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Abstract: The oscillation of the sense mode of the micro-machined Coriolis vibratory gyroscope
(MCVG) with high quality factor (Q) is analyzed in this study and the corresponding force feedback
control scheme is presented to suppress this oscillation. The controller consists of integrator and some
filters, instead of the common but complicated demodulation and remodulation modules. Compared
with using no oscillation suppression scheme, the proposed simplified oscillation suppression control
scheme can achieve an improvement of the sense mode of the MCVG. The inband spectrum ripple of
the angular rate output are improved from 51.4 dB to 4.23 × 10−4 dB. Correspondingly, these two
performance parameters are improved by 370.4 and 186.2 times, which are higher than two orders of
magnitude, respectively. Bias stability is improved from 9.72 deg/h to 2.5 deg/h. Test results prove
that the proposed control scheme is effective in suppressing the oscillation.

Keywords: MEMS gyroscope; sense-mode oscillation suppression; control circuit

1. Introduction

The micro-machined Coriolis vibratory gyroscope (MCVG) has been widely used in many
fields, including for motor vehicles, robotics, and smartphones, because of its low cost and power,
and high yield rate. However, its low performance limits further high-end applications of the MCVG.
One important factor limiting its performance is the inevitable zero-rate output drift of the gyroscope,
also known as the bias drift [1].

In order to reduce the bias and suppress bias drift, the bias sources resulting from various
aspects have been analyzed, and corresponding control schemes have also been discussed in the
published literature. First, the drive voltage will be coupled to the sense mode through the parasitic
capacitances between the wire bonding pads, wires, proof mass, substrate, etc. [2–4] Researchers
have aimed to reduce this in either the microfabrication process [5] or circuit design based on the
trans-impedance amplifiers [6]. Second, the phase error in the circuits will inevitably result in an
incomplete demodulation, which is also an important bias source [7–10]. This error is suppressed by
selecting the reference phase of the drive-mode control circuits. Third, the mechanical movement in the
drive mode will be coupled to the sense mode because both modes cannot be ensured to be perfectly
orthogonal by current fabrication technologies, which is also known as the quadrature error [2,11,12].
The quadrature error of the MCVG has usually been suppressed by adaptive control, sigma-delta
demodulator scheme, or demodulation and modulation scheme [6,13–20].

Currently, the high-vacuum packaging technology is an efficient method to improve the
performance of the MCVG. It can suppress some bias sources by increasing the quality factor (Q)
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of the MCVG [21–24]. Nevertheless, the MCVG, as a typical two-order mass-damping-stiffness
system, almost works in a critical damping state with increasing Q. Especially, when the sense-mode
resonant frequency further approaches the drive-mode frequency with the aim of achieving higher
signal noise ratio (SNR), the harmful oscillation of the sense-mode of the MCVG will be inevitably
induced by slight external disturbances or the drive-mode vibration in small bandwidth. This will
lead to a drastic fluctuation of the bias and severe performance deterioration. In our experiments,
for a gyroscope with a Q of 30,000 in the sense mode with small bandwidth, the oscillation can
generate an alternating current (AC) signal of 230 millivolts, which will cause the bias to fluctuate
over time, severely deteriorating the gyroscope performance. Some researchers have designed special
mode-matched schemes to improve the bias stability and performance of the MCVG [15,20]. In these
schemes, performance seriously depends on the phase accuracy of the modulation and demodulation
modules of the sense mode. Currently, a part of these items has been confirmed to contribute to
this phase, such as quadrature error, feedthrough coupling, and even thermal drift of the circuit
components. Nevertheless, other potentially unknown contribution items have not been confirmed yet.
Therefore, it is not easy to provide accurate phase confirmation to improve performance, which also
drove us to design an alternative control scheme in the sense mode to suppress the oscillation. In this
work, the oscillation of the sense mode is first analyzed in a typical symmetrical MCVG. Then, based
on the proposed combination scheme of integrator and filter, a simplified closed-loop control method
without demodulation or remodulation modules is presented to suppress the oscillation.

This paper is organized as follows. In Section 2, the oscillation of the sense mode is described and
analyzed. In Section 3, a simulation of the oscillation suppression method is presented. In Section 4,
the gyroscope with and without oscillation suppression is compared. Finally, conclusions are presented
in Section 5.

2. Analysis of Oscillation of Sense Mode

In this work, a completely symmetrical Z-axis gyroscope was selected as the controlling object,
as shown in Figure 1. The detailed operation principles of the gyroscope are omitted here, as they were
described in our previous work [24].
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Figure 1. Schematic representation of the micro-machined Coriolis vibratory gyroscope (MCVG).

According to the schematic representation of the gyroscope, the angular rate detection electronics
consists of the C/V sensing element of the gyroscope and the proposed force control element marked
in the dotted box, as shown in Figure 2a. To be compared with the proposed scheme, the traditional
method is also presented in a dotted box in Figure 2b [20]. Signals cos(ωdt) and sin(ωdt) belong to the
demodulation and modulation modules, respectively.
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Figure 2. Schematic comparison of (a) the proposed force feedback control method and (b) the
traditional method for the MCVG.

In the angular rate detection electronics, when a random disturbance is applied to the gyroscope,
the oscillation of the sense mode will occur easily at the resonance frequency ωs because of the high Q
of the gyroscope, which is caused by the high-vacuum packaging. The random disturbance signal can
be assumed as a cosine signal and its expression is written as

e(t) = fed cos(2π fst + ξ) (1)

where fed is the amplitude of the external disturbance, ξ is the phase offset, and ωs = 2πfs is the
sense-mode resonance frequency. The transfer function from the external disturbance force to the
oscillation displacement of the sense mode could be written as

Hgy(s) =
Yso(s)
fed(s)

=
1

ms

(
s2 + ωs

Qs
s + ωs2

) (2)

where s = jωs and ms is the mass of the sense mode. Displacement of the oscillation can be written as

yso(t) =
fedQs

msωs2 cos
(

ωst + ξ +
π

2

)
(3)

From Equation (3), it can be seen that the amplitude of the oscillation is mainly dominated by the
disturbance force fed and the sense-mode quality factor Qs. In Figure 2, this displacement is directly
picked from the Ss+ and Ss− ports of the sensing element. After the interface circuits, the oscillation
voltage can be expressed as
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Vde(t) =
fedQs

msωs2 GVde
y cos

(
ωst +

π

2
+ ξ + η

)
(4)

where η and GVde
y are very small phase shift and gain from the displacement yso(t) to the input Vde(t) of

the demodulator including the proposed integrator and filter, respectively. Subsequently, the signal is
demodulated by the reference cosine signal cos(ωdt) and low-pass filtered to obtain the output voltage
VΩ, which is written as

VΩ(t) =
fedQsGVde

y

2msωs2 cos
(
(ωs −ωd)t + ξ + η +

π

2

)
(5)

where the gyroscope output VΩ generated by the oscillation is still a cosine signal with an oscillation
frequency |ωs − ωd|.

In the sense-mode force feedback loop, the output signal of the interface circuit module is fed
into the controller consisting of the integrator and high-pass filter (HPF) located in the forward path.
After the controller, the AC voltage Voscella is obtained and differentially applied on the oscillation
suppression electrodes OsCa+ and OsCa− in the sense mode with a fixed Vdc bias voltage to generate
the error suppression force. This force is in anti-phase with the external disturbance force fed. Figure 3
shows the transfer function of the proposed sense-mode force feedback control system.
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The open loop transfer function of the control system can be written as

E(s) =
Fs(s)
Fed(s)

=
KI
s

Hgy(s) · GC/V · HH(s) · GV_F (6)

where GC/V is the gain of the displacement-to-voltage interface circuit module; KI is the gain of the
proposed integrator; E(s) is dominated by the integrator and HPF characteristic, which are used
to suppress the noise and keep the amplitude-frequency response constant within the frequency
domain (ωd − ωΩ, ωd + ωΩ), where ωd is the resonance frequency of the drive mode of the gyroscope,
and ωΩ = 2πf Ω is the working frequency of the input angular rate. HH(s) is the transfer function of the
HPF and it is written as

HH(s) =
s

s + ωc
(7)

where ωc = 2πfc is the cut-off frequency of the HPF (ωc is slightly smaller than ωd − ωΩ to satisfy the
dynamic response to the angular rate). The closed-loop transfer function of the control system at the
resonance frequency ωd is written as

Y(s) =
Hgy(s) · GC/VKI HH(s)

s(1 + E(s))
(8)
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In the closed-loop transfer function Y(s), the HPF and integrator are the strategic components
that weaken the amplitude of the system at the frequency with fs. In addition, the inhibiting effect is
illustrated through a simulation analysis in Section 3.

According to the Coriolis principle, frequency ωΩ of the angular rate Ω is demodulated by
frequency ωd of the drive-mode velocity

.
X, where X is the amplitude of the drive-mode displacement.

When the angular rate Ω(ω0t) is input, Vde can be written as

Vde(jωd) = msXωd[Ω(j(ω0 + ωd)) + Ω(j(ω0 −ωd))]
Hgy(jωd) · GC/VKI HH(jωd)

jωd(1 + E(jωd))
(9)

After Vde(jωd) is demodulated by cos(ωdt) and low-pass filtered by H0(s), of which cut-off
frequency is slightly larger than ωΩ, the angular rate output signal VΩ can be derived as

VΩ(jω0) =
1
2

msXΩ(jω0)
HgyGC/VKI HH

1 + E
H0 (10)

where Hgy, HH, and E are gains of the sensing element, proposed filter, and E(s) at the resonance
frequency ωd, respectively; H0 is the gain of H0(s) at the frequency ωΩ. Therefore, according to the
size of VΩ, the angular rate input signal Ω(ω0t) could be calculated.

3. Simulation Analysis

To quantitatively illustrate the oscillation suppression of the sense mode of the high-Q MCVG,
a SIMULINK model was constructed based on Figure 3 and the corresponding analysis. First,
according to Equation (6), the simulation of the open-loop transfer function E(s) of the MCVG was
performed. The corresponding time-domain and frequency-domain characteristics caused by the
external vibration were analyzed. The simulation parameters are listed in Table 1. Subsequently,
according to Equation (8), the simulation analysis of the closed-loop transfer function Y(s) was
performed to verify the effectiveness of the proposed method. In order to compare them with the
open-loop characteristics, the time-domain and frequency-domain characteristics were also analyzed.
The corresponding closed-loop simulation parameters and comparison results are listed in Tables 2
and 3, respectively.

Table 1. Parameters of the gyroscope.

Gyroscope Parameters Value

Resonant frequency of the drive mode (fd) 3535 Hz
Resonant frequency of the sense mode (fs) 3554 Hz

Mechanical bandwidth 19 Hz
Sense mode mass (ms) 0.89 mg

Displacement amp. of the drive mode (X) 5 µm
Drive-mode quality factor (Qd) 32,320
Sense-mode quality factor (Qs) 34,195

Table 2. Parameters of the closed-loop system.

Parameters Value

Gain of displacement-to-voltage interface circuit module (GC/V) 4 × 108 V/m
Gain of voltage-to-force interface circuit module (GV/F) 3500 N/V

Gain of integrator (KI) 100
Cut-off frequency of high pass filter (fc) 3500 Hz
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Table 3. Comparison results with and without oscillation suppression.

Gyroscope Parameters Without Suppression With Suppression

Setting time of transient response 9.2 s 0.15 ms
Phase margin 66.2 deg N/A

Cut-off frequency (ftl ftr) ftl = 3527 Hz ftr = 3540 Hz ftl = 2540 Hz ftr = 4960 Hz
Bandwidth 13 Hz 2420 Hz

Inband spectrum ripple 51.4 dB 4.23 × 10−4 dB

Figures 4 and 5 show the open-loop time-domain and frequency-domain response curves of
the sense mode of the MCVG, respectively. When an external disturbance is applied to the sensor,
it could be seen in Figure 4a that the sense-mode ringdown oscillation representing the output of the
MCVG lasts several seconds, which means that the bias seriously suffers from the external disturbance.
Further, the close-up view of the curve is shown in Figure 4b. It can be seen that the setting time is
about 9.2 s.
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The amplitude-frequency and phase-frequency responses of the sense-mode open-loop function
E(s) are shown in Figure 5. The peak gain of the amplitude-frequency response at the sense-mode
resonant frequency reaches 84.4 dB because of the high Q of the sense mode. Nevertheless, when the
external angular rate with frequency f Ω applies to the MCVG, f Ω is modulated to a two-side band
fd − f Ω and fd + f Ω with the drive-mode resonant frequency fd of 3535 Hz as the center point, as shown
in the detail view; −3 dB bandwidth of the angular rate response is only 13 Hz because of the high Q.

Further, the high Q will also result in the amplitude response of the angular rate seriously suffering
from the fluctuation when the external angular rate varies dynamically with the bandwidth range of
2f Ω. The corresponding inband spectrum ripple deteriorates to 51.4 dB if the angular frequency f Ω
varies with the maximum value of 30 Hz. This means that the sense mode itself will inevitably give
rise to oscillation and severely deteriorate the performance of the MCVG.
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In order to improve the response characteristics of the sense mode, the closed-loop oscillation
suppression scheme, as described in Figure 2, was simulated as shown in Figures 6 and 7. Figure 6
shows the time-domain response curve of the proposed closed-loop function Y(s). The setting time is
greatly reduced to 0.15 ms.
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Further, frequency-domain response curves are shown in Figure 7. It can be seen that −3 dB
bandwidth of the angular rate response is increased to 2420 Hz before the demodulation by the
proposed control scheme. This bandwidth is sufficiently large so the sense-mode oscillation hardly
occurs in the application. Further, the angular-rate amplitude response has the minimum inband
spectrum ripple with only 4.23 × 10−4 dB. Comparing with the open-loop response, the inband
spectrum ripple of the closed-loop control scheme with oscillation suppression is reduced to
2.7h, which demonstrates that the bias performance of the MCVG can be obviously improved.
The comparison results without and with oscillation suppression are listed in Table 3.

It can be seen from Table 3 that the simulated bandwidth of the loop transfer function Y(s) is
2420 Hz. Nevertheless, this bandwidth is not the actual bandwidth of the whole sense-mode circuit.
The whole sense-mode bandwidth is finally determined by the last LPF outside the loop. In detail,
the accurate bandwidth of the equivalent band pass filter (BPF) as listed in the above table can be
obtained by accurately setting the simulation values of resistor/capacitor (RC) components. Inside
the loop, a bandwidth in the range of [fd − f Ω, fd + f Ω] before the demodulation signal Vde(t) can be
achieved because of the bandwidth of the equivalent BPF. However, after demodulating by reference
signal cos(2πfd) coming from the drive mode, two types of signals with frequencies of 2fd and f Ω
are generated. By the last LPF outside the loop with a bandwidth of 35 Hz set in this work, a signal
with a frequency of 2fd is filtered, but the angular rate signal with a frequency f Ω < 35 Hz is retained.
Therefore, the whole sense-mode bandwidth is limited to 35 Hz.

4. Test Results

According to the simulations in Section 3, it is demonstrated that the force feedback loop is
effective in suppressing the oscillation. A closed-loop circuit was implemented based on the above
simulation set, as listed in Tables 1 and 2. Figure 8 shows the vibration test system consisting of the
vibration table, high-Q sensing element, signal processing element application specific integrated
circuit (ASIC), and a few discrete RC components, which adjust the key parameters of control
electronic elements.
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Figure 9 shows that the resonance frequencies of the drive mode and sense mode are measured to
be 3535 Hz and 3554 Hz, respectively. The measured results indicate a frequency difference of 19 Hz.
The corresponding measured quality factors of the two modes are 32,320 and 34,195, respectively.
The corresponding pressure is about 10 Pa.
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The comparison of the frequency-domain spectrum of the zero-rate output without and with
oscillation suppression is shown in Figure 10. Within the system bandwidth, it is obvious in Figure 10a
that the disturbance signal with a frequency of 19 Hz is about −54 dBV, which implies that the bias
stability inevitably suffers from it. Figure 10b shows the noise floor of the gyroscope after oscillation
suppression. A disturbance signal of 19 Hz is suppressed. The noise spectrum density of the gyroscope
is about 51 µV/

√
Hz at the setting point of 19 Hz. The equivalent angular rate of the noise power

spectral density is 1.6h deg/s/
√

Hz and the bandwidth of the input angular rate signal is 35 Hz,
which is mainly determined by the cut-off frequency of the final-stage LPF. The effect of the power
frequency of 50 Hz is degraded by properly shielding.
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The comparison measurement of the oscillation suppression effect in the time domain was
performed using the vibration test table shown in Figure 8. The specification of the external disturbance
on the measurement is listed in Table 4. The time-domain shock profile is shown in Figure 11.
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Table 4. Specification of external disturbance.

Parameters of Impulse Test Value

Equivalent weight of movable platform 2000 g
Shock displacement 0.3 mm
Impact acceleration 490 m/s2

pulse duration 50 µs
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Figure 12a shows that the amplitude of the zero-rate output has a peak-to-peak value of about
230 mV when the external disturbance is applied by the standard vibration table. Assuming a setting
time based on the oscillation attenuation curve with an error of 5% of the steady state, the setting time
was calculated to be about 8 s. This phenomenon means that the oscillation of the sense mode is nearly
in a state of non-damping oscillation with the high Q. However, the setting time is greatly shortened
to just 0.48 milliseconds with the oscillation suppression circuits as shown in Figure 12b. Compared
with the corresponding simulation in Figure 6, the test error of the settling time can contribute to
unexpected additional fluctuation of bias output of the MCVG, beyond the fluctuation of the output
induced by the external disturbance itself and some potential measurement errors, such as circuit
components error and impulse load error caused by assembly.
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The oscillation effect can also be shown through the scale factor, as shown in Figure 13. The scale
factors are 31.5 mV/deg/s and 34 mV/deg/s, respectively. The system sensitivity becomes a slightly
lower after the oscillation suppression. The main reason is that the inaccurate RC components result
in the fact that the amplitude–frequency response attenuation exists within the frequency domain
(ωd − ω0, ωd + ω0), compared to that of the open-loop detection circuit. Nevertheless, the nonlinearity
of the scale factor is reduced to 1.1h from 4.5h.
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Figure 14 shows a slice of the recorded zero angular rate output with and without the oscillation
suppression. The sampling period is 100 ms using an Agilent 34401A multi-meter. Figure 14a shows
the bias drift curve for 1 hour without the oscillation suppression, which has a bias voltage and bias
drift of about 134 mV and 5 mV, respectively. After the oscillation suppression, the bias voltage and
bias drift were reduced to 60 mV and 3 mV, respectively, as shown in Figure 14b.
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with the oscillation suppression are 2.5 deg/h and 0.3 deg/
√

h, respectively. This is a significant
improvement, and the proposed scheme is thus effective in suppressing the oscillation of the
sense mode.
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5. Conclusions

In this paper, we describe the oscillation of the sense mode for a MCVG with high Q.
The closed-loop control scheme based on the integrator and HPF is found to greatly suppress this
oscillation. Due to no demodulation or modulation modules, the force feedback control circuit is
greatly simplified. The experimental results demonstrate that the oscillation suppression scheme is
very effective in improving the performance of the MCVG.
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