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Abstract: Global navigation satellite systems (GNSS) have provided an excellent way to monitor
micro-deformation in real-time. However, at local sites where landslides frequently occur,
the environment can include complex surroundings with mountains, dense vegetation, and
human settlements, which can severely degrade the accuracy of positioning with the GNSS
technique. In this study, we propose an azimuth-dependent elevation weight (ADEW) model using
an azimuth-dependent elevation mask (ADEM) to reduce the effects of multipath errors and improve
the accuracy of real-time deformation monitoring in such environments. We developed an adaptive
fixed-elevation mask to serve as the outlier of low precision observations at lower elevations for
the ADEM, and then, we applied the weighted phase observations into the mitigation process for
the effects of multipath errors. The real numerical results indicate that the ADEM model performs
better than the conventional model, and the average improvements were 18.91% and 34.93% in the
horizontal and vertical direction, respectively. The ADEW model further improved upon the ADEM
model results by an additional 21.9% and 29.8% in the horizontal and vertical direction, respectively.
Therefore, we propose that the ADEW model can significantly mitigate the effects of multipath errors
and improve the accuracy of micro-deformation monitoring via GNSS receivers.
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1. Introduction

Many countries around the world suffer from recurring geological disasters, especially landslides,
and the losses of lives and properties caused by the latter have increased each year. Presently, there is
an urgent need for the development of high precision, real-time landslide monitoring technology.
Global Navigation Satellite Systems (GNSS), which capture global, continuous, and high precision
geospatial data, have been widely applied in many fields [1–7], especially for the monitoring of
geological hazards [8–12]. Given the excellent efficiency and reliability, real-time kinematic (RTK)
techniques based on short-baselines have been implemented in geologic deformation monitoring over
the past few years [13,14]. However, local obstacles surrounding antennas can lead to both diffraction
and multipath errors. These have been recognized as the major sources of errors that impact the
accuracy of positioning [15].

Various studies have explored techniques for mitigating the effects of diffraction and multipath
errors, and these techniques can be classified into three groups. The first group usually mitigates
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multipath errors based on antennas [16,17], for example by using choke antennas, but only a portion
of the multipath effects can be eliminated by this technique. The second group of techniques is
based on stochastic variance models [18–20]. The SIGMA-ε variance model was developed by
Hartinger et al. [18] with the aim of mitigating the diffraction error effects with high precision. In 1999,
Hartinger et al. [19] developed the stochastic SIGMA-∆ model to eliminate the effects of diffraction
errors. However, these models appear to fail when there is an unknown number of reflecting
objects and when there are interactions among diffraction pathways. To overcome these limits,
Wieser and Brunner [21] proposed an extended weight model for global positioning system (GPS)
phase observations, but additional iterations are needed to detect robust errors. The third group
depends on modeling techniques that use the signal-to-noise ratio (SNR) [21–25] or on filtering
techniques [26,27], such as the Kalman filter [28], wavelet analysis [29], Vondrak filter [30,31], and
Sidereal Filter (SF) [32–40]. Regarding the SNR-based methods, they have proven to be effective only
when dealing with multipath errors caused by single objects, and the approaches based on filtering
techniques have been proven effective for post-processing applications.

Presently, the typical SF model and Multipath Hemispherical Map (MHM) model are used
routinely for deformation monitoring. Dong et al. [39] proposed mitigating multipath errors with
single-difference observations using the MHM model, but a common receiver clock is needed,
as well as precise atmospheric products. Others have suggested the use of the MHM model with
double-difference observations from the BeiDou Navigation Satellite System (BDS) for multipath error
mitigation [40,41]. However, both methods have an effective reduction capacity for multipath errors
that relies on the similar spatial repeatability of orbit traces within few days.

Few studies involving the construction of physical-based models for GNSS have been validated
in complex environments, which are typical environments where landslides occur. Klostius et al. [42]
suggested that an azimuth-dependent elevation mask (ADEM) model could be used in conjunction
with conventional theodolite measurements. Atilaw et al. [43] proposed the development of
an azimuth-dependent elevation threshold (ADET) mask via GNSS data to reduce the multipath
errors in ionospheric studies, noting that an optimum physical elevation mask could be modeled with
high precision by GNSS satellites. Landslides frequently occur in complex environments, and these
sites are typically surrounded by vegetation, human infrastructures and mountain ridges. As a result,
it is not convenient to map the horizontal mask with theodolite measurements. Without considering
the deviations of source error caused by different types of vegetation and topography, we propose the
use of an azimuth-dependent elevation weight (ADEW) method based on an ADEM in a stochastic
model for mitigating the effects of both diffraction and multipath errors. With such a method, it may
be possible to achieve positional accuracies at the millimeter-scale in complex environments.

This manuscript is organized as follows. First, the models for the double-difference technique,
which adopts RTK methods, the ADEM, and the ADEW, are introduced. Then, the performance of
the ADEW model is evaluated and discussed after experimentation in real landslide regions. Finally,
we provide our conclusions and suggestions for future works.

2. Models

The double differencing (DD) technique allows for the elimination of most orbital, tropospheric
delay, and ionospheric delay errors in short-baseline relative positioning. Consequently, this technique
has been widely used for short-baseline positioning.

2.1. DD Measurement Model for Short-Baselines

Inter-system biases among different navigation systems can be neglected for short-baseline
positioning [44]. Because of this, the DD carrier-phase model for a single satellite can be expressed as
follows [45]:

V = ∇∆ϕ− (∇∆ρ +∇∆M +∇∆N +∇∆ε), (1)
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where ∇∆ is the DD operator, and ∇∆M and ∇∆N are the DD multipath effects and the integer
ambiguities, respectively. ∇∆ϕ denotes the DD observed phase, and ∇∆ρ denotes the DD distance
between satellites and receivers. Finally, ∇∆ε and V are the noise and DD residuals (Res), respectively.
The unit of all terms is meters (m).

The elevation stochastic model used in this study for static baseline solutions is expressed as
σ2 = a2 + b2/σ2

e , where σ2
e = sin2(E), and E is the elevation angle of the satellite. a and b denote

the carrier-phase error factor, and the default value was set as 0.003 m [40]. The variance of the
observations is denoted as σ2. With the float values of integer ambiguity calculated by a least-squares
estimator, the integrated ambiguity can be determined by the possibility of Lambda [45–47]. The fixed
solution is then calculated by the fixed ambiguity.

2.2. ADEM Model

It has been previously demonstrated that the signals of GNSS can be potentially obstructed by
concrete obstacles (i.e., topographic ridges) as well as by disperse obstacles (i.e., trees), as is shown in
Figure 1. Note that the maximum bias on the carrier-phase was due to the diffraction of ~7 cm [42]
and that the bias due to the multipath on frequency L1 was ~4.8 cm [48]. Traditionally, a typical fixed
cut-off elevation (TFC) (15◦–30◦) dependent on the geoid is employed to reduce the multipath errors,
as it is assumed that the antenna is mounted in an unsheltered environment. However, an antenna
may be mounted in a complex environment as shown in Figure 1.
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Figure 1. Panoramic view of the study environment surrounding the antenna from 0◦–360◦ along
the azimuth in the landslide region, as well as the meanings of the terms EM (green), EC (yellow),
and EA (red).

Where EM denotes the changeable cut-off angle dependent on the azimuth, EC denotes the
constant cut-off elevation, and EA denotes the specific elevation mask.

Hence, the ADEM model is proposed, whereby instead of the geoid approach, the model uses
a specific azimuth-dependent elevation mask. The ADEM model can be expressed as follows:

EM = EC + EA, (2)

In Equation (2), EM is decided by EA, when EC is set as a constant value. The main challenge of
the ADEM model is to derive EA in a convenient way. Note that when the satellite rises and sets behind
a mountain ridge, the line-of-sight between the satellites and receiver can be interrupted. As a result,
the elevations of the initial and terminal points (Emin) in the trajectory approximately intersect with
the mountain ridge. Therefore, the scatter of Emin for GNSS can be employed to describe the physical
horizon EA surrounding the antenna. Here, data were collected from GNSS receivers mounted in the
study environment during a 24 h session. All the trajectories of GNSS satellites in the elevation and
azimuth domain are shown in Figure 2.

It can be noted from Figure 2 that the physical structures surrounding the antennas can be
described precisely by the Emin of the multi-GNSS, although a slight discrepancy with the photograph
may be observed. Based on the Emin of 24 h, the curve fitting package in MATLAB was adopted to
estimate the fitting coefficients for EA. Then, the EA can be expressed as follows:
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
→
P = poly f it(

→
x ,
→
y , n)

EA = polyval(
→
P , xi)

, (3)

where
→
x and

→
y respectively denote the azimuth and elevation angle vector of Emin in 24 h, and

→
P

represents the coefficients for the polynomial of degree n. The functions poly f it and polyval are in the

curve fitting package. The
→
P coefficients can be derived by poly f it, while the EA on azimuth xi of any

line-of-sight can be recalculated from
→
P by polyval.
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2.3. ADEW Model

It has been previously demonstrated that a significant improvement with the ADEM model can be
achieved by using EC based on EA, wherein a specific elevation range below EM is rejected. However,
the rejection range EC should not be a constant value since there are different heights of vegetation
and changeable distances between antennas and objects. To estimate the relationships among the
range, the height of a mountain peak, and the horizontal distance between antennas and the peak,
we assumed that the antenna was mounted beside the peak of a mountain, as shown in Figure 3.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 16 

 

ቊ𝑃ሬ⃗ = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝑥⃗, 𝑦⃗, 𝑛)𝐸஺ = 𝑝𝑜𝑙𝑦𝑣𝑎𝑙(𝑃ሬ⃗ , 𝑥௜), (3) 

where 𝑥⃗ and 𝑦⃗ respectively denote the azimuth and elevation angle vector of 𝐸௠௜௡ in 24 h, and 𝑃ሬ⃗  
represents the coefficients for the polynomial of degree 𝑛. The functions 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 and 𝑝𝑜𝑙𝑦𝑣𝑎𝑙 are 
in the curve fitting package. The 𝑃ሬ⃗  coefficients can be derived by 𝑝𝑜𝑙𝑦𝑓𝑖𝑡, while the 𝐸஺ on azimuth 𝑥௜ of any line-of-sight can be recalculated from 𝑃ሬ⃗  by 𝑝𝑜𝑙𝑦𝑣𝑎𝑙. 

 
Figure 2. All the trajectories of GNSS satellites in the elevation and azimuth domain of 24 h 
corresponding to Figure 1, as well as the scatter pointers 𝐸௠௜௡. 

2.3. ADEW Model 

It has been previously demonstrated that a significant improvement with the ADEM model can 
be achieved by using 𝐸஼  based on 𝐸஺ , wherein a specific elevation range below 𝐸ெ  is rejected. 
However, the rejection range 𝐸஼ should not be a constant value since there are different heights of 
vegetation and changeable distances between antennas and objects. To estimate the relationships 
among the range, the height of a mountain peak, and the horizontal distance between antennas and 
the peak, we assumed that the antenna was mounted beside the peak of a mountain, as shown in 
Figure 3. 

 
Figure 3. The geometric relationships among the specified range (𝑒௪), height of a mountain peak (ℎ௠), 
and horizontal distance (𝑑𝑖𝑠) between an antenna and the peak. 

As shown in Figure 3, the term 𝑒௪ can be used to denote the realistic range of observations that 
should be rejected because of multipath errors, and 𝑑𝑖𝑠 denotes the horizontal distance between the 
antenna and peak; the terms ℎ௧ and ℎ௠ denote the height of dispersed obstacles (i.e., trees) and the 
height of the mountain peak, respectively. According to their geometric relationships, the term 𝑒௪ 
can be expressed as follows: 

Figure 3. The geometric relationships among the specified range (ew), height of a mountain peak (hm),
and horizontal distance (dis) between an antenna and the peak.

As shown in Figure 3, the term ew can be used to denote the realistic range of observations that
should be rejected because of multipath errors, and dis denotes the horizontal distance between the
antenna and peak; the terms ht and hm denote the height of dispersed obstacles (i.e., trees) and the
height of the mountain peak, respectively. According to their geometric relationships, the term ew can
be expressed as follows:

ew = arctan
(

dis·ht

dis2 + hthm + h2
m

)
. (4)
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In the ADEM model, the rejected range ew is instead by the constant value EC. In fact, however,
ew should be a variable because of the growth of vegetation throughout the year. For quantitative
research, as shown in Figure 3, we approximately set the heights of trees ht as a constant value of
5 m, set dis as 20 m, and set hm as 20 m. Then, the geometric relations among ew, hm, and dis were
visualized in Figure 4.
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In Figure 4, the relationship between ew and hm is depicted by the red line, and the relationship
between ew and dis is depicted by the green line. It can be seen in Figure 4 that the term ew decreases
with the increasing height of the ridges hm, and significant decreases can be found along the section
(0–40 m). Results show that an exclusion may lead by the constant value EC in ADEM model.
Here, a careful weighting method that employs the ADEW model is proposed to derive a virtual
variable like ew so that bad observations near the mountain ridge can be rejected with high accuracy.
Hence, the variance of observations, σ2, can be modified as follows:

σ2 = a2 +
b2

sin2(E′)
, E′ =

(
E− EA
π
2 − EA

)
·π

2
. (5)

In Equation (5), the projection transformation is adopted to project the measured elevation (E)
used in the stochastic model to a virtual elevation (E′), that equaling to change the coefficients in the
weighting model.

From Equation (5), an elevation angle in the range of [EA, π/2] can be transformed to [0, π/2].
Note that in the ADEW model, the measured elevation angle E, which is lower than EM in the ADEM
model, will instead be determined by the virtual elevation angle E′, and for the results, the rejection
range is changeable according to variations of hm as well as dis. Higher hm or longer dis values will
lead to a narrower range of rejection with careful weighting. This improvement not only increases
the positioning accuracy through the assignment of phase observations with careful weights, but also
promotes the usage of available observations.

2.4. Processing Flowchart

In order to realize micro-deformation monitoring in real-time, we developed a RTK platform,
which can deal with heavy data streams and estimate coordinate biases in real-time. The main
processing procedure is shown in Figure 5:
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The procedure and ADEW model can be divided into three steps:

1. Over a session time of 24 h, GNSS observations were collected to compute all azimuth-elevations
(Azi-el) for single positions given the approximate coordinates of the stations so that the ADEM
coefficients could be initialized by Emin for the first use.

2. Single-difference observations (SD) derived from raw observation data were applied to establish
the DD observations. The float ambiguity of the DD ambiguity was estimated by the least-squares
(LS) criterion, and the virtual elevation E′ was used for careful weighting. To achieve a higher
precision of the DD ambiguity, Lambda was employed to estimate the group of optimum integer
ambiguities according to a threshold of the least-squares ratio (3.0).

3. Fixed coordinate biases were calculated as well as output by the optimum integer ambiguities if
the solution was successfully fixed; otherwise, the float solution was used instead.

3. Experiments and Results

To assess the proposed method in a complex environment, a series of experiments were
performed in two regions with frequent landslide occurrences. The data were processed by a GNSS
software package developed by our research group, which can achieve millimeter-scale precision for
deformation monitoring of a short-baseline within 10 km under an unsheltered environment with
GNSS data. For comparison purposes, the SF model was also employed to evaluate our proposed
method. Here, we present our results.

3.1. Data and Study System

Two sites in Shaanxi, China, were used as study areas to assess the proposed technique’s ability
to improve the accuracy of micro-deformation monitoring results. One site was located in the city of
NingQiang, while the other site was located in the city of HanZhong. Both surrounding environments
are complex with mountainous terrain and various obstacles, which act as major sources of diffraction
and multipath errors. At site (a), the GNSS observations were collected randomly on the days of year
(DOY) 021, 045, and 072 (21 January, 14 February, and 12 March, respectively) in 2018. At site (b),
the GNSS observations were collected on DOY 040 in 2018. The distributions of stations at sites (a) and
(b) are shown in Figure 6.
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As shown in Figure 6, the lengths of the baselines were 204.41 m and 144.99 m for sites (a)
and (b), respectively. The rover station (NQ02) at site (a) was installed beside a hillside that was
severely impacted by ridges and trees, especially from 0 to 180◦ in the azimuth direction (shown in
Figure 1). The rover station (BM02) at site (b) was installed in an area with mountainous ridges nearby.
The reference stations at both sites were mounted in better places, and the equipment used was the
same as that used at the rover sites. The operational details for the receivers and antennas used in the
test, which are capable of tracking BDS (B1, B2, B3), GPS (L1, L2, L5), and GLONASS (P1, P2) satellite
signals, are summarized in Table 1.

Table 1. Monitoring datasets used for the investigation, and the types of receivers and antennas used.
(REF and ROV denote the reference station and rover station, respectively).

Site (a) (b)

Station REF(NQ01) ROV(NQ02) REF(BM01) ROV(BM02)

Baseline length [m] 204.41 144.99
Receiver UNICORECOMM-UR380 (GPS + GLO + BDS)
Antenna MEASURING ANTENNA (GPS + GLO + BDS)
Sampling rate [s] 1
Elevation cut-off [◦] 0
Ratio threshold 3

The following three different model approaches were employed: (1) a conservative cut-off
elevation angle was used with the TFC model; (2) a fixed cut-off elevation based on the ADEM
was used; and (3) the proposed ADEW model was used. In addition, the SF model, which realizes the
results in the coordinate domain in a simple manner, was employed to allow for comparisons with the
ADEM model results. In our experiments, dual-frequency observations from GNSS were processed
by our program in a simulated real-time mode, which means that the data stream was input to the
platform epoch by epoch; the results and output were also estimated epoch by epoch.

The data collected from site (a) are discussed in Sections 3.2–3.5, and the data collected from site
(b) are discussed in Section 3.6 of this manuscript. As was mentioned earlier, there was no significant
motion during the selected session time, and thus, the coordinate bias time series were caused solely
by noise and propagation effects, such as those due to diffraction and multipath errors.

3.2. EAziEle mask Modeling and Performance Analysis

Figure 7 shows the curve of the line fitted with the Emin points of all satellite traces received
by rover station NQ02 on DOY 021. The other data from DOY 045 and 072 were used to assess the
reliability of the curve line. As Figure 7a clearly shows, the scatter points were evenly distributed on
both sides of the fitted-line curve.
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Figure 7. ADEM model fitted by the polynomial method and the compared sky view of satellites:
(a) Initial and terminal point and fitted line; (b,c) the sky view of satellites at DOY 045 and
072, respectively.

From Figure 7, it can be observed that the fitted line coincides with the boundary of the satellite
tracking on the selected days, which indicates that the specific fitted coefficients are suitable for a long
period of time without considering the sidereal cycle. In this study, the coefficients were renewed at
00:00 UTC on the first day of each month.

3.3. Performance Evaluation of ADEM

Geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) were used,
which could be tracked by the antenna at all times. Therefore, only the observations of BDS are
considered in this section, as well as in Section 3.4. The observation session time ranged from 15:30
UTC to 17:30 UTC on DOY 021 in 2018. The sky views of common satellites received both by NQ01 (a)
and NQ02 (b) are shown at the top of Figure 8a,b, and the elevations of satellite C07 are also given at
the bottom of Figure 8a,b.
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Figure 8. Sky view of points from 15:30 to 17:30 and the satellite elevation of C07: (a) reference point
NQ01 and (b) rover point NQ02.

It is clear from Figure 8 that the signal of NQ02 was lost around 16:50, but the signal was still
traced by NQ01. According to the panoramic view of NQ02, the signals of C07 were affected by
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the vegetation at about 16:10, and the influence lasted until the signal was lost in the set behind the
mountain peak at around 16:50, which is where the azimuth-elevation was (168.25◦, 45.51◦). In the
experiments, the satellite C03, which has a higher elevation angle (about 53◦) and is not readily
influenced by the multipath, was taken as the reference satellite to avoid a change of the reference
satellite. The DD residuals and elevation angle of C07 from 15:30 to 16:50 and the variances of the TFC,
ADEM, and ADEW models in stochastic models are shown in Figure 9.
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Figure 9. DD residuals and the elevation time series of C07, as well as the corresponding variance
in the different models: (a) elevation angle; (b) DD residuals; and variance in (c) ADEW; (d) ADEM;
and (e) TFC.

It is clear from Figure 9 that the residuals significantly deviated from zero between 16:10 and 16:50
with multipath errors, which is when the elevation angles of the satellites were near the mountain ridge.
This could have led to a lower accuracy of positioning, or even failures in the integer ambiguity fixing.
Therefore, it was necessary to weaken the effects with a reasonable weighting strategy implemented
by the variance. Noting that the variance time series of the ADEM model climbed steeply, while the
variance of the TFC model changed slowly with the elevation reduction of C07. With a conservative
cut-off elevation of 15◦, the time series of the coordinate bias in real-time was compiled, and the results
are shown at the top of Figure 10; the elevation angle and the numbers of valid satellites are also shown
in this figure.
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A major discrepancy can clearly be seen between 15:55 and 16:50, whereby the deviation timeseries
of the TFC model (red) exceeded that of the ADEM model (blue), and even the integer ambiguity could
not be fixed by the TFC during 16:15 to 16:30 as a result of the impact of multipath errors. With the
reduction of bad observations near the mountain ridge achieved by using the ADEM model, the root
mean square (RMS) of the coordinate bias in the horizontal direction of the time series improved
by 18.91% (from 0.1396 to 0.1132 m), and the RMS in the vertical direction improved by 34.93%
(from 0.0272 to 0.0177 m). The success rate for integer ambiguity fixing improved from 63.4 to 87.8%.

Next, we compared the ADEM model results with those from the SF approach to evaluate the
performance in terms of positioning accuracy in the coordinate domain for deformation monitoring
within the study environments. In this test, we adopted the first day (DOY 020) to build the SF model.
The db8 wavelet was used to filter the high frequency noise [41,42], and filter value subtraction was
performed at the sidereal (23 h 56 min 04 s) [40]. The data at DOY 021 were set as the multipath
reduction target. Experimental results are shown in Figure 11.
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Figure 11. Coordinate bias in ENU (east, north, up) direction: E (top line), N (middle line), and
U (up line). The RMS of the coordinate bias in the top right corners at right column: DOY 020
(left column), DOY 021 (middle column), and after correction of the SF model (right column).

Figure 11 shows the coordinates bias in each ENU direction before and after the multipath
correction at DOY 021 for the SF model, both with ambiguity fixed successfully (green) and failed
(orange) solutions. The RMS of the correction coordinate bias reached up to 0.1784 m, 0.4530 m, and
0.2666 m in the E, N, and U direction, respectively. It is clear that the performance of the SF model
as shown was not very good according to the data from our experiment, since the ambiguities in the
repeat period were not fixed every time. In fact, the integer ambiguities with the data collected from
high-multipath environments were difficult to fix. Therefore, the SF model may not be suitable for
use in such complex environments, and the following work only shows the typical model results for
comparative purposes.

3.4. Performance Evaluation of the ADEW Model

Although the ADEM model (blue) performed better than the TFC (red), as shown in Figure 10,
there was still a break point detected at around 15:55 UTC. The break may be accounted for by the
discontinuous variance of C07 (Figure 9d) used in the stochastic model. To overcome the limitations
discussed in Section 3.3, the ADEW model is proposed, and it uses projection transformation for
a continuous variance without considering the heights of mountains and the distances between the
obstacles and the antennas. The variance is shown in Figure 9c, and the improvement in terms of
positioning is presented in Figure 12.
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Figure 12. Deviation of the fixed coordinate time series using the ADEM method (blue) and the ADEW
method (green) from 15:30 to 17:30 of NQ02 (top); the number of satellites used for the estimation
(middle); the session dealing with C07 in the ADEW method (bottom).

Figure 12 shows that the RMS values for the ADEM model were 0.0096 m and 0.0272 m in the
horizontal and vertical direction, respectively. In comparison, the deviation timeseries of the ADEW
model performed better, with RMS values of 0.0075 m and 0.0191 m in the horizontal and vertical
direction, respectively. Not only did the RMS improve by 21.9% and 29.8% in the horizontal and vertical
direction, respectively, but the usage of observation data improved by 6.25% as well. These findings
indicate that the performance of the ADEW model is better than that of the ADEM model.

3.5. Performance of the ADEW Model with GNSS Data

The experiments presented above were assessed with BDS observations. Next, three groups
of GNSS observations collected on random days for NQ02 were employed to further assess the
performance of the proposed ADEW model. The navigation systems used in these experiments
consisted of GPS, GLONASS, and BDS. Figure 13 illustrates the deviation of the coordinate bias in the
time series for the horizontal direction derived from a fixed solution on DOY 021 (a); 045 (b); and 072
(c) in 2018.
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observations from NQ02 for three different days: (a) DOY 021; (b) DOY 045; (c) DOY 072.

The results shown in Figure 13 indicate that the ADEW model (green) exhibited a lower RMS
than the TFC model (red); details of the RMS values are shown in Table 2.
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Table 2. Standard deviation (RMS) and improvement value in the horizontal direction (2D) and vertical
(U) coordinate error of the 3 different days derived from the TFC and ADEW models.

DOY
RMS-2D (m) RMS-U (m)

TFC ADEW Improved TFC ADEW Improved

021 0.0109 0.0055 30.11% 0.0250 0.0168 32.80%
045 0.0108 0.0068 37.27% 0.0211 0.0124 41.23%
072 0.0100 0.0062 37.71% 0.0228 0.0158 30.70%

It is clear that the RMS of the coordinate bias with the ADEW model was found to have improved,
relative to that of the ADEM model, by 30.11%, 37.27% and 37.71% in the horizontal direction on DOY
021, 045, and 072, respectively. The mean improvement of the RMS in the vertical direction was greater
than 31.58%. Furthermore, the results suggest that the polynomial coefficients of the ADEM model are
applicable for a long period of time, which can help to mitigate the effects of diffraction and multipath
errors, even within a full month.

3.6. Performance of ADEW with another Rover Point

To validate the ability of the ADEW model in another complex environment, the rover point
(BM02) at site (b) was analyzed. The observations of GNSS were collected on DOY 040 in 2018, and the
polynomial coefficients were estimated by using the polynomial fitted model. Details of the receivers
and antennas used have been given in Table 1. Figure 14 shows the time series of the deviation of
coordinate bias in the ADEW model (green), and the results for the TFC model (red) are also shown in
Figure 14 for comparison.
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As shown in Figure 14, the RMS values of the coordinate bias time series obtained by using the
ADEW model were 0.0095 m and 0.0069 m in the horizontal and vertical direction, respectively. Use of
the TFC model resulted in RMS values of coordinate bias of 0.0116 m and 0.0076 m in the horizontal
and vertical direction, respectively. Thus, significant improvements of 18.10% and 9.21% were achieved
by applying the ADEW model over the ADEM model.

4. Discussion

As the area surrounding a GNSS antenna remains unchanged for a relatively long period,
this study constructed a physical elevation mask model around antennas by using multi-navigation
satellites systems. Model experiments were then used to demonstrate the performance of this approach
for high-precision micro-deformation monitoring in complex environments, such as those where
landslides occur.
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The specific coefficients of the ADEM model presented in this study were estimated by a 24 h
session of GNSS observations collected from NQ02 in the complex environment of site (a). Results of
these experiments indicated that the specific coefficients were applicable for DOY 021, 045, and 072 in
2018. Subsequently, the performance of the ADEM model was investigated by using BDS observations,
and we compared the results to those obtained with the SF model. Results of these experiments
revealed that the RMS values of coordinate bias when using the ADEM model had improved by 18.91%
and 34.93% in the horizontal and vertical direction, respectively, in comparison with those derived
from the use of the TFC model; significant improvements over the SF model were also observed.
However, a break point remained, and this could be accounted for by the rejection of observations
caused by the fixed cut-off elevation.

In order to overcome the limitations of the TFC and ADEM models, the range of impacts caused
by the cut-off elevation related to hm and dis were investigated. Detailed analyses revealed that the
adaptive range was greatly affected by hm but not by dis. Therefore, the ADEW model, in which the
projection transformation is employed to project the satellites elevation range from [EAziEle mask, π/2]
to a virtual range [0, π/2], was developed by careful weighting in a stochastic model. The model
experiments with BDS observations revealed that the RMS values of the ADEW model had further
improved by 21.9% and 29.8% in the horizontal and vertical direction, respectively. Model experiments
with GNSS observations demonstrated mean RMS improvements of 34.69% and 31.58% in the
horizontal and vertical direction, respectively. It was also demonstrated that the physical coefficients
of the ADEW model are applicable for a long period of time, even more than a month. Finally, another
rover station BM02 at site (b) was used to assess the validity of the ADEW model. The results of
this analysis agreed in that the ADEW model can significantly reduce the effects of diffraction and
multipath errors by 18.10% and 9.21% in the horizontal and vertical direction, respectively.

In summary, the proposed algorithm has been demonstrated to not only improve the positional
accuracy, but also the usage of available observations, and it can achieve accuracies ranging from the
centimeter-scale to the millimeter-scale in complex environments. Additionally, the coefficients of
ADEM used in the ADEW model have been demonstrated to be available for a long session without
the need to consider the sidereal cycle.

5. Conclusions

GNSS techniques are recognized as an effective way to monitor geologic deformation in real-time.
However, the signals of satellites are severely affected by both concrete and dispersed obstacles in
complex environments; thus, the results of many existing models such as the SF model can lead
to failures in interpretations. This study presents an ADEW model based on the specific ADEM
surrounding antennas. The experiments on BDS observations demonstrated that the RMS of coordinate
bias using the ADEM model improved relative to that of the TFC model by 18.91% and 34.93% in
the horizontal and vertical direction, respectively. The extended ADEW model conferred a further
improvement of 21.9% and 29.8% in the horizontal and vertical direction, respectively, when compared
to the results from the ADEM model. The following conclusions can be drawn from the experimental
results and validation work:

1. Multi-GNSS methods provide a convenient way to model a physical elevation mask for landslide
monitoring in complex environments, and such an approach improves upon the traditional
method that relies on theodolite measurements.

2. The ADEM model constructed by GNSS data instead of geoid data can greatly reduce the impact
of physical obstacles near the antenna in complex environments.

3. The ADEW model can be used to further improve the performance of micro-deformation
monitoring in complex environments relative to the ADEM model as it has been demonstrated
here to exhibit not only lower RMS values of coordinate bias in the time series, but also increases
the usage of available observation data.



Sensors 2018, 18, 2473 14 of 16

The ADEW model depends upon specific coefficients for each ADEM. Therefore, developing
a universal algorithm to eliminate the effects in real-time will be the goal of our future work. We will
also consider the dilution of precision (DOP) of GNSS satellites in the future.
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