http://dx.doi.org/10.1049/iet-rsn.2013.0217
http://dx.doi.org/10.3390/s17030641
http://www.ncbi.nlm.nih.gov/pubmed/28335570
http://dx.doi.org/10.1007/s10291-004-0122-6
http://dx.doi.org/10.3390/s16101716
http://www.ncbi.nlm.nih.gov/pubmed/27754469


Sensors 2018, 18, 2341 14 of 14

14. Xie, G. Principles of GPS and Receiver Design; Publishing House of Electronics Industry: Beijing, China, 2009.
15. Xie, F.; Liu, J.; Li, R.; Jiang, B.; Qiao, L. Performance analysis of a federated ultra-tight global positioning

system/inertial navigation system integration algorithm in high dynamic environments. Proc. Inst. Mech.
Eng. Part G 2015, 229, 56–71. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0954410014525359
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Model of a Deeply Coupled Navigation System 
	Parameter Self-Calibration Method for Loops in Deeply Coupled Systems Based on Norm Analysis 
	Norm Analysis to the IMU Error Propagation Properties 
	Parameter Self-Calibration Method for the Tracking Loop in a Deeply Coupled System 

	Highly Dynamic Simulations and Results 
	Simulation Conditions and Track Settings 
	Simulation of Inertial Calculation 
	Norm Analysis Simulation 
	Stability Simulation under Highly Dynamic Circumstances 


	Conclusions 
	References

