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Abstract: Wireless power transfer (WPT) is a promising technology to realize the vision of
Internet-of-Things (IoT) by powering energy-hungry IoT nodes by electromagnetic waves, overcoming
the difficulty in battery recharging for massive numbers of nodes. Specifically, wireless charging
stations (WCS) are deployed to transfer energy wirelessly to IoT nodes in the charging coverage.
However, the coverage is restricted due to the limited hardware capability and safety issue,
making mobile nodes have different battery charging patterns depending on their moving speeds.
For example, slow moving nodes outside the coverage resort to waiting for energy charging from
WCSs for a long time while those inside the coverage consistently recharge their batteries. On the
other hand, fast moving nodes are able to receive energy within a relatively short waiting time. This
paper investigates the above impact of node speed on energy provision and the resultant throughput
of energy-constrained opportunistic IoT networks when data exchange between nodes are constrained
by their intermittent connections as well as the levels of remaining energy. To this end, we design
a two-dimensional Markov chain of which the state dimensions represent remaining energy and
distance to the nearest WCS normalized by node speed, respectively. Solving this enables providing
the following three insights. First, faster node speed makes the inter-meeting time between a node and
a WCS shorter, leading to more frequent energy supply and higher throughput. Second, the above
effect of node speed becomes marginal as the battery capacity increases. Finally, as nodes are more
densely deployed, the throughput becomes scaling with the density ratio between mobiles and
WCSs but independent of node speed, meaning that the throughput improvement from node speed
disappears in dense networks. The results provide useful guidelines for IoT network provisioning
and planning to achieve the maximum throughput performance given mobile environments.

Keywords: internet-of-things; opportunistic networks; wireless power transfer; inter-meeting time;
Markov chain; node speed; battery capacity; node density

1. Introduction

Wireless mobile devices are currently pervasive, and the number of the devices is expected to be
ever-growing when Internet-of-Things (IoT) and smart cities emerge in the near future [1]. This tendency
makes their energy supply required not only huge but also so frequent that the existing wired charging
technologies cannot cope with them. Faced with the energy supply problem, wireless power transfer
(WPT) is fast becoming recognized as a viable solution [2] enabling the recharging of batteries without
plugs and wires if there is an apparatus to perform WPT, known as a wireless charging station (WCS).
However, due to the limited capability of the state-of-art WPT technique and concerns about human
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safety [3], it is impractical to radiate electromagnetic waves with higher power from a WCS, making the
charging coverage restricted. Multiple numbers of WCSs can be installed to cover the entire network
area, but excessive deployment cost is required.

This paper addresses the energy provisioning issue of energy-constrained opportunistic IoT networks
(This is originated from an opportunistic IoT network where IoT nodes exchange information via
device-to-device (D2D) communications based on their interaction [4,5]). These have been extensively
studied in a wide range of fields, e.g., healthcare, logistics, and car navigation. We add the term
“energy-efficient” to highlight the energy provision problem where nodes’ opportunistic connections
to other nodes and WCSs lead data transmission and energy charging, respectively. These features
of energy supply and consumption yield the following energy dynamics, which is the main theme
of this work. Particularly, we pay attention to the random mobility of an IoT node followed by its
moving pattern, making it possible to supply energy in spite of WCSs’ limited charging coverage.
In other words, a WCS can transfer energy to nodes who get into the charging coverage, which is
referred to as “meeting” throughout the paper. The resultant energy provision of the IoT node thus
depends on its meeting pattern, dominantly affected by moving speed as shown in Figure 1. When a
node moves slowly, as an example, it remains in the charging coverage of the WCS and can receive
energy continuously. Once out of the coverage, on the other hand, it may take an extremely long
time to receive energy again. Consequently, such an irregular energy provision occurs where some
devices consistently receive energy while others suffer from the lack of energy. As a node moves
faster, this energy-starving duration is likely to be shorter, leading to a more regular pattern of energy
supply. This difference motivates us to investigate the relation between speed, energy provision and
the resultant throughput.

Figure 1. The pattern of wireless charging when node speed is slow. During the period that a node is
in the charging coverage of the WCS, it receives energy from WCS continuously. Once a node is out of
the charging range, on the other hand, it takes a long time to receive energy from WCS again.

1.1. Wireless Power Transfer

WPT is a key enabler to realize the vision of next-generation mobile networks, e.g., IoT and
smart cities by overcoming the challenge with battery charging. With the aid of WPT, it is possible to
deploy thousands of IoT sensors at a low cost. In addition, WPT along with energy harvesting enables
the facilitating of designing green networks (see, e.g., [6,7]). Due to its promising potential and the
interdisciplinary nature, many new research issues arise in the area of WPT and are widely studied in
different fields. Recent advancements in the area can be found in numerous surveys such as [8].

The most widely-used WPT method is the magnetic inductive coupling that electric power is
delivered by means of an induced magnetic field. The drawback of this method is its power transfer
efficiency that diminishes significantly unless the transmitter and the receiver are close in contact.
Recently, there have been efforts to develop WPT technology of which the efficiency remains high
within the range from several to tens of meters. In [9], Kurs et al. suggest a novel method called magnetic
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resonant coupling where electric power is transferred from one to the other with high efficiency when
two devices are tuned to the same resonant frequency. However, its high efficiency requirement is so
tight that it is vulnerable to the misalignment between a transmitter and a receiver especially when
the distance between the two becomes larger. Some sophisticated tracking and alignment techniques
are proposed for practical use, e.g., frequency matching [10], impedance matching [11] and resonant
isolation [12], but the use of magnetic resonant coupling for long-range battery charging in harsh mobile
environments like vehicular scenarios is still doubtful. Another approach is microwave power transfer
where radio-frequency (RF) waves are delivered to recharge the battery by using advanced techniques
of wireless communications, e.g., directional beamforming [13], backscatter communication [14,15],
and full duplex communication [16]. Recent studies on WPT consider practical factors to design and
optimize realistic systems, e.g., imperfect channel state information [17], nonlinear energy harvesting
efficiency [18,19], and waveform design [20]. Microwave power transfer theoretically enlarges the
charging coverage more than tens of meters, but controversial issues on health impairments caused by
RF exposure have not been resolved yet, making it difficult to use commercially.

1.2. Applying Wireless Power Transfer to Wireless Networks

There have been several studies incorporating WPT into the design of energy-constrained wireless
networks. One research thrust focuses on the design of the efficient recharging protocol to make every
node always active. For example, a wireless charging vehicle (WCV) is suggested in [21] that visits all
nodes to recharge their batteries. The optimal travel path is derived to avoid the battery depletion of
each node. The work of the optimal WCV routing is generalized in [22] such that the battery charging is
enabled in every place in the entire network under the consideration of the trade-off between charging
efficiency and distance. In [23], the optimal routing for safe charging problem is studied where no
location in the networks has electromagnetic radiation exceeding a given threshold. A prototype
testbed of the routing platform is constructed by using off-the-shelf RF energy transfer hardware
equipment in [24] to demonstrate the performance of wireless sensor networks powered by RF energy
transfer. A distributed recharging protocol is proposed in [25] where multiple WCVs wirelessly
provide energy to nodes given the limited network information. The concept of Qi-ferry is introduced
in [26], which is similar to WCV except the fact that Qi-ferry consumes its own residual energy when
it is moving. In other words, longer travel distance of Qi-ferry visits more nodes but accelerates
its energy depletion. They optimize its travel path reflecting the above trade-off. Nevertheless,
these papers [21–26] are based on the assumption that WPT-enabled devices have knowledge of full or
limited geographical information for all rechargeable nodes, hardly estimated in mobile environments.

Recently, there have been some trials to exploit node mobility for battery charging in WPT-aided
mobile networks. In [27], the energy provision based on the node mobility is introduced where
nodes can harvest excessive energy in a power-rich area and store it for later use in a power-deficient
area. The number of necessary WCSs for continuous operation of every node is analyzed, but some
practical aspects like node speed and battery capacity are ignored. In [28], the performance of
energy-constrained mobile networks is analyzed using stochastic geometry assuming that the energy
arrival process of each node as an independent and identically distributed (i.i.d.) sequence, which is
reasonable only when the speed of each node is extremely fast. Delay-limited and delay-tolerant
communications with WPT are respectively studied in [29,30], where a node can move to a few
rechargeable points according to predetermined transition probabilities. In [31], an intentional mobility
to WPT-enabling locations for battery charging, called a spatial attraction, is modeled as a Markov chain
and analyzed to show the improvement of the coverage rate by the optimally controlled power and
charging range. These papers [27–31] do not consider node speed in spite of its significant effects on the
energy arrival process. In [32], a quality of energy provisioning (QoEP) is defined as the expected portion
of time a node sustains its operation when mobiles are moving within a given range of node speed. It is
shown that QoEP converges to one as battery capacity or node speed increases. The analytical results
are based on the continuous transmission model where a node keeps transmitting data whenever it
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has energy. In IoT networks, on the other hand, data is transmitted discontinuously according to a few
specific conditions, making it more challenging to analyze.

1.3. Contributions and Organization

In this work, we study the performance of energy-constrained opportunistic IoT networks where
the opportunistic behaviors of mobile nodes affect the patterns of data transmission and energy
charging. Specifically, data delivery is enabled between nodes when (1) they are intermittently
connected and (2) a transmitting node receives energy from WCSs enough to deliver data. To reflect
the above energy dynamics, we design a two-dimensional Markov chain of which the horizontal
and vertical state dimensions represent the remaining energy and the distance to the nearest WCS,
respectively. We derive its steady-state probabilities and aim at explaining the effect on throughput.
The main contributions of this paper are summarized below.

• Inter-meeting time vs. Throughput: Higher node speed reduces the frequency of lengthy
inter-meeting times between a node and a WCS and eventually improves the throughput.
The inter-meeting time is interpreted as an energy-starving duration. We explain the phenomenon
through the stochastic distribution of the inter-meeting time in Proposition 1.

• Node speed vs. battery capacity: A slow-moving node stays in the charging coverage for a
long time. It saves enough energy to endure a lengthy inter-meeting time if its battery capacity,
the maximum amount of energy stored in the battery, is large enough. In Proposition 2, we show
that a fast-moving node achieves the same throughput when the battery capacity becomes infinite.

• Throughput scaling law: In Proposition 3, we prove that the throughput scaling is given as
Θ
(

min
(
1, m

n
)

cmin(1, m
n )
)

(We recall that the following notation: (i) f (n) = O(g(n)) means that
there exists a constant c and integer N such that f (n) ≤ cg(n) for n > N. (ii) f (n) = Θ( f (n))
means that f (n) = O(g(n)) and g(n) = O( f (n)).) where n and m denote the number of nodes
and WCSs respectively, and c is a constant (0 < c < 1). As the network becomes denser,
the throughput depends on the ratio m

n and becomes independent of node speed.

Note that the approach in this work is similar to that of our previous work [33] as both apply a
Markov chain to model an energy-constrained mobile network. In [33], it is assumed that nodes follow
the i.i.d. mobility model, which allows us to include only the residual energy status as a Markov chain
state. On the other hand, our current work focuses on finite node speed, which limits node movement
within a restricted area. In other words, the current node location depends on the previous one.
Therefore, we should take into account not only the residual energy, but also the location information
of a node when designing a Markov chain model. Our paper illustrates that the throughput under the
i.i.d. mobility model in [33] can be understood as an upper bound, which is achievable when (i) node
speed becomes faster; (ii) battery capacity becomes larger or (iii) node density increases.

The rest of this paper is organized as follows: In Section 2, we explain our models and metrics.
In Section 3, we introduce a two-dimensional Markov chain design and derive its steady state
probabilities. In Section 4, we verify how the node speed effect is affected by battery capacity and node
density. Finally, we conclude this paper in Section 5.

2. Models and Metrics

2.1. Network Description

Consider an energy-constrained IoT network where n nodes and m WCSs are randomly
distributed in a torus area (A torus area refers to finite and boundary-less region such that one
side’s edge is connected to the opposite one. In this model, the boundary effect disappears, enabling
the analysis of the performance tractably from the viewpoint of one typical node. ) of size

√
S×
√

S
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(in meter2). Time is slotted and one slot is large enough to transmit a single packet. A node is assumed
to change its direction randomly at every slot with constant speed of v (meter/slot), namely, we have:

‖X`(t + 1)− X`(t)‖ = v, (1)

where X`(t) is the location of node ` at slot t and ‖ · ‖means the Euclidian distance. The assumption
makes sense because an IoT node requires much longer latency than conventional cellular networks to
transmit data, say up to a few seconds [34].

A node enables transmitting its packet to one of its neighbors within r (in meters) defined as the
transmission range. For an interference model, we use the well-known protocol model [35] where the
packet transmission is successful only when the other transmitting nodes are no less than r. Too large r
leads to frequent transmission failures because there are many interfering nodes. To avoid excessive
interference, the transmission range r is set to the average distance to the nearest node in the area.

2.2. Two-Phase Routing

A pair of source and destination nodes is given randomly. Unless there is the corresponding
destination node of a source node within the range r, its packet should be delivered via a relay node.
This paper adopts the two-phase routing [35] as follows:

• Mode switch. In the beginning of each slot, a node becomes a transmitter or a receiver with
probability q or 1− q, respectively. Without loss of generality, we set q = 0.5.

• Phase 1. In odd slots, let us consider node ` becomes a transmitter. If there is at least one receiver
within transmission range r, node ` forwards its packet to one of them. This receiver node can be
the destination of node `.

• Phase 2. In even slots, let us consider node ` becoming a receiver. If there is at least one transmitter
within transmission range r and one of them has a packet whose destination is node `, it forwards
the packet to node `. This transmitter can be the source of node `.

In [35], the throughput of the two-phase routing is defined as follows:

Definition 1. (Throughput) Let M`(t) be the number of node `’s packets that its corresponding destination
node receives during t slots. We say that the throughput of Λ is feasible for every S-D pair if:

lim inf
t→∞

1
t

M` (t) ≥ Λ. (2)

When a node transmits a packet, a constant amount of energy is consumed defined as one unit of
energy (It is implicitly assumed that a modulation and coding scheme (MCS) is fixed and constant power
is required to deliver a packet within the transmission range. It is interesting to adjust the level of MCS
to improve the energy efficiency, which is outside the scope of current work.). A node is called active
when it has at least one unit of energy. Otherwise, the node is inactive. Let pon denote the probability
that a node is active, defined as an active probability. In [33], the throughput Λ is given as follows:

Λ =
1
2

qpon exp
(
−π

4
qpon

) (
1− exp

(π

4
(−1 + q)

))
. (3)

It is shown that the throughput Λ (3) depends on pon, which is determined by the process of
energy recharging introduced in the sequel.

2.3. Recharging Mechanism by Wireless Charging Stations

Inactive nodes are unable to transmit packets in their buffers. To supply energy to them,
m WCSs are deployed in the network. WCSs recharge nodes via WPT. No interference between
data transmission and energy transfer exists because each of them use a separated band.
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The energy transferred to a mobile is given by the product of the maximum deliverable units of
energy E and the energy transfer efficiency τ(x), where x is the distance to a WCS. Let Ry denote the
maximum distance that a node can receive y units of energy. Without loss of generality, the efficiency
τ(x) is a monotone decreasing function of x, and the charging range Ry is determined by finding the
value of x that E · τ(x) becomes y, such that Ry = {x : E · τ(x) = y}. Let Ys(t) denote the location of
WCS s at slot t. The distance between node ` and WCS s is given as ‖X`(t)−Ys(t)‖, and the amount
of recharged energy υ (in units of energy) is

υ(‖X`(t)−Ys(t)‖) =


E, if ‖X`(t)−Ys(t)‖ ≤ RE,
k, if Rk+1 < ‖X`(t)−Ys(t)‖ ≤ Rk, k = 1, · · · , E− 1,
0, otherwise,

(4)

where RE < RE−1 < · · · < R1. Define a charging range as the maximum distance that a node receives at
least one unit of energy from the connected WCS. Given the above recharging mechanism, the charging
range is equivalent to R1. The time required to transfer energy from a WCS to a node is extremely
short compared to one slot. This means that the contact duration is long enough to deliver up to E
units of energy under finite speed. It is a reasonable assumption because the maximum power transfer
rate of magnetic resonance coupling is 12 (in Watts) [36], whereas that of an IoT device is 23 (in dBm),
approximately 0.2 (in Watts).

The battery of each node is recharged by one of WCSs. When a node is in the coverage of multiple
WCSs, it is assumed to receive energy from one of them due to the practical alignment technique
limitation. The maximum battery capacity of each node is set to L units of energy. If the sum of residual
and recharged energy are larger than L, a node stores up to L units of energy, and the remaining
is thrown out. A WCS can recharge up to u nodes within one slot using the technique of tracking
resonance frequencies. For example, it is experimentally shown in [37,38] that up to two devices
can be charged by using the technique of the said resonant frequency splitting and load balancing,
respectively. When there are more than u nodes within the coverage, the WCS randomly selects
u nodes among them.

Each WCS always monitors its own remaining energy. If the remaining energy is below a certain
level, it communicates with an operator station by using its communication module. The operator
station then sends the charging vehicle, which recharges the WCS before its battery runs out.
This means that all WCSs always have sufficient energy.

3. Stochastic Modeling of Energy-Efficient Opportunistic Internet-of-Things

In this section, we design a two-dimensional Markov chain in which the horizontal and vertical
state dimensions represent the residual energy and the distance to the nearest WCS, respectively.
We first outline our Markov chain design, and then derive the steady state probabilities to determine
the active probability Pon (3).

3.1. Two-Dimensional Markov Chain

The state space of the proposed two-dimensional Markov chain Ψ is given as follows:

Ψ = {(e, d) : 0 ≤ e ≤ L, 0 ≤ d ≤ M} , (5)

where parameter e is the number of remaining units of energy, and d is a discrete number indicating
the distance to the nearest WCS by the following rule:
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d =



0, if mins ‖X`(t)−Ys(t)‖ ≤ R1,
1, else if mins ‖X`(t)−Ys(t)‖ ≤ R1 + v,

...
k, else if mins ‖X`(t)−Ys(t)‖ ≤ R1 + kv,

...
M, otherwise,

(6)

where mins ‖X`(t)−Ys(t)‖ represents the distance from node ` to the nearest WCS (in meters), and the
charging coverage R1 and node speed ν are specified in (1) and (4), respectively. The number M in (6)
can be interpreted as the resolution of the Markov chain in the sense that larger M is able to express
the trajectory of node ` more accurately. The number d is defined as a relative distance meaning that a
physical distance (in meters) is normalized by node speed v.

Figure 2 represents an example of the two-dimensional Markov chain when WCS can deliver up
to two units of energy to a node within one slot (E = 2). The state transitions are explained as follows:

• State transition by node mobility: The state transitions to the up or down arise when the relative
distance d (6) becomes shorter or longer, respectively. Let Pi,j denote the probability that the
relative distance d is changed from a to b, i.e.,

Pi,j(t) = Pr [d = j at slot t + 1 |d = i at slot t ] . (7)

The mobility model follows a time-invariant Markov process of which the transition probabilities
are constant regardless of slot t, and Pi,j(t) can be simply expressed as Pi,j by omitting the index t.
The exact form of Pi,j is in Appendix A.1 with its derivation. All transition probabilities Pi,j are
constant regardless of the residual energy status.

• State transition by data transmission: The state transition to the left happens when node `

transmits a packet to one of neighbors nodes. Let pt denote a probability that an active node can
transmit its packet as

pt = q ·
[

1−
{

1− (1− q)
πr2

S

}n−1]
. (8)

The detailed derivation is in [33]. Unless its residual energy e is zero, the transmission probability
pc is constant regardless of the relative distance d (6).

• State transition by energy charging: The state transition to the right arises when the node is
recharged by a WCS. This event only happens when the node is selected by one of WCSs is in the
charging coverage, and these are only stipulated on the lowest state transition (d = 0). Recall that
each WCS can charge up to u nodes in a given slot. We define a charging probability pc as the
probability that node ` becomes one of u selected nodes, i.e.,

pc =
1− γ(u, n)m

1−
(

1− πR1
2

S

)m , (9)

where γ(u, n) = 1 − πR1
2

S F(u − 2; n − 1, πR1
2

S ) − u
n

(
1− F(u− 1; n, πR1

2

S

)
and F(k; n, p) =

∑k
i=0 (

n
i )pi(1 − p)n−i is the cumulative distribution function (CDF) of the binomial distribution

with parameters k, n and p. The derivation is given in Appendix A.2. The number of recharged
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units of energy depends on the distance to its associated WCS. Let β(k) denote a probability a
node receives k units of energy as follows:

β(k) =


Rk

2−Rk+1
2

R1
2 , if k = 1, · · · , E− 1,

Rk
2

R1
2 , if k = E.

A node in the charging coverage thus receives k units of energy with probability pcβ(k).

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

3, 0

3, 1

4, 0

4, 1

L, 0

L, 1

L-1, 0

L-1, 1

PT PT PT PT

PT PT PTPT PT

PT

PC β(1) PC β(1) PC β(1) PC 

0. 2 1, 2 2, 2 3, 2 4, 2 L-1, 2PT PT PTPT PT L, 2PT

PT

PT PT

PT

PT

0, M 1, M 2, M 3, M 4, M L-1, MPT PT PTPT PT L, MPT PT

P 1,0 P 1,0 P 1,0 P 1,0 P 1,INP 0,1

P 2,1P 1,2

P 0,1 P 0,1 P 0,1

P 2,1 P 2,1P 1,2 P 2,1 P 2,1
P 1,2 P 2,1

P 1,2

P 2,3 P 2,3 P 2,3 P 2,3 P 2,3P 3,2 P 3,2 P 3,2 P 3,2 P 3,2 P 3,2

...

...

...

...

... ...

... ...

... ... ...

Figure 2. Two-dimensional Markov chain of which the horizontal and vertical state dimensions
represent the number of remaining units of energy and the relative distance to the nearest WCS
normalized by node speed, respectively.

3.2. Steady State Probability and Throughput

Let πe,d denote the steady state probability when the residual energy of node ` is e units
of energy and the relative distance is d. Then, we make the following steady state vector
π =

[
π0,0, · · ·π0,M, π1,0, · · ·π1,M, · · · πL,0, · · ·πL,M

]
, which is partitioned according to the

number of remaining units of energy, i.e., π =
[

π0 π1 · · · πL

]
, where

πe =
[

πe,0 πe,1 · · · πe,M

]
. (10)

In order to derive π, we make the following balance equation:

πQ = 0, π1 = 1, (11)

where 1 is the column vector where every entity is one, and Q is the generating matrix of the
corresponding Markov chain:
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Q =



B0 A2 A3 0 0 . . . 0 0 0
A0 A1 A2 A3 0 . . . 0 0 0
0 A0 A1 A2 A3 . . . 0 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . A1 A2 A3

0 0 0 0 0 . . . A0 A1 A2 + A3

0 0 0 0 0 . . . 0 A0 A1 + A2 + A3


. (12)

Its sub-matrices B0, A0, A1, A2 and A3 are expressed as follows:

B0 =


−P0,1 − pc P0,1 0 · · · 0

P1,0 −P1,0 − P1,2 P1,2 · · · 0
0 P2,1 −P2,1 − P2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −PM,M−1

 ,

A0 =

 pt · · · 0
...

. . .
...

0 · · · pt

 = ptI, A1 = B0 −A0, A2 =

 pcβ(1) · · · 0
...

. . .
...

0 · · · 0

 , A3 =

 pcβ(2) · · · 0
...

. . .
...

0 · · · 0

 .

After solving the balance equation of (11), we can caculate the active probability Pon as

Pon =
L

∑
e=1

πe1 = 1−π01. (13)

With (3), the throughput Λ is given as

Λ =
1
2

q (1−π01) exp
(
−π

4
q (1−π01)

) (
1− exp

(π

4
(−1 + q)

))
. (14)

4. Performance Evaluation of Energy-Efficient Opportunistic Internet-of-Things

Based on the aforementioned mathematical framework, this section attempts to analyze the effects
of node speed on throughput in terms of inter-meeting time, battery capacity, and node density, each of
which is verified by comparing Monte-Carlo simulations.

4.1. Inter-Meeting Time and Throughput

This subsection aims at analyzing the effect of node speed v on throughput Λ using the
inter-meeting time defined as follows:

Definition 2. (Inter-meeting time) Consider that there are node ` and WCS s in the network. The inter-meeting
time TI is the interval between adjacent meeting events between node ` and WCS s:

TI = inf {t ≥ 0 : Zt+k = 1 | Zk = 1} , (15)

where Zt is an indicator to check whether a meeting event occurs between node ` and WCS s at time t.
If ‖X`(t)−Ys(t)‖ ≤ R1, we set Zt to one. Otherwise, Zt = 0.
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The inter-meeting time TI is related to the energy starving period of the node because the node
has no opportunity to receive energy until it meets one of WCSs. The stochastic features of TI is thus
related to an energy provision process of an arbitrary node. Let P denote an M by M matrix of which
the elements represents the transition probability Pi,j (7) (1 ≤ a, b ≤ M):

P =


p1

p2
...

pM

 =


P1,1 P1,2 . . . P1,M−1 P1,M
P2,1 P2,2 . . . P1,M−1 P2,M

...
...

. . .
...

...
PM,1 PM,2 . . . PM−1,M PM,M

 , (16)

where pd =
(

Pd,1 Pd,2 . . . Pd,M−1 Pd,M

)
. From P (16), we derive the stochastic distribution of

inter-meeting time TI in the following Proposition:

Proposition 1. The complementary cumulative distribution function (CCDF) of the inter-meeting time TI is

Pr [TI > t] =
M

∑
i=1

γiλ
t−1
i , (17)

where λi is the ith eigenvalue of P (16) (1 > λ1 > · · · > λM > 0). The coefficient γi is

γi = p0aibT
i ,

where vectors ai and bi are the right-hand and left-hand eigenvectors of λi such that Pai = λiai and
b∗

i P = λib∗
i , respectively.

Proof. see Appendix A.3.

Figure 3a shows the CCDFs of inter-meeting time TI . We use the energy transfer efficiency
function in [39], i.e., τ(x) = −0.0958x2 − 0.0377x + 1.0, which is obtained through the curve fitting
of the experimental results of [40]. We numerically measure the inter-meeting time TI by changing
the node speed as v = 1, 2, 3 and 6 (meters/slot). When the length of one slot is set to a second,
the concerned sets of speed represent the cases of stationary, walking, slow vehicle and fast vehicle,
respectively [41]. It is shown that higher node speed v reduces the number of lengthy inter-meeting
times. A node with faster speed can reach the charging coverage of the WCS within a few slots,
reducing the occurrence of lengthy inter-meeting times. A node with higher speed enables to move a
new location far away from its previous one. In other words, the event of meeting WCS depends on

the ratio of the charging coverage to the network area, i.e., 1
µ = πR1

2

S2 ≈ 0.053 as does the i.i.d. mobility
model. With increased node speed, the distribution converges to that of the i.i.d. mobility model
following the exponential distribution with parameter µ ≈ 18.7174. It is verifed by simulation that the
analytic result in Proposition 1 follows similar tendencies of practical mobility models e.g., Brownian
motion and random waypoint (See Appendix A.4).

The CCDF of TI of (17) is the sum of powered eigenvalues with the exponent t. As t becomes
larger, it is simplified by the largest eigenvalue λ1 because other terms decay faster:

Pr [TI > t] ≈ λt
1. (18)

The eigenvalue λ1 is called the spectral radius of matrix P (16). As the spectral radius becomes
smaller, the approximated CCDF (18) decreases much faster in the regime of large t. This indicates that
lengthy inter-meeting times are infrequent when λ1 is small. In Table 1, we summarize this spectral
radius λ1 as a function of node speed v and show that λ1 is a non-increasing function of node speed
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v. Consequently, higher node speed decreases spectral radius λ1 and produces fewer occurrences of
lengthy inter-meeting times.
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Figure 3. (a) The CCDF of inter-meeting time under different node speed v (meter/slot); (b) expected
throughput as a function of node speed v (meter/slot). Parameters: Network size S = 400 (in meter2),
battery capacity L = 10 (units of energy), the maximum number of simultaneous transferable nodes
u = 1, the maximum transferable energy per slot E = 3 (in units of energy), the number of nodes
n = 10, and the number of WCSs m = 1.

Table 1. Spectral radius λ1 as a function of node speed v (meters/slot). The same parameter setting is
used as Figure 3.

v = 0.5 v = 1.0 v = 1.5 v = 2.0 v = 2.5 v = 3.0 v = 3.5 v = 4.0 v = 4.5 v = 5.0 v = 5.5 v = 6.0

λ1 0.9985 0.9953 0.9903 0.9845 0.9780 0.9714 0.9649 0.9585 0.9534 0.9492 0.9471 0.9457

The above feature of the inter-meeting time affects the energy provision process as shown in
Figure 3b. When node speed v is 0.5 (meters/slot), the throughput Λ is nearly one-third of that
of the i.i.d. mobility model. A node is unable to receive energy for a long time due to frequent
lengthy inter-meeting time and remains in an inactive state. This results in the decrease in throughput.
As v increases, on the other hand, the inter-meeting time decreases. This leads to the reduction in
energy-starving period and the improvement of throughput.

4.2. Battery Capacity and Throughput

Consider a slow-moving node who stays in the charging coverage for a long duration. The node
can receive energy continuously from the connected WCS. Nevertheless, the node is unable to
save more than L units of energy due to the battery capacity constraint. In other words, the node
can remain active longer with larger battery capacity. To explain the phenomenon, we make the
following proposition.

Proposition 2. When the battery capacity L becomes infinite, the throughput of an energy-constrained network
Λ becomes independent of node speed v as

Λ =
q
2

ρ

(
1− exp

(
π(q− 1)

4

))
· exp

(
−π

4
q · ρ

)
, (19)

where

ρ = min

[
1,

pc

pt

{
1−

(
1− πR1

2

S

)m}( E

∑
i=k

kβ(k)

)]
. (20)
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Proof. See Appendix A.5.

Figure 4 represents the throughput Λ as a function of battery capacity L. As L increases,
Λ increases and converges as mentioned in Proposition 2 (see the black dotted line). A noticeable
point is that Proposition 2 is achievable under a finite battery capacity. If a node can store enough
energy to sustain the inter-meeting time, it remains in an active state and achieves the throughput in
Proposition 2. We calculate the mean of the inter-meeting time E[TI ] from (18) and the spectral radius
λ1 in Table 1:

E[TI ] =
∞

∑
t=0

Pr [TI > t] ≈
∞

∑
t=0

(λ1)
t =

1
1− λ1

. (21)

When the battery capacity L is no less than E[TI ], the throughput Λ becomes the same as that in
Proposition 2 (19). For example, when node speed v is 0.5 or 1.5 (meters/slot), its spectral radius λ1 is
0.9985 or 0.9903 (see Table 1) and its corresponding E[TI ] becomes 666.67 or 103.09, respectively. As a
result, a battery capacity larger than E[TI ] is understood as a necessary condition to achieve the upper
bound in Proposition 2.
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Proposition 2

Figure 4. Throughput vs. battery capacity L. The same parameter setting as in Figure 3 is used
unless specified.

4.3. Node Density and Throughput

Since the seminal work by Grossglauser and Tse [35], investigating the relationship between
throughput Λ and node density n has been the most fundamental issue with mobile networks;
therefore, the impact of irregular energy provision due to low node speed has not yet been studied.
In this subsection, we investigate this effect through some numerical evaluations and the following
throughput scaling law.

Proposition 3. The scaling law of the throughput Λ is:

Λ = Θ
(

min
(

1,
m
n

)
cmin(1, m

n )
)

, (22)

where 0 < e−
π·u
4·a < c ≤ e−

π·u
4·a (∑E

k=1 kβ(k)) < 1, and a = 1− e−
π
4 (1−q).

Proof. See Appendix A.6.
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Proposition 3 indicates that the throughput Λ is a function of the ratio of the number of WCSs m
and the number of nodes n, and independent of node speed v. A node with low speed receives energy
from WCSs irregularly, yielding the decrease of throughput. Compared with fast-moving one, it needs
more WCSs to maintain the same throughput. As the network becomes denser, however, the penalty
due to slow speed disappears and we only consider the ratio m

n when installing WCSs. In order to
achieve the constant throughput of Θ(1) as in [35], for example, Θ(n) WCSs is required regardless of
node speed.

Note that the scaling law in Proposition 3 of (22) is the same as that of the i.i.d. mobility model
in [33]. Figure 5 shows that the throughput Λ always converges to that of the i.i.d. mobility model as
the number of nodes n increases. This implies that a high node density makes nodes look as if they are
moving at a fast speed in the sense that the i.i.d. mobility model allows a node to increase moving
speed v up to the network size. When calculating the throughput of a dense mobile network with
WPT, it is a reasonable assumption that nodes move according to the i.i.d. mobility model.
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(b) The number of WCSs m = n
10

Figure 5. Throughput vs. node density n. The same parameter setting as in Figure 3 is used
unless specified.

5. Conclusions

In this paper, we have investigated the throughput of an energy-constrained opportunistic IoT
network where WCSs are deployed to recharge IoT nodes when they are in the charging coverage.
Given the network architecture, the energy provision pattern follows the speed of the corresponding
node. Namely, a slow-moving node outside a WCS’s charging coverage waits a long time for energy
supply from WCSs, whereas a fast-moving one can receive energy from a WCS within a short interval.
The analytical and numerical results have shown that this distinct energy provisioning difference leads
to the throughput gap between slow- and fast-moving nodes especially when the battery capacity
is finite and IoT nodes are sparsely deployed. This finding provides useful guidelines for designing
energy-efficient opportunistic IoT networks. First, a WCS should prioritize the charging opportunity
of nodes depending on its speed to improve energy provision efficiency. Second, the battery capacity
of an IoT node can be minimized by predicting its speed. Finally, the deployment strategy of WCSs
should be different depending on node speed such that a relatively less number of WCSs per node is
enough to support the whole nodes in area of high mobility, e.g., motorway, while more WCSs per
node are required to guarantee the same throughput in area of slow mobility, e.g., pedestrian way.

The current work can be extended in several directions. In this work, we consider the simple
mobility model where each node moves without preference. In practical, on the other hand, people are
likely to visit some popular places frequently, making it very challenging to supply enough energy
due to the relatively high node density in the area. Next, considering vehicular scenarios such that
safety-information is disseminated based on vehicle-to-everything (V2X) communication is aligned with
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the recent trend of wireless communications. Moreover, considering the economic aspect of WCSs is
another interesting avenue for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

WPT Wireless power transfer
IoT Internet-of-things
WCS Wireless charging station
D2D Device-to-device
RF Radio-frequency
WCV Wireless charging vehicle
i.i.d. Independent and identically distributed
QoEP Quality of energy provisioning
MCS Modulation and coding scheme
CDF Cumulative distribution function
CCDF Complementary cumulative distribution function
V2X Vehicular-to-everything
BM Brownian motion
RWP Random way point
BMAP Batch Markovian arrival process
QBD Quasi-birth-death

Appendix A

Appendix A.1. Derivation of Transition Probability Pi,j (7)

Let Dt denote the distance between a node and a WCS at time t. Since nodes and WCSs are
uniformly distributed in a torus area, the conditional probability that Dt+1 is smaller than or equal to
x2 given Dt = x1 is

Pr [Dt+1 ≤ x2|Dt = x1] =


0, if v + x2 < x1 or v− x2 > x1,

arccos
(

v2+x1
2−x2

2
2vx1

)
π , if |v− x2| ≤ x1 < v + x2,

1, if x2 − v > x1,

(A1)

which is based on the fact that nodes and WCSs are uniformly distributed in a torus area. From the
conditional probability (A1), we derive the joint cumulative distribution function (CDF) that Dt is
smaller than or equal to x1, and Dt+1 is smaller than or equal to x1:

Pr [Dt ≤ x1, Dt+1 ≤ x2] =
∫ x1

0
Pr [Dt+1 ≤ x2|Dt = x] fDt(x)dx. (A2)

Using (A2), we calculate the following joint probability:

cc Pr [x1 ≤ Dt ≤ x2, x3 ≤ Dt+1 ≤ x4] = Pr [Dt ≤ x2, Dt+1 ≤ x4]

− [Dt ≤ x1, Dt+1 ≤ x4]− Pr [Dt ≤ x2, Dt+1 ≤ x3] + Pr [Dt ≤ x1, Dt+1 ≤ x3] .
(A3)
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By inserting the boundary values of the i and j states in (6) into x1, x2, x3 and x4 in (A3), we can
derive the joint probability αi,j that relative distances d of (6) in slot t and t + 1 are i and j, respectively.
For example, to calculate α0,1, we set x1 = 0, x2 = R1, x3 = R1 and x4 = R1 + v.

Define Aa,b as the joint CCDF that distances dt and dt+1 are respectively no less than a and b
when the number of WCSs m is one, which is expressed as the sum of αi,j, i.e., Aa,b = ∑M

i=a ∑M
j=b αi,j.

Noting that each location of WCSs is independent, we derive Pi,j in terms of Aa,b as follows:

• If i = 0,

P0,j =



1− A0,1
m−A1,1

m

1−
(

1− πR1
2

S

)m , if j = 0,

A0,1
m−A1,1

m

1−
(

1− πR1
2

S

)m , if j = 1,

0, otherwise.

• If 0 < i < M,

Pi,j =



1− Ai,i
m−Ai+1,i

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m , if j = i− 1,

Ai,i
m−Ai+1,i

m−Ai+1,i
m+Ai+1,i+1

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m , if j = i,

Ai,i+1
m−Ai+1,i+1

m{
1− π(R1+(i−1)v)2

S

}m

−
{

1− π(R1+iv)2

S

}m if j = i + 1,

0, otherwise.

• If i = M,

PM,j =



AM,M−1
m−AM,M

m(
1− π(R1+Mv)2

S

)m , if j = M− 1,

AM,M
m(

1− π(R1+Mv)2

S

)m , if j = M,

0, otherwise.

Appendix A.2. Derivation of Charging Probability pc (9)

Given that there are h WCSs within R1 from a node, the probability that the node is charged by
one of the WCSs pc(h) is

pc(h) = 1−
[

1−
n−1

∑
`=0

min
[

1,
u

`+ 1

]
f

(
`; n− 1,

πR1
2

S

)]h

= 1− Γh, (A4)

where f (n; k, p) is the probability density function of the binomial distribution with parameters n, k
and p, and

Γ = 1− F

(
u− 2; n− 1,

πR1
2

S

)
−

u
(

1− F
(

u− 1; n, πR1
2

S

))
nπR2 . (A5)
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The probability that there are h WCSs within R1 from a node is f
(

h; m, πR1
2

S

)
.

Therefore, the charging probability pc is

pc =
∑m

h=1 pc(h) f
(

h; m, πR1
2

S

)
1−

(
1− πR1

2

S

)m . (A6)

The denominator of (A6) represents the probability that the node is in one of the WCS’s charging
coverage. After substituting (A4) into (A6), the charging probability pc becomes

ccpc = 1−
∑m

h=1 (
m
h )
(

A πR1
2

S

)h (
1− πR1

2

S

)m−h

1−
(

1− πR1
2

S

)m =
1−∑m

h=0 (
m
h )
(

A πR1
2

S

)h (
1− πR1

2

S

)m−h

1−
(

1− πR1
2

S

)m

=
1−

(
A πR1

2

S + 1− πR1
2

S

)m

1−
(

1− πR1
2

S

)m .

(A7)

Plugging (A5) into (A7) completes the proof.

Appendix A.3. Proof of Proposition 1

According to [42], the CCDF of TI is Pr [TI > t] = p0Pt−11. Assume that matrix P (16) is
invertible (It is a reasonable assumption that the transition probability, expressed as a row vector in
P, is independent of the current location status d (6) unless speed is infinite, and P is likely to be a
full rank matrix guaranteeing the existence of M eigenvalues. It is also verified numerically under
numerous combinations of parameter settings.), and it can be diagonalized as follows:

P = V DV−1 =
(

a1 a2 · · · aM

)


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λM




bT
1

bT
2
...

bT
M

 . (A8)

Therefore, Pt−1 is

Pt−1 = V(D)t−1V−1 =
M

∑
i=1

Gi · (λi)
t−1, (A9)

where Gi = aibT
i are M × M matrices of which the sum is an identity matrix

(
∑M

i=1 Gi = I
)

.
From (A9), Pr [TI > t] is given as

Pr [TI > t] =
M

∑
i=1

p0Gi1λi
t−1 =

M

∑
i=1

γi · λi
t−1.

Matrix P (16) is called a sub-stochastic matrix because every row sum is 1 except the first one
due to a strictly positive transition probability P1,0. Noting that every eigenvalue of an irreducible
sub-stochastic matrix is less than 1, λi should be smaller than one for every i.

Appendix A.4. Comparison with Practical Mobility Models

We measure the inter-meeting time of Brownian motion (BM) and random way point (RWP),
which is shown in Figure A1 that the analytic result tends to overestimate the frequency of long
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inter-meeting than the practical models due to its constant moving speed. Nevertheless, the overall
tendencies are quite similar especially when speed becomes high.
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Figure A1. The CCDF of inter-meeting time of practical mobility models. The same parameter setting
as in Figure 3 is used unless specified.

Appendix A.5. Proof of Proposition 2

As L → ∞, this Markov process (12) becomes batch Markovian arrival process (BMAP), of which
the stochastic process can be described by the mean steady-state arrival rate λ̄ derived as follows.
First, an infinite generator D is given as

D = B0 + A2 + A3 + · · ·+ AE−1 =


−P0,1 P0,1 0 · · · 0
P1,0 −P1,0 − P1,2 P1,2 · · · 0
0 P2,1 −P2,1 − P2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −PM,M−1

 . (A10)

Let φk denote steady state probability that the relative distance d is k. We make the following row
vector φ as

φ =
[

φ0, φ1, φ2, · · · , φM

]
=
[

∑L
j=0 π0,j, ∑L

j=0 π1,j, ∑L
j=0 π2,j, · · · , ∑L

j=0 πM,j

]
,

which can be derived by solving the following equations.

φD = 0, φ1 = 1. (A11)
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From (A11), we have

φk =


1−
(

1−πR1
2

S

)m
, if k = 0,(

1−π(R1+Mv)2

S

)m
, if k = M,{

1−π(R1+(k−1)v)2

S

}m
−
{

1−π(R1+kv)2

S

}m
, otherwise.

(A12)

Finally, we derive the mean steady-state arrival rate λ̄ from (A12),

λ̄ = φ

(
E

∑
k=1

kAk+1

)
1 = pc

{
1−
(

1−πR1
2

S

)m}( E

∑
k=1

kβ(k)

)
.

If λ̄ < pt, the active probability Pon is

Pon =
λ̄

pt
=

pc

pt

{
1−
(

1−πR1
2

S

)m}( E

∑
k=1

kβ(k)

)
. (A13)

Otherwise, Pon = 1. After inserting (A13) into (3), we complete the proof.

Appendix A.6. Proof of Proposition 3

For the first step, we check the ratio pc
pt

as the number n increases,

pc

pt
≈

1−
(
1−u

n
)m

q
(

1−(1−πR2
1

S )m
)(

1−e−
π
4 (1−q)

) =


m
n

u

q
(

1−(1−
πR2

1
S )m

)(
1−e−

π
4 (1−q)

) if m = O(n),

1

q
(

1−(1−
πR2

1
S )m

)(
1−e−

π
4 (1−q)

) , otherwise.
(A14)

We already proved the upper bound in Proposition 2 (19) as follows:

Λ ≤ Λupper = Θ
(

min
(

1,
m
n

)
c1

min(1, m
n )
)

, (A15)

where c1 = e−
π·u
4·a (∑E

k=1kβ(k)).
In order to derive the lower bound, consider that each WCS only delivers one unit of energy to a

node in a slot (E = 1). Since the submatrices A2 and A3 in the generating matrix Q (12) is null matrices,
the Markov process becomes finite Quasi-Birth-Death (QBD) Process. In [43], the authors showed that
the steady state probability vector πk (10) of finite QBD can be expressed in a matrix geometric form:

πk = v1R1
k+v2R2

L−k. (A16)

Here, matrices R1 and R2 are

R1 = −A2(A1+ηA0)
−1, (A17)

R2 = −A0(A1+A0G)−1, (A18)
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where η is the spectral radius of R1, and G is the square matrix that the every element of the first
column is one and the others are zero. Detailed derivations of R1 and R2 are in [44]. Row vectors v1

and v2 satisfy the following conditions:

[
v1 v2

][ B1+R1 A0 R1
L−1(A0+R1(A0+B0))

R2
L−1(R2B0+A0) A0+A1+R2 A0

]
= 0, (A19)(

v1

L

∑
i=0

R1
i+v1

L

∑
i=0

R1
i

)
1 = 1. (A20)

The boundary condition (A19) is derived by inserting (A16) into the first and last columns of the
balance Equation (11), and condition (A20) means the summation of the entire steady state probabilities
is one:

X1 =

∣∣∣∣∣∣
pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

+ pt
P2,1

+1

∣∣∣∣∣∣, X2 =

∣∣∣∣∣∣
pt
pc

P0,1
P1,0

pt
pc

P0,1
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

+ pc
P2,1

+1

∣∣∣∣∣∣,
X3 =

∣∣∣∣∣∣
pt
pc

P0,1
P1,0

pt
pc

P0,1
P1,0

P1,2
P2,1

pt
pc

P0,1+pc
P1,0

+1 pt
pc

P0,1+pc
P1,0

P1,2
P2,1

∣∣∣∣∣∣, (A21)

where
∣∣∣∣ a b
c d

∣∣∣∣ = ad−bc.

From the Equation (A16), the active probability Pon (13) is rewritten as follows:

Pon = 1−(v1+v2R2
L)1. (A22)

Since the active probability Pon is a non-decreasing function of the battery capacity L, we make
the following inequality condition:

Pon ≥ 1−(v1+v2R2)1 =

(
v1

1

∑
i=0

R1
i+v1

1

∑
i=0

R1
i

)
1−(v1+v2R2)1 = (v1R1+v2)1. (A23)

All elements in matrix R1 is zero except the first row, and the first element of v1 is zero. Therefore,
v1R1 becomes zero and the above inequality (A23) becomes

Pon ≥ v21 =
M

∑
i=0

v2,i ≥ v2,0. (A24)

From the condition (A19), we make the following relations between v1 and v2,

v1 = −v2

(
R2+ptB0

−1
)

, (A25)

v1+v2(I+R2) = φ. (A26)

After inserting (A25) into (A26), we derive v2 as

v2 = φ
(

I−ptB0
−1
)−1

. (A27)
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According to numerical verifications, it is checked that v2,0 is an increasing function of the
resolution factor M. When M = 3, the vector v2 becomes:

v2,0 = φ
1

( pt
pc
+1)X1− pt

pc
X2+

pt
pc

X3

 X1

−X2

X3

 =
φ1X1−φ2X2+φ3X3

( pt
pc
+1)X1− pt

pc
X2+

pt
pc

X3
>

pc

pt

(
φ1−φ2

X2
X1
+φ3

X3
X1

)
2

, (A28)

where X1, X2 and X3 are described in (A21). As n increases, the ratios X2
X1

and X2
X1

reduce to zero.
From the inequalities (A24) and (A28), the active probability Pon is

Pon >
pc

pt

φ1

2
=

pc

pt

{
1−
(

1−πR1
2

S

)m
}

2
. (A29)

We can derive the lower bound of the throughput Λ as

Λ > Λlower = Θ
(

min
(

1,
m
n

)
c2

min(1, m
n )
)

, (A30)

where c2 = e−
π·u
8·a . From the upper bound (A15) and lower bound (A30), we complete the proof.
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