
sensors

Article

Adaptive Computing Optimization in
Software-Defined Network-Based Industrial Internet
of Things with Fog Computing

Juan Wang * and Di Li

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641,
China; itdili@scut.edu.cn
* Correspondence: wjhao456@163.com; Tel.: +86-20-222-36-887

Received: 5 July 2018; Accepted: 31 July 2018; Published: 1 August 2018
����������
�������

Abstract: In recent years, cloud computing and fog computing have appeared one after the other,
as promising technologies for augmenting the computing capability of devices locally. By offloading
computational tasks to fog servers or cloud servers, the time for task processing decreases greatly.
Thus, to guarantee the Quality of Service (QoS) of smart manufacturing systems, fog servers are
deployed at network edge to provide fog computing services. In this paper, we study the following
problems in a mixed computing system: (1) which computing mode should be chosen for a task in
local computing, fog computing or cloud computing? (2) In the fog computing mode, what is the
execution sequence for the tasks cached in a task queue? Thus, to solve the problems above, we design
a Software-Defined Network (SDN) framework in a smart factory based on an Industrial Internet of
Things (IIoT) system. A method based on Computing Mode Selection (CMS) and execution sequences
based on the task priority (ASTP) is proposed in this paper. First, a CMS module is designed in the
SDN controller and then, after operating the CMS algorithm, each task obtains an optimal computing
mode. Second, the task priorities can be calculated according to their real-time performance and
calculated amount. According to the task priority, the SDN controller sends a flow table to the SDN
switch to complete the task transmission. In other words, the higher the task priority is, the earlier
the fog computing service is obtained. Finally, a series of experiments and simulations are performed
to evaluate the performance of the proposed method. The results show that our method can achieve
real-time performance and high reliability in IIoT.

Keywords: fog computing; computing mode selection (CMS); IIoT; software-defined network (SDN)

1. Introduction

In the context of Industry 4.0, Internet of Things (IoT), cloud computing, Big Data and other advanced
technology provides technical support for the development of intelligent manufacturing [1–4]. In a smart
factory, humans, machines and things are connected by Industrial IoT (IIoT) [5–8]. The information
on the environment, equipment and personal is collected by intelligent terminals such as sensors,
handheld devices and wearable devices. The cloud provides a service platform for data processing
and data analysis [9]. Cloud computing provides a solid foundation for the realization of intelligent
manufacturing. With the explosive growth of terminal devices, the scale of IIoT is increasingly
amplified. Massive data transmission will cause network congestion and network bandwidth
bottlenecks have become an obstacle that baffles the development of cloud computing; even worse,
network delay reduce the Quality of Service (QoS) for cloud computing [10–12].

In the process of intelligent manufacturing, to satisfy the small batch production of individualized
products, an increasing number of computation-intensive and delay-sensitive tasks must be executed

Sensors 2018, 18, 2509; doi:10.3390/s18082509 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/8/2509?type=check_update&version=1
http://dx.doi.org/10.3390/s18082509
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2509 2 of 14

in an intelligent factory, which brings new problems and challenges to the cloud computing [13]. It is
difficult to have real-time knowledge of the operating equipment status for the cloud computing.
In the smart factory, production scheduling is a real-time multitask and multiobject application and
the cloud has difficulty in guaranteeing the QoS, such as real-time performance and reliability [14].
The augmented reality applications typically require a response time of approximately 10 ms, which
is difficult to achieve using the cloud solution with a typical end-to-end latency of hundreds of
milliseconds [15].

To make up for the inadequacy of cloud computing, a new computing mode-fog computing
is proposed in the field of manufacturing [16]. Fog nodes with plenty of computing resources and
storage resources are located near the network edge and terminal equipment or user can offload
cloud applications to the fog nodes [17]. Fog computing has a low latency, high reliability, energy
savings and safety, which is difficult to realize with a remote cloud [18–20]. There are three types of
computing modes that exist in IoT systems: local computing, fog computing and cloud computing.
The performances and characteristics are described in [21]. Here, the system with three computing
modes can be called a fog computing system. Computing Mode Selection (CMS) is the key technology
for the fog computing system and it should have the ability for adaptive computing for all types
of tasks.

Many studies have investigated the issues that concern cloud computing, fog computing or the
combination of the two types of modes. Usually, the computational capacity of terminal devices is
ignored and tasks are offloaded to fog nodes or the cloud indirectly for most of the studies in the
literature. In an intelligent plant, terminal devices include robotic arm, conveyor belt, Automatic
Guided Vehicle (AGV), Computer Numerical Control (CNC), sensors and hand-held terminals and
so forth. These devices have a certain computing power and storage capacity and they can complete
some simple applications by themselves. However, some terminal devices such as ordinary sensors
do not have computational ability, so they must be connected with agents (e.g., Raspberry Pi) for
sensor data preprocessing. The research fields of fog computing are mainly distributed in mobile
cellular networks, vehicular networks, healthcare and other applications and have made great progress.
However, the research on fog computing in intelligent manufacturing is still in its infancy. In addition,
the QoS of IIoT is different from IoT: the IIoT emphasizes real-time processing and reliability compared
to the IoT, which emphasizes the throughput and packet loss rate [22].

The cloud computing is a centralized processing architecture. All of the tasks are completed on
the cloud and all of the raw data obtained must be transmitted to the cloud. Thus, this approach
will consume a large amount of network bandwidth. With the increasing demand of applications,
the network traffic will increase enormously, which will result in the interruption of services, network
delay and other issues. Therefore, to improve the real-time performance of the cloud computing,
edge servers are deployed in a smart factory and a fog computing system is built for task processing.
Software-Defined Network (SDN) is regarded as a crucial technique for IIoT and thus, we establish
a Software-Defined IIoT framework. In our work, a CMS module and a task execution sequence
adjustment module are designed in the SDN controller and an optimal computing mode decision for
each task is generated by running a CMS algorithm. The execution sequence of delay-sensitive tasks
depends on their priority; in other words, the higher the task priority is, the earlier the task processing.
The contributions of this paper are as follows:

1. A fog computing system is established in the Software-Defined IIoT. The computing resources of
local devices, fog nodes and the cloud can be utilized effectively for task processing. An adaptive
selection and task priority (ASTP) method is proposed in this paper.

2. A CMS module is designed in the SDN controller and a mode selection algorithm is proposed.
The mode selection algorithm can choose an optimal computing mode for each task with
real-time performance.

3. To promise and improve the QoS of a smart factory, a task execution sequence based on task
priority is introduced. The SDN controller makes a flow table according to the task priorities and

Sensors 2018, 18, 2509 3 of 14

then, these flow tables are sent to the assigned switches. The execution sequence of the tasks that
require fog services is determined.

4. We perform simulation results to evaluate the proposed method. The results demonstrate that
the proposed method outperforms the conventional methods in terms of the average delay, total
delay, reliability and satisfaction.

The remainder of this paper is organized as follows. The related work is presented in Section 2.
The IIoT framework with SDN and fog computing system is introduced in Section 3. In Section 4,
a method of CMS and execution sequence for the tasks with the fog computing system is studied.
The simulation results are discussed in Section 5. In Section 6, a brief conclusion is given.

2. Related Work

Fog computing and cloud computing are interdependent on each other and they form a service
continuum between the cloud and the terminal devices of the IIoT. Fu et al. [23] designed a flexible
and economic framework by integrating fog computing and cloud computing and the problem of
storage and searching for secure data can be solved quickly and effectively. In the field of healthcare,
Muhammad et al. [24] proposed a smart healthcare framework that uses fog computing and cloud
computing. A voice disorder assessment and treatment using a deep learning approach was developed.
The voice sample goes to the fog computing for the initial processing and then, the data that are
preprocessed are sent to a core cloud for further processing. Experimental results verified that the
accuracy and sensitivity improved greatly.

Mobile Edge Computing (MEC) is a typically paradigm of edge computing and this technology is
applied in smart cities and smart transport fields with low-latency and high-reliability. Taleb et al. [25]
utilized MEC to enhance the user’s experience of video streaming in smart cities. Through a smart
MEC architecture, an important solution for reducing the core network traffic and ensuring ultralow
latency was proposed. Liu et al. [26] proposed an SDN-enabled network architecture that was assisted
by MEC. The results have shown that the architecture can meet application-specific requirements and
maintain good scalability and responsiveness. In [27], the authors proposed a MEC-based system for
charging station working efficiently with a Big Data-driven planning strategy. Computing offloading
is a crucial technique for fog/edge computing and cloud computing. In [28], the authors studied the
hybrid computation offloading problem while considering the diverse computing and communication
capabilities of two types of offloading destinations, that is, cloud and fog. In [29], the tradeoff between
the latency and reliability in the task offloading to mobile edge/fog computing is studied and the user
equipment is partitioned by dividing a task into subtasks and offloading them to multiple nearby
fog nodes in sequence. Three algorithms were designed to solve the optimization problem to jointly
minimize the latency and offloading failure probability. Numerical simulation results show that the
proposed algorithms strike a good balance between the latency and reliability in ultra-Reliable Low
Latency Communications (uRLLC). Shih et al. [30] introduced the Fog-Radio Access Network (F-RAN)
architecture, which brings the efficient computing capability of the cloud to the fog of the network.
By distributing computing-intensive tasks to multiple F-RAN nodes, F-RAN has the potential to meet
the requirements of those ultralow latency applications. Hu et al. [31] proposed a fog computing-based
face identification and resolution method. To improve the processing efficiency and reduce the network
transmission, some computing overhead was offloaded from a cloud to network fog devices.

SDN is an emerging network paradigm that brings new insights and has high potential to improve
the agility, reliability, scalability and latency performance [26]. In [32], the authors proposed SDN for
fog computing. A clear collaboration model is proposed for the SDN-fog computing interaction through
practical architectures and the SDN-related mechanisms can feasibly operate within the fog computing
infrastructures. Bi et al. [33] proposed a novel SDN based fog computing architecture by decoupling the
mobility control and data forwarding. Under the proposed architecture, efficient signaling operations
were designed to provide seamless and transparent mobility support to mobile users and the authors
presented an efficient route optimization algorithm by considering the performance gain in the data

Sensors 2018, 18, 2509 4 of 14

communications and system overhead in mobile fog computing. Li et al. [22] proposed an adaptive
transmission architecture with SDN and fog computing for IIoT. Data streams were divided into
two groups and two different strategies were made for low-deadline and high-deadline situations.
The results demonstrate that the proposed method outperforms the conventional method.

Recently, fog computing has acquired more and more attention in the industrial field and the
most typical representation is in manufacturing. Georgakopoulos et al. [11] proposed a roadmap
based on IoT and edge cloud computing for manufacturing. Wan et al. [14] utilized fog network
nodes for energy-aware load balancing and scheduling in a smart factory. An energy-aware load
balancing and scheduling method is proposed based on fog computing. Experimental results
showed that the proposed method provides optimal scheduling and load balancing for mixed work
robots. Ashjaei et al. [16] proposed a platform that uses fog computing to enhance smart maintenance
management in a smart factory. Debrito et al. [34] discussed fog computing and its application
paradigm in a smart factory and they concluded that programmable fog nodes make point-to-point
communication between devices autonomous. In [35], the authors developed a prototype to explore
the use of IoT devices that communicate with a cloud/fog-based controller. Mitigation mechanisms
were applied to address the delays and jitter that are caused by the networks when the controller
is offloaded to the fog or cloud. In this paper, the ASTP method is proposed and implemented in
the IIoT fog computing system platform. Most literature did not consider dynamic resource while
selecting mode. Through the centralized control feature of SDN, the proposed framework is capable of
computing mode adaptive selection. The task priority is used for task execution sequence adjustment,
so that the real-time performance of fog computing can be improved. The proposed ASTP method is
suitable for processing industrial tasks in scalable and flexible fog environment.

3. System Model and Problem Formulation

In this section, a fog computing system architecture based on Software-Defined IIoT is set up,
we describe the system model. The delay model of task processing under three different computing
modes are formulated.

3.1. System Architecture and System Model

In a smart factory, the manufacturing level has progressed greatly. Computational tasks in the
productive process become increasingly complex, which brings about problems and challenges for
terminal devices because of insufficient computing resources. However, cloud computing has been
developed and proven to be effective for computation-intensive task processing. The cloud system
architecture is limited by the constraints of the network bandwidth, communication delay, reliability
and security and therefore, the cloud computing cannot promise the QoS of a productive system.
To increase the flexibility, scalability and the real-time nature of the system, SDN technology and
fog computing technology are integrated into the cloud computing system and the proposed system
architecture as shown in Figure 1. The cloud, fog nodes and other terminal devices are connected by
the communication infrastructure.

The system architecture can be divided into three layers: terminal devices layer, fog computing
layer and cloud computing layer. The terminal devices layer is mainly responsible for industrial
production, data acquisition and data transmission. The fog computing layer is mainly responsible for
processing real-time tasks in the edge servers, through deploying the SDN controller to optimizing the
CMS and execution sequence. The cloud layer is mainly responsible for processing non-real-time and
computation-intensive tasks. The overall architecture of the fog computing system, for computational
tasks, has three computing modes to choose from; in other words, the computational tasks can be
executed by terminal devices, edge server or cloud. In this system, there is a set of terminal devices
in a smart factory, which is denoted Ñ = {1, 2, . . . , n, . . . , N} and each device has a computation
task to be completed with a certain delay constraint. The task attribute of device n is described by
Jn = {Dn, Cn, Tn,max}, n∈Ñ. For task Jn, where Dn is the size of the input data (in bits), Cn denotes the

Sensors 2018, 18, 2509 5 of 14

calculation amount (in CPU cycles) that is required to accomplish the task, which depends on the
computational complexity of the task. Tn,max is the maximum tolerable latency (in second) requirement
of task Jn. In this paper, we take a smart factory as the research object and fog computing service is
supplied by an edge server, while cloud computing service is supplied by the cloud. Assuming that
each task cannot be divided and the edge server can process simultaneously many computational
tasks. The delay-sensitive task can be transmitted to the edge server through the Local Area Network
(LAN); the compute-intensive task can be transmitted to the cloud through the Wide Area Network
(WAN). In an industrial scene, especially in the intelligent manufacturing, real-time performance is the
key performance indicator of the intelligent manufacturing system and perhaps even at the expense
of energy consumption to improve the real-time performance and thus, this article does not consider
energy consumption problems.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 14

second) requirement of task Jn. In this paper, we take a smart factory as the research object and fog

computing service is supplied by an edge server, while cloud computing service is supplied by the

cloud. Assuming that each task cannot be divided and the edge server can process simultaneously

many computational tasks. The delay‐sensitive task can be transmitted to the edge server through

the Local Area Network (LAN); the compute‐intensive task can be transmitted to the cloud through

the Wide Area Network (WAN). In an industrial scene, especially in the intelligent manufacturing,

real‐time performance is the key performance indicator of the intelligent manufacturing system and

perhaps even at the expense of energy consumption to improve the real‐time performance and thus,

this article does not consider energy consumption problems.

SDN switch

Edge server SDN controller

Control flow

Data flow

Cloud

Task management

 m
ode

selecting

T
ask priority

Computational
tasks

Flow table

Figure 1. System architecture of Software‐Defined IIoT based on fog computing in a smart factory.

3.2. Delay Model of Tasks under Different Computing Modes

3.2.1. Local Computing

Let fn be the computation ability of device n (in CPU cycles/s) and thus, the execution time of

task Jn is

Tn,L = Cn/fn, (1)

3.2.2. Fog Computing

If task Jn chooses the fog computing mode, then terminal device n must transmit the input data

Dn to the fog server through the shared wireless links. After all of the input data Dn is received, task

Jn will be processed in the edge server. The data transmission rate [36] of terminal device n to the edge

server is

rn,E = θn∙B∙log2(1 + Pn,E∙gn,E/θn∙N0∙B), (2)

where θn denotes the normalized assigned portion of the bandwidth to terminal device n. B is the

total radio bandwidth and Pn,E is the transmission power of terminal device n when transmitting data

Figure 1. System architecture of Software-Defined IIoT based on fog computing in a smart factory.

3.2. Delay Model of Tasks under Different Computing Modes

3.2.1. Local Computing

Let fn be the computation ability of device n (in CPU cycles/s) and thus, the execution time of
task Jn is

Tn,L = Cn/fn, (1)

3.2.2. Fog Computing

If task Jn chooses the fog computing mode, then terminal device n must transmit the input data
Dn to the fog server through the shared wireless links. After all of the input data Dn is received, task Jn

will be processed in the edge server. The data transmission rate [36] of terminal device n to the edge
server is

rn,E = θn·B·log2(1 + Pn,E·gn,E/θn·N0·B), (2)

Sensors 2018, 18, 2509 6 of 14

where θn denotes the normalized assigned portion of the bandwidth to terminal device n. B is the total
radio bandwidth and Pn,E is the transmission power of terminal device n when transmitting data to
the edge server, which is determined by the fog server through power control mechanisms and the
maximum value is Pn,max. Here, gn,E is the channel gain between terminal device n and the fog server,
while N0 is the channel noise power.

Thus, in the fog computing mode, the execution time of task Jn consists of two sections: one is
the transmission time and the other is the computing time. fn,E denotes the computational resource
allocated by the edge server.

Tn,E = Dn/rn,E + Cn/fn,E, (3)

3.2.3. Cloud Computing

Typically, those tasks that have no real-time demand and a large amount of calculation choose
the cloud computing mode and are sent to the cloud and rely on a combination of the access network
and core network. The execution time of the tasks is composed of three parts, the access network
transmission time, the core network transmission and the cloud processing time.

Tn,C = Dn/rn,E + Dn/BE,C + Cn/fC, (4)

where BE,C is the network bandwidth between the edge server and the cloud and fC is the computing
ability of the cloud. It is worthwhile to note that the output data size of calculation results is smaller
than the input data and in addition, the backhaul network resource is sufficient and thus, the return
time of the calculation results is considered negligible.

3.3. Problem Formulation

According to (1), (3) and (4), the execution time of task Jn is expressed as

Tn = an·Tn,L + bn·Tn,E + cn·Tn,C, (5)

where an, bn, cn, are the mode selection decisions of task Jn, an∈{0, 1}; bn∈{0, 1}; cn∈{0, 1}. an + bn + cn = 1.
Thus, the total delay of all of the tasks is formulated as follows:

Ttotal =∑(an·Tn,L + bn·Tn,E + cn·Tn,C), (6)

(P1) : min Ttotal
s.t. (C1) : an, bn, cn ∈ {0, 1}, ∀n ∈ N,

(C2) : an + bn + cn = 1, ∀n ∈ N,
(C3) : 0 < θn ≤ 1, ∀n ∈ N,
(C4) : ∑ θn ≤ 1, ∀n ∈ N,
(C5) : 0 ≤ Pn,E ≤ Pn,max, ∀n ∈ N,
(C6) : Tn ≤ Tn,max, ∀n ∈ N,
(C7) : 0 ≤ fn,E ≤ fE, ∀n ∈ N,
(C8) : ∑ fn,E ≤ fE, ∀n ∈ N,

(7)

where (C1) and (C2) are the constraints on the mode selection decision of each task, namely, each task
can choose only one computing mode; (C3) and (C4) are the constraints on the bandwidth allocation;
(C5) is the transmit power constraint of device n; and (C6) indicates that the execution time of each
task should not exceed its tolerable deadline; (C7) and (C8) are the constraints on the edge server
resource allocation.

Sensors 2018, 18, 2509 7 of 14

4. Adaptive Computing Optimization Method

In an IIoT environment, both the terminal devices and tasks are heterogeneous. Terminal devices
through a computing mode selector to decide which computing mode should be selected for each task.
Terminal devices choose the optimal computing mode to minimize the computing cost. In this section,
we introduce the CMS mechanism as well as task execution sequence adjustment mechanism for the
terminal devices. Then, we design the computing mode selector using a computing cost minimization
indicator and obtain the optimal computing mode strategy of the mobile terminals.

4.1. Computing Mode Selection Mechanism

In this section, we design a CMS module in the SDN controller. There are three computing
modes that can be selected for each terminal device; they are local computing, fog computing and
cloud computing. Different computing modes have different advantages, performance and features
of the three computing modes. In the IIoT systems, tasks can be classified into offload tasks and
unloadable tasks. The unloadable tasks represent the tasks that must be processed locally by the
terminal devices. The offload tasks represent the tasks that can be processed by edge servers and
cloud severs. Taking the smartphone as an example, for some applications such as calculators and
notepads, the computation amount of these applications is relatively small and the results can be
obtained easily by the smartphone. The usage of applications has nothing to do with the network
state of the smartphone; these applications are called simple applications or unloadable applications.
Legacy equipment deployed in the intelligent production line have poor function, in order to improve
the computing power and storage capacity of the legacy equipment, usually an intelligent agent can be
connected with the traditional equipment. For example, there some traditional equipment in a smart
factory and their functions are simple and lack intelligence, while a Raspberry Pi can address complex
applications such as sensory data preprocessing. However, in certain applications, such as production
scheduling, operations and maintenance of production lines and remote monitoring of production
processes, these applications need a synergy of intelligent devices and network devices. Thus, we call
these applications smart applications. Smart applications must be accomplished with the aid of an
edge server or cloud server. The main function of the CMS module is to select the best computing
mode for different applications. The workflow diagram of CMS is illustrated in Figure 2.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 14

for the terminal devices. Then, we design the computing mode selector using a computing cost

minimization indicator and obtain the optimal computing mode strategy of the mobile terminals.

4.1. Computing Mode Selection Mechanism

In this section, we design a CMS module in the SDN controller. There are three computing

modes that can be selected for each terminal device; they are local computing, fog computing and

cloud computing. Different computing modes have different advantages, performance and features

of the three computing modes. In the IIoT systems, tasks can be classified into offload tasks and

unloadable tasks. The unloadable tasks represent the tasks that must be processed locally by the

terminal devices. The offload tasks represent the tasks that can be processed by edge servers and

cloud severs. Taking the smartphone as an example, for some applications such as calculators and

notepads, the computation amount of these applications is relatively small and the results can be

obtained easily by the smartphone. The usage of applications has nothing to do with the network

state of the smartphone; these applications are called simple applications or unloadable applications.

Legacy equipment deployed in the intelligent production line have poor function, in order to improve

the computing power and storage capacity of the legacy equipment, usually an intelligent agent can

be connected with the traditional equipment. For example, there some traditional equipment in a

smart factory and their functions are simple and lack intelligence, while a Raspberry Pi can address

complex applications such as sensory data preprocessing. However, in certain applications, such as

production scheduling, operations and maintenance of production lines and remote monitoring of

production processes, these applications need a synergy of intelligent devices and network devices.

Thus, we call these applications smart applications. Smart applications must be accomplished with

the aid of an edge server or cloud server. The main function of the CMS module is to select the best

computing mode for different applications. The workflow diagram of CMS is illustrated in Figure 2.

terminal devices
computing mode

selector
cloud/edge servernetwork network

mode selecting service request

terminals & tasks information

mode selecting service response

return computing mode sets

run CMS algorithm, obtain
computing mode sets.

establish communication connection

locally processing / send task
information to specified location

return results

Figure 2. Signaling process for CMS.

The main working process of CMS is as follows. First, the terminal devices send a mode selection

service request to the SDN controller when a task must be processed by terminal devices. After the

terminal devices receive a service response, the terminal devices transmit the corresponding

information to the SDN controller, which includes the computation ability of the devices and the

basic information of the tasks, such as the data amount, calculation amount and maximum tolerance

time. Then, the edge server and cloud send their information to the SDN controller, with information

that includes the computation capacity, transmission power and network bandwidth. Second, to

realize the real‐time processing of the tasks, the CMS algorithm is run within the SDN controller. An

optimal computing mode is obtained for each task. The computing mode sets are listed and ΦL

Figure 2. Signaling process for CMS.

Sensors 2018, 18, 2509 8 of 14

The main working process of CMS is as follows. First, the terminal devices send a mode selection
service request to the SDN controller when a task must be processed by terminal devices. After
the terminal devices receive a service response, the terminal devices transmit the corresponding
information to the SDN controller, which includes the computation ability of the devices and the basic
information of the tasks, such as the data amount, calculation amount and maximum tolerance time.
Then, the edge server and cloud send their information to the SDN controller, with information that
includes the computation capacity, transmission power and network bandwidth. Second, to realize
the real-time processing of the tasks, the CMS algorithm is run within the SDN controller. An optimal
computing mode is obtained for each task. The computing mode sets are listed and ΦL denotes
the local computing mode set; ΦE denotes the fog computing mode set; and ΦC denotes the cloud
computing mode set. Three computing mode sets are sent to smart terminal devices. Third, for ΦL
the tasks are processed directly within the terminal devices; for ΦE and ΦC smart terminal devices
must establish communication connections with corresponding computing resources. The detailed
information of the tasks is offloaded to the edge server or cloud. Lastly, after completion of the task
computing, the edge server or cloud send the results to the terminal devices.

4.2. Task Execution Sequence Adjustment

The tasks selecting the fog computing service usually have a low delay requirement. An advanced
execution sequence adjustment mechanism can improve the real-time performance. In this paper,
the task priority is used for tasks execution sequence adjustment. With the concept of task priority,
the overall QoS of the fog computing system can be improved. For example, a real-time IIoT application
such as production process monitoring is assigned a higher priority, while other applications that
consume more resources, such as multimedia peer-to-peer downloading, can be assigned a lower
priority in such a way that the whole real-time performance of the manufacturing system can
be improved.

In this paper, the task priority is analyzed from two attributes. The first attribute is the real-time
level of the tasks and the second attribute is the computational requirements of the tasks. If the
real-time level of a task is high and the computational requirement of the task is small, we define the
task priority as high and in contrast, if the real-time level of a task is low and the computation amount
of the task is large, the task priority is low. The maximum tolerance time represents the real-time level
of the task; the smaller the maximum tolerance time is, the higher the real-time level. The calculation
amount represents the complexity of the task; the smaller the calculation amount is, the lower the
complexity. Here, we define the real-time intensity and complex intensity as task priority factors.

Definition 1: The set Ω of task priority factors is a set of pairs (α, β), where α denotes the real-time intensity of
the tasks and β denotes the complex intensity of the tasks.

Then, the real-time intensity value of task i is formulated as:

αi = Ti,max/∑Ti,max, (8)

where Ti,max is the maximum tolerance time of task i, i ∈ΦE and ΦE denotes the set of tasks that choose the fog
computing service.

Then, the complex intensity value of task i is formulated as:

βi = Ci/∑Ci, (9)

where Ci is the calculation amount of task i, i ∈ΦE and ΦE denotes the set of tasks that choose the fog
computing service.

Hence, according to (7) and (8), the task priority is defined by:

pi = µ1·αi + µ2·βi, (10)

Sensors 2018, 18, 2509 9 of 14

where µ1, µ2 ∈[0, 1], µ1 + µ2 = 1 denote the weights of the real-time intensity and complex intensity for task i,
respectively. The smaller the value is for pi, the higher the task priority and task i obtains fog computing services
earlier than other tasks.

The top part of Figure 3 represents the task execution sequence based on a conventional
mechanism, usually the first-come-first-processing mechanism. The bottom part is a novel execution
sequence proposed in this paper. The red area denotes the real-time level of the tasks; the larger the
red area, the higher real-time level of the task. The blue area denotes the computation amount of the
tasks; the larger the blue area, the more of task computation amount. The real-time performance is
the key performance indicator for industrial applications, when in the face of multitask processing,
the real-time requirement of the tasks is considered first and thus, the real-time weight of the tasks is
usually set high. In particular, for two or more tasks that have the same real-time level, the task with
a low-complexity intensity is executed first. The reason is that the task with low complex intensity
occupies fewer computation resources and thus, there will be remaining more computational resources
for new incoming tasks with higher priority.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 14

a low‐complexity intensity is executed first. The reason is that the task with low complex intensity

occupies fewer computation resources and thus, there will be remaining more computational

resources for new incoming tasks with higher priority.

Execution sequence

Task cache queue

T5 T4 T3 T2 T1

Execution sequence

Task cache queue

T2 T3 T1 T5 T4

T5‐>T4‐>T3‐>T2‐>T1

T2‐>T3‐>T1‐>T5‐>T4

Edge server

Edge server

Figure 3. The execution sequence before and after using the task priority.

5. Simulation Results and Discussion

In this section, simulations are conducted to evaluate the performance of the proposed method.

First, we describe the simulation setup, the performance metrics, the reference methods and the

emulation scenarios. Then, the evaluation results are presented and discussed from various

perspectives.

5.1. Simulation Setup

We developed the simulation framework and realized the proposed algorithm in the MATLAB

environment. We set up a fog computing system in the IIoT based on the SDN. The main parameters

values of the simulation Table 1. This paper takes five typical applications for performance evaluation

and the details of the applications are shown in Table 2, the maximum tolerance time and calculation

amount of each application are listed, the task priority of application is calculated. The hard real‐time

requirements are that if the task cannot be completed within the maximum tolerance, then the task

failed.

Table 1. Parameter values of the simulation.

Parameters Description Value

N number of terminal devices [50, 100]

M number of edge servers 1

fn computing capacity of nth device [0.5, 1] G cycles/s

fC computing capacity of cloud 8 G cycles/s

fE computing capacity of fog server 2 G cycles/s

Dn data size of the nth task [10, 50] Mb

Pn,E transmission power [0.2, 0.6] W

Pn,max maximum transmission power 0.6 W

B link bandwidth 100 MHz

μ1 weight of real‐time intensity 0.7

μ2 weight of complex intensity 0.3

θn allocated ratio of bandwidth [0, 1]

Table 2. Applications and parameters.

Applications Ti,max Ci pi

Process monitoring 10 ms 90 Mcps 0.1191

Figure 3. The execution sequence before and after using the task priority.

5. Simulation Results and Discussion

In this section, simulations are conducted to evaluate the performance of the proposed
method. First, we describe the simulation setup, the performance metrics, the reference methods
and the emulation scenarios. Then, the evaluation results are presented and discussed from
various perspectives.

5.1. Simulation Setup

We developed the simulation framework and realized the proposed algorithm in the MATLAB
environment. We set up a fog computing system in the IIoT based on the SDN. The main parameters
values of the simulation Table 1. This paper takes five typical applications for performance evaluation
and the details of the applications are shown in Table 2, the maximum tolerance time and calculation
amount of each application are listed, the task priority of application is calculated. The hard real-time
requirements are that if the task cannot be completed within the maximum tolerance, then the
task failed.

Sensors 2018, 18, 2509 10 of 14

Table 1. Parameter values of the simulation.

Parameters Description Value

N number of terminal devices [50, 100]
M number of edge servers 1
fn computing capacity of nth device [0.5, 1] G cycles/s
fC computing capacity of cloud 8 G cycles/s
fE computing capacity of fog server 2 G cycles/s
Dn data size of the nth task [10, 50] Mb

Pn,E transmission power [0.2, 0.6] W
Pn,max maximum transmission power 0.6 W

B link bandwidth 100 MHz
µ1 weight of real-time intensity 0.7
µ2 weight of complex intensity 0.3
θn allocated ratio of bandwidth [0, 1]

Table 2. Applications and parameters.

Applications Ti,max Ci pi

Process monitoring 10 ms 90 Mcps 0.1191
Environmental

monitoring 50 ms 85 Mcps 0.2476

Fault diagnosis 20 ms 50 Mcps 0.1143
Product testing 50 ms 20 Mcps 0.1857

Inventory management 80 ms 70 Mcps 0.3333

5.2. Performance Metrics and Reference Methods

To evaluate the performance of the proposed method ASTP, we introduce the following
performance metrics:

1. Total Time Delay: The total time delay represents the time needed for all of the applications services
to be completed from the task requests to the return of the results.

2. Average Time Delay: The average time delay represents the time needed for each application
service to be completed from the task request to the return of the results.

3. Reliability: The reliability represents the execution effect of the applications. The number of task
failed is smaller and the reliability of the system is higher.

4. Satisfaction: The satisfaction represents the evaluation of the system according to the QoS. For a
real-time application, if it is completed as soon as possible in the maximum tolerance time,
the satisfaction is high.

We compared the proposed method ASTP with the following methods:

• Computing mode random selection and execution sequence based on conventional mechanism
RSCM, wherein the computing mode of each task is randomly assigned. The tasks that selected
the fog computing mode were completed according to the first-come-first-processing mechanism.

• Computing mode random selection and execution sequence based on task priority RSTP, wherein
the computing mode of each task is randomly assigned. For these tasks that selected the fog
computing mode, first the task priority should be calculated and then, the tasks were completed
according to the task priority.

• Computing mode adaptive selection and execution sequence based on the conventional
mechanism ASCM, wherein the mode selection module chooses the best computing mode for
each task. The tasks that selected the fog computing mode were completed according to the
first-come-first-processing mechanism.

Sensors 2018, 18, 2509 11 of 14

5.3. Evaluation Results

Total Time Delay. The total time delay of different methods for their best performance in terms
of the time delay is presented in Figure 4, which demonstrates that the total time delay increases
with an increase in the device amount for all of the methods. However, it is obvious that ASTP
outperforms other methods in this metric with different device amounts. The reason is that the ASTP
method can adaptively select an optimal computing mode for every device from the perspective of
real-time performance. Both RSTP and RSCM randomly select computing mode for each device; those
devices that have low-latency and compute-intensive tasks may be assigned to cloud computing,
local computing or fog computing and thus, the total time delay is more than the other two methods.
For ASTP and ASCM, although the computing mode of these two methods are the same, the task
execution sequence of them are different. ASTP makes a novel execution sequence for the tasks
according to the task priority, while ASCM still adopts the conventional execution sequence. Overall,
their total time delay difference is very small. Similarly, for RSTP and RSCM, the computing modes
of these two methods are randomly selected for the devices and thus, the real-time responses of the
applications cannot be guaranteed.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 14

of the devices are the same, the execution sequences under the fog computing mode are different and

thus, the ASTP achieves better performance than the ASCM. Similarly, the RSTP and RSCM are the

same.

Figure 4. Comparison of the total time delay.

Figure 5. Comparison of the average time delay.

Reliability. This performance metric is a great index for evaluating how successful is the task

processing from the computing resources for the task. The failure rate of the tasks that are executed

is lower and the reliability of the tasks is higher. As seen from Figure 6, with an increase in the number

of devices, the reliability of the four methods decreases. In the ASTP method, with its unique mode

selection algorithm and novel execution sequence algorithm, the reliability of the ASTP is higher than

that of the other three methods. Compared to ASTP, RSCM is unsatisfactory. Random assigning of

the computing mode and using the traditional execution sequence makes the computation‐intensive

and delay‐sensitive tasks fail. The QoS of the system is then greatly reduced. When the device volume

reached 100, the reliability of RSCM dropped to approximately 70%. Therefore, an efficient CMS and

advanced execution sequence greatly improves the reliability of the system.

Figure 6. Comparison of the reliability.

50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Device number

T
ot

al
 d

el
ay

 (
m

s)

ASTP

ASCM
RSTP

RSCM

50 60 70 80 90 100
0

10

20

30

40

50

60

Device number

A
ve

ra
ge

 d
el

ay
 (

m
s)

ASTP

ASCM

RSTP

RSCM

50 60 70 80 90 100
0

20

40

60

80

100

Device number

R
el

ia
bi

lit
y(

%
)

ASTP

ASCM

RSTP

RSCM

Figure 4. Comparison of the total time delay.

Average Time Delay. The average time delay in the four methods for the different device amounts
is shown in Figure 5. In general, the average time delay of every method will increase slightly with an
increasing number of devices. This trend is due to the optimization computing mode of ASTP and
ASCM through the mode selection module and the average time delay of ASTP and ASCM is much
less than the average time delay of RSTP and RSCM. For ASTP and ASM, although the CMS methods
of the devices are the same, the execution sequences under the fog computing mode are different
and thus, the ASTP achieves better performance than the ASCM. Similarly, the RSTP and RSCM are
the same.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 14

of the devices are the same, the execution sequences under the fog computing mode are different and

thus, the ASTP achieves better performance than the ASCM. Similarly, the RSTP and RSCM are the

same.

Figure 4. Comparison of the total time delay.

Figure 5. Comparison of the average time delay.

Reliability. This performance metric is a great index for evaluating how successful is the task

processing from the computing resources for the task. The failure rate of the tasks that are executed

is lower and the reliability of the tasks is higher. As seen from Figure 6, with an increase in the number

of devices, the reliability of the four methods decreases. In the ASTP method, with its unique mode

selection algorithm and novel execution sequence algorithm, the reliability of the ASTP is higher than

that of the other three methods. Compared to ASTP, RSCM is unsatisfactory. Random assigning of

the computing mode and using the traditional execution sequence makes the computation‐intensive

and delay‐sensitive tasks fail. The QoS of the system is then greatly reduced. When the device volume

reached 100, the reliability of RSCM dropped to approximately 70%. Therefore, an efficient CMS and

advanced execution sequence greatly improves the reliability of the system.

Figure 6. Comparison of the reliability.

50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Device number

T
ot

al
 d

el
ay

 (
m

s)

ASTP

ASCM
RSTP

RSCM

50 60 70 80 90 100
0

10

20

30

40

50

60

Device number

A
ve

ra
ge

 d
el

ay
 (

m
s)

ASTP

ASCM

RSTP

RSCM

50 60 70 80 90 100
0

20

40

60

80

100

Device number

R
el

ia
bi

lit
y(

%
)

ASTP

ASCM

RSTP

RSCM

Figure 5. Comparison of the average time delay.

Sensors 2018, 18, 2509 12 of 14

Reliability. This performance metric is a great index for evaluating how successful is the task
processing from the computing resources for the task. The failure rate of the tasks that are executed is
lower and the reliability of the tasks is higher. As seen from Figure 6, with an increase in the number
of devices, the reliability of the four methods decreases. In the ASTP method, with its unique mode
selection algorithm and novel execution sequence algorithm, the reliability of the ASTP is higher than
that of the other three methods. Compared to ASTP, RSCM is unsatisfactory. Random assigning of the
computing mode and using the traditional execution sequence makes the computation-intensive and
delay-sensitive tasks fail. The QoS of the system is then greatly reduced. When the device volume
reached 100, the reliability of RSCM dropped to approximately 70%. Therefore, an efficient CMS and
advanced execution sequence greatly improves the reliability of the system.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 14

of the devices are the same, the execution sequences under the fog computing mode are different and

thus, the ASTP achieves better performance than the ASCM. Similarly, the RSTP and RSCM are the

same.

Figure 4. Comparison of the total time delay.

Figure 5. Comparison of the average time delay.

Reliability. This performance metric is a great index for evaluating how successful is the task

processing from the computing resources for the task. The failure rate of the tasks that are executed

is lower and the reliability of the tasks is higher. As seen from Figure 6, with an increase in the number

of devices, the reliability of the four methods decreases. In the ASTP method, with its unique mode

selection algorithm and novel execution sequence algorithm, the reliability of the ASTP is higher than

that of the other three methods. Compared to ASTP, RSCM is unsatisfactory. Random assigning of

the computing mode and using the traditional execution sequence makes the computation‐intensive

and delay‐sensitive tasks fail. The QoS of the system is then greatly reduced. When the device volume

reached 100, the reliability of RSCM dropped to approximately 70%. Therefore, an efficient CMS and

advanced execution sequence greatly improves the reliability of the system.

Figure 6. Comparison of the reliability.

50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Device number

T
ot

al
 d

el
ay

 (
m

s)

ASTP

ASCM
RSTP

RSCM

50 60 70 80 90 100
0

10

20

30

40

50

60

Device number

A
ve

ra
ge

 d
el

ay
 (

m
s)

ASTP

ASCM

RSTP

RSCM

50 60 70 80 90 100
0

20

40

60

80

100

Device number

R
el

ia
bi

lit
y(

%
)

ASTP

ASCM

RSTP

RSCM

Figure 6. Comparison of the reliability.

Satisfaction. The satisfaction from the different numbers of devices with the different methods
is presented in Figure 7. Satisfaction is a comprehensive index for a system; from the perspective of
real-time analysis, the application service is provided in a timelier fashion and the user satisfaction
is higher. In a system with limited resources, however, the more service requests are, the larger
the amount of pressure on the service providers and the user satisfaction would drop. How to
provide more and better applications services by using the limited resources is an enormous challenge
for current researchers. In this paper, when the number of devices increases, the tasks must be
processed faster and if the system is unable to provide the corresponding services under the limited
conditions, the user satisfaction will drop. Figure 7 demonstrates that there are slight variations in
the satisfaction from the different methods. The ASTP method has the highest satisfaction, which
choose the best computing mode to execute the tasks. Because ASCM is lacking the task execution
sequence optimization, the execution sequence still adopts the traditional method and the system
satisfaction cannot be increased. With the number of devices increasing, the satisfaction of RSTP and
RSCM drop quickly and when the number of devices increases to 100, the satisfaction is reduced to
approximately 60%.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 14

Satisfaction. The satisfaction from the different numbers of devices with the different methods is

presented in Figure 7. Satisfaction is a comprehensive index for a system; from the perspective of real‐

time analysis, the application service is provided in a timelier fashion and the user satisfaction is higher.

In a system with limited resources, however, the more service requests are, the larger the amount of

pressure on the service providers and the user satisfaction would drop. How to provide more and better

applications services by using the limited resources is an enormous challenge for current researchers.

In this paper, when the number of devices increases, the tasks must be processed faster and if the system

is unable to provide the corresponding services under the limited conditions, the user satisfaction will

drop. Figure 7 demonstrates that there are slight variations in the satisfaction from the different

methods. The ASTP method has the highest satisfaction, which choose the best computing mode to

execute the tasks. Because ASCM is lacking the task execution sequence optimization, the execution

sequence still adopts the traditional method and the system satisfaction cannot be increased. With the

number of devices increasing, the satisfaction of RSTP and RSCM drop quickly and when the number

of devices increases to 100, the satisfaction is reduced to approximately 60%.

Figure 7. Comparison of satisfaction.

6. Conclusions

In this paper, we study the adaptive computing optimization problem in an IIoT enable fog

computing system for various tasks processing. We propose a Software‐Defined IIoT architecture

that can realize computing mode adaptive selection in fog computing platform. Then, under the

proposed framework, an efficient CMS module is designed in the SDN controller. The task

computing delays under different computing modes are calculated in the controller and the controller

can select an optimal computing mode for each task. Finally, to ensure the real‐time processing of the

tasks that choose the fog computing mode, an advanced task execution sequence adjustment

mechanism is made according to the task priorities. The proposed method is validated by simulation.

Performance evaluations demonstrate that proposed method can greatly improve the real‐time

performance, reliability and satisfaction in industrial manufacturing. The future research direction is

to provide computing services continuously for mobile devices, with complex task decomposition

and collaborative computing of fog nodes.

Author Contributions: Methodology, J.W. and D.L.; Software, J.W.; Validation, J.W. and D.L.; Formal Analysis,

J.W.; Writing‐Original Draft Preparation, J.W. and D.L.; Writing‐Review & Editing, J.W. and D.L.; Visualization,

J.W.; Supervision, D.L.; Project Administration, D.L.; Funding Acquisition, D.L.

Funding: This research was funded by [Natural Science Foundation of Guangdong Province] grant number

[2015A030308002] and [Science and Technology Planning Project of Guangdong Province] grant number

[2017B090913002 and 2017B090914002] and [Smart Manufacturing Project of Integrated Standardization and

New Model Application and the Fundamental Research Funds for the Central Universities] grant number

[2017MS01] and [New Model Application Project of Intelligent Manufacturing in the Ministry of Industry and

Information (New Model Application of Traditional Chinese Medicine Granule)].

Acknowledgments: The authors thank the Intelligent Manufacturing Laboratory of SCUT.

Conflicts of Interest: The authors declare no conflict of interest.

50 60 70 80 90 100
0

20

40

60

80

100

Device number

S
at

is
fa

ct
io

n
(%

)

ASTP

ASCM

RSTP

RSCM

Figure 7. Comparison of satisfaction.

Sensors 2018, 18, 2509 13 of 14

6. Conclusions

In this paper, we study the adaptive computing optimization problem in an IIoT enable fog
computing system for various tasks processing. We propose a Software-Defined IIoT architecture
that can realize computing mode adaptive selection in fog computing platform. Then, under the
proposed framework, an efficient CMS module is designed in the SDN controller. The task computing
delays under different computing modes are calculated in the controller and the controller can
select an optimal computing mode for each task. Finally, to ensure the real-time processing of
the tasks that choose the fog computing mode, an advanced task execution sequence adjustment
mechanism is made according to the task priorities. The proposed method is validated by simulation.
Performance evaluations demonstrate that proposed method can greatly improve the real-time
performance, reliability and satisfaction in industrial manufacturing. The future research direction is
to provide computing services continuously for mobile devices, with complex task decomposition and
collaborative computing of fog nodes.

Author Contributions: Methodology, J.W. and D.L.; Software, J.W.; Validation, J.W. and D.L.; Formal Analysis,
J.W.; Writing-Original Draft Preparation, J.W. and D.L.; Writing-Review & Editing, J.W. and D.L.; Visualization,
J.W.; Supervision, D.L.; Project Administration, D.L.; Funding Acquisition, D.L.

Funding: This research was funded by [Natural Science Foundation of Guangdong Province] grant number
[2015A030308002] and [Science and Technology Planning Project of Guangdong Province] grant number
[2017B090913002 and 2017B090914002] and [Smart Manufacturing Project of Integrated Standardization and
New Model Application and the Fundamental Research Funds for the Central Universities] grant number
[2017MS01] and [New Model Application Project of Intelligent Manufacturing in the Ministry of Industry and
Information (New Model Application of Traditional Chinese Medicine Granule)].

Acknowledgments: The authors thank the Intelligent Manufacturing Laboratory of SCUT.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wan, J.; Yi, M.; Li, D.; Zhang, C.; Wang, S.; Zhou, K. Mobile Services for Customization Manufacturing
Systems: An Example of Industry 4.0. IEEE Access 2016, 4, 8977–8986. [CrossRef]

2. Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the
context of Industry 4.0. Wirel. Netw. 2017, 23, 23–41. [CrossRef]

3. Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-Defined Industrial Internet of
Things in the Context of Industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380. [CrossRef]

4. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Díaz-Bouza, M.A. A Fog Computing Based
Cyber-Physical System for the Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard. Sensors
2018, 18, 1961. [CrossRef] [PubMed]

5. Lavassani, M.; Forsström, S.; Jennehag, U.; Zhang, T. Combining Fog Computing with Sensor Mote Machine
Learning for Industrial IoT. Sensors 2018, 18, 1532. [CrossRef] [PubMed]

6. Delsing, J. Local cloud internet of things automation: Technology and business model features of distributed
internet of things automation solutions. IEEE Ind. Electron. Mag. 2017, 11, 8–21. [CrossRef]

7. Beier, G.; Niehoff, S.; Xue, B. More Sustainability in Industry through Industrial Internet of Things? Appl. Sci.
2018, 8, 219. [CrossRef]

8. Gungor, V.C.; Hancke, G.P. Industrial Wireless Sensor Networks: Challenges, Design Principles, and
Technical Approaches. IEEE Trans. Ind. Electron. 2009, 56, 4258–4265. [CrossRef]

9. Wan, J.; Tang, S.; Hua, Q.; Li, D.; Liu, C.; Lloret, J. Context-Aware Cloud Robotics for Material Handling in
Cognitive Industrial Internet of Things. IEEE Internet Things J. 2017. [CrossRef]

10. Linthicum, D.S. The Technical Case for Mixing Cloud Computing and Manufacturing. IEEE Cloud Comput.
2016, 3, 12–15. [CrossRef]

11. Georgakopoulos, D.; Jayaraman, P.P.; Fazia, M.; Villari, M.; Ranjan, R. Internet of Things and Edge Cloud
Computing Roadmap for Manufacturing. IEEE Cloud Comput. 2016, 3, 66–73. [CrossRef]

12. Tao, F.; Cheng, Y.; Xu, L.D.; Zhang, L.; Li, B.H. CCIoT-CMfg: Cloud Computing and Internet of Things-Based
Cloud Manufacturing Service System. IEEE Trans. Ind. Inform. 2014, 10, 1435–1442.

http://dx.doi.org/10.1109/ACCESS.2016.2631152
http://dx.doi.org/10.1007/s11276-015-1133-7
http://dx.doi.org/10.1109/JSEN.2016.2565621
http://dx.doi.org/10.3390/s18061961
http://www.ncbi.nlm.nih.gov/pubmed/29914207
http://dx.doi.org/10.3390/s18051532
http://www.ncbi.nlm.nih.gov/pubmed/29757227
http://dx.doi.org/10.1109/MIE.2017.2759342
http://dx.doi.org/10.3390/app8020219
http://dx.doi.org/10.1109/TIE.2009.2015754
http://dx.doi.org/10.1109/JIOT.2017.2728722
http://dx.doi.org/10.1109/MCC.2016.75
http://dx.doi.org/10.1109/MCC.2016.91

Sensors 2018, 18, 2509 14 of 14

13. Li, X.; Wan, J. Proactive caching for edge computing-enabled industrial mobile wireless networks.
Future Gener. Comput. Syst. 2018, 89, 89–98. [CrossRef]

14. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-aware Load Balancing and
Scheduling in SmartFactory. IEEE Trans. Ind. Inform. 2018. [CrossRef]

15. Yang, S. IoT Stream Processing and Analytics in the Fog. IEEE Commun. Mag. 2017, 55, 21–27. [CrossRef]
16. Ashjaei, M.; Bengtsson, M. Enhancing smart maintenance management using fog computing technology.

In Proceedings of the 2017 International Conference on Industrial Engineering and Engineering Management,
Singapore, 10–13 December 2017.

17. Yu, W. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [CrossRef]
18. Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3,

854–864. [CrossRef]
19. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey

on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464.
[CrossRef]

20. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

21. Wang, J.; Li, D. Research and Analysis of Computing Modes in Industrial Internet of Things. Int. J. Auton.
Adapt. Commun. Syst. 2018, in press.

22. Li, X.; Li, D.; Wan, J.; Liu, C.; Imran, M. Adaptive Transmission Optimization in SDN-Based Industrial
Internet of Things with Edge Computing. IEEE Internet Things J. 2018, 5, 1351–1360. [CrossRef]

23. Fu, J.; Liu, Y.; Chao, H.C.; Bhargava, B.; Zhang, Z. Secure Data Storage and Searching for Industrial IoT by
Integrating Fog Computing and Cloud Computing. IEEE Trans. Ind. Inform. 2018. [CrossRef]

24. Muhammad, G.; Alhamid, M.F.; Alsulaiman, M.; Gupta, B. Edge Computing with Cloud for Voice
Dissequence Assessment and Treatment. IEEE Commun. Mag. 2018, 56, 60–65. [CrossRef]

25. Taleb, T.; Dutta, S.; Ksentini, A.; Iqbal, M.; Flinck, H. Mobile Edge Computing Potential in Making Cities
Smarter. IEEE Commun. Mag. 2017, 55, 38–43. [CrossRef]

26. Liu, J.; Wan, J.; Zeng, B.; Wang, Q.; Song, H.; Qiu, M. A Scalable and Quick-Response Software Defined
Vehicular Network Assisted by Mobile Edge Computing. IEEE Commun. Mag. 2017, 55, 94–100. [CrossRef]

27. Cao, Y.; Song, H.; Kaiwartya, O.; Zhou, B.; Zhuang, Y.; Cao, Y.; Zhang, X. Mobile Edge Computing for
Big-Data-Enabled Electric Vehicle Charging. IEEE Commun. Mag. 2018, 56, 150–156. [CrossRef]

28. Meng, X.; Wang, W.; Zhang, Z. Delay-Constrained Hybrid Computation Offloading with Cloud and Fog
Computing. IEEE Access 2017, 5, 21355–21367. [CrossRef]

29. Liu, J.; Zhang, Q. Offloading Methods in Mobile Edge Computing for Ultra-Reliable Low Latency
Communications. IEEE Access 2018, 6, 12825–12837. [CrossRef]

30. Shih, Y.Y.; Chung, W.H.; Pang, A.C.; Chiu, T.C.; Wei, H.Y. Enabling Low-Latency Applications in Fog-Radio
Access Networks. IEEE Netw. 2017, 31, 52–58. [CrossRef]

31. Hu, P.; Ning, H.; Qiu, T.; Zhang, Y.; Luo, X. Fog Computing Based Face Identification and Resolution Method
in Internet of Things. IEEE Trans. Ind. Inform. 2017, 13, 1910–1920. [CrossRef]

32. Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit From Software-Defined Networking:
A Survey, Use Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [CrossRef]

33. Bi, Y.; Han, G.; Lin, C.; Deng, Q.; Guo, L.; Li, F. Mobility Support for Fog Computing: An SDN Approach.
IEEE Commun. Mag. 2018, 56, 53–59. [CrossRef]

34. Debrito, M.S.; Hoque, S.; Steinke, R.; Willner, A.; Magedanz, T. Application of the Fog computing paradigm
to Smart Factories and cyber-physical systems. Trans. Emerg. Telecommun. Technol. 2017. [CrossRef]

35. Mubeen, S.; Nikolaidis, P.; Didic, A.; Pei-Breivold, H.; Sandström, K.; Behnam, M. Delay Mitigation in
Offloaded Cloud Controllers in Industrial IoT. IEEE Access 2017, 5, 4418–4430. [CrossRef]

36. Du, J.B.; Zhao, L.Q.; Feng, J.; Chu, X.L. Computation Offloading and Resource Allocation in Mixed Fog/Cloud
Computing Systems with Min-Max Fairness Guarantee. IEEE Trans. Commun. 2018, 66, 1594–1608. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2018.06.017
http://dx.doi.org/10.1109/TII.2018.2818932
http://dx.doi.org/10.1109/MCOM.2017.1600840
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2018.2797187
http://dx.doi.org/10.1109/TII.2018.2793350
http://dx.doi.org/10.1109/MCOM.2018.1700790
http://dx.doi.org/10.1109/MCOM.2017.1600249CM
http://dx.doi.org/10.1109/MCOM.2017.1601150
http://dx.doi.org/10.1109/MCOM.2018.1700210
http://dx.doi.org/10.1109/ACCESS.2017.2748140
http://dx.doi.org/10.1109/ACCESS.2018.2800032
http://dx.doi.org/10.1109/MNET.2016.1500279NM
http://dx.doi.org/10.1109/TII.2016.2607178
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1109/MCOM.2018.1700908
http://dx.doi.org/10.1002/ett.3184
http://dx.doi.org/10.1109/ACCESS.2017.2682499
http://dx.doi.org/10.1109/TCOMM.2017.2787700
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model and Problem Formulation
	System Architecture and System Model
	Delay Model of Tasks under Different Computing Modes
	Local Computing
	Fog Computing
	Cloud Computing

	Problem Formulation

	Adaptive Computing Optimization Method
	Computing Mode Selection Mechanism
	Task Execution Sequence Adjustment

	Simulation Results and Discussion
	Simulation Setup
	Performance Metrics and Reference Methods
	Evaluation Results

	Conclusions
	References

