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Abstract: A cognitive sensor network with energy harvesting (EH-CSN) is a promising paradigm to
address the issues both in spectrum efficiency and in energy efficiency. The cognitive sensors (CSs)
equipped with energy harvesting devices are assumed to operate in a harvesting-sensing-transmission
mode and permitted to access the idle licensed frequency bands without causing any harmful jamming
to the primary user. By identifying the time fractions of harvesting, sensing, and transmission, we
can discuss some design considerations for the EH-CSN. In the meantime, considering the possibility
that the primary user may reoccupy the idle channel during the CS’s data transmission duration,
we formulate an optimization problem to maximize the average throughput of EH-CSN under a
collision constraint and an energy constraint. After deriving the lower and upper bounds of the time
fraction for energy harvesting, the uniqueness and existence of the optimal time fraction set have
been proved. Finally, our theoretical analysis is also verified through numerical simulations.
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1. Introduction

Spectrum-efficiency and energy-efficiency have attracted considerable attention for the future
wireless communication networks. A cognitive sensor network with energy harvesting (EH-CSN) is a
promising paradigm that can be used for these two purposes because of its capability to dynamically
access the idle licensed frequency bands and harvest energy from ambient sources. With the successful
applications of wireless sensor networks in spectrum monitoring, disaster warning, fire preventing
and environmental monitoring, some problems have also exposed, such as the limitations for energy
supply and spectrum resources. The sensor nodes are usually facing the extreme complex terrain
environment in the above application scenes. Thus, it is hard to supply consistent current for the
sensor nodes. The energy harvesting technology will become an efficient method to prolong the
survivability of the sensor nodes. In addition, crowded spectrum occupying makes it hard to allocate
the new spectrum resources for wireless sensor networks. Then, through combining the cognitive
radio technology, wireless sensor network are permitted to access the licensed spectrum band and
raise the utilization rate of the spectrum resource.

To improve the spectrum-efficiency, spectrum sensing is adopted to guarantee that the cognitive
sensors (CSs) access the under-utilized channels without causing any harmful interference to the
primary user (PU). To prolong the lifetime of cognitive sensor network (CSN) and overcome the energy
limitation of the CSs, energy harvesting technology is used to provide sufficient energy to fuel the CSN.
Moreover, energy-efficient designs [1–7] and energy harvesting [8–12] represent the two important
directions for solving the energy limitation for CSs. Energy-efficient designs can be classified into four
groups [13]: minimizing energy consumption, optimizing sensing parameters (e.g., the number of
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cooperating nodes, detection thresholds, sensing and transmission duration, transmission power),
selection and application of fusion and decision rules, and energy-efficient network organization.
However energy-efficient designs cannot solve the energy limitation of the CSN essentially.

Energy harvesting is an emerging technology, which can convert the ambient sources (e.g., thermal,
vibration, solar, acoustic, wind, or radio frequency energy) into the electric energy to provide the
sustainable power supplies for CSs, and has attracted considerable attention of many researchers.
Thus, EH-CSN can provide an efficient way to address the issues both in spectrum efficiency and in
energy efficiency for the future wireless networks. In general, the designers aim to optimize one or more
of sensing parameters in order to maximize the metrics of system performance (e.g., energy efficiency,
throughput). In order to guarantee a sufficient protection for PUs, CSs have to periodically sense the
status of PUs within a time frame. In the meantime, taking the energy harvesting into consideration,
the time frame can be divided into three parts: harvesting duration , sensing duration and transmission
duration. Therefore, how to design the time assignment policy for EH-CSN while keeping the high
throughput is an emerging problem, which needs to be studied in future wireless communications.

1.1. Related Work

Some recent studies [14–23] have focused on exploiting and investigating the performance of
wireless communication systems with energy harvesting. Time resources, sensing parameters and
power resources have become very important issues on optimizing the system performance.

In [14], the authors formulated an optimization problem to maximize the harvested energy based
on the collision constraint. They finally derived the optimal sensing time. The authors established the
model that the cognitive node sensed the presence of PU and harvested radio frequency energy during
the sensing time. The authors in [15] considered maximizing the achievable throughput and formulated
an optimization problem as a mixed-integer nonlinear programming one. The work [15] put forward
the model based on the hypothesis that the false-alarm or miss-detection would be generated by
CSs when executing spectrum sensing. Based on detection threshold, the authors in [16] divided the
energy harvesting system into two states: a spectrum-limited regime and an energy-limited regime.
The optimal detection threshold and spectrum sensing policy are derived to maximize throughput.
In [17], the authors proposed a channel selection criterion to maximize the average spectral efficiency
for an energy-harvesting cognitive radio network (CRN) under energy constraint. The authors in [18]
also considered an energy-harvesting CRN and designed the optimal sensing duration and the sensing
threshold together to maximize the average throughput of the secondary network under energy
causality constraint and collision constraint. The authors in [19] proposed a wireless EH protocol
for a decode-and-forward cognitive relay network with multiple PU transceivers. In this protocol,
the secondary nodes could harvest energy from the primary network while sharing the licensed
spectrum of the PU. The authors in [20] considered a cluster-based collaborative spectrum sensing
scheme in the energy harvesting cognitive wireless communication network. They aimed to maximize
the average throughput by identifying the optimal parameter set, including the durations of energy
harvesting and spectrum sensing, local detection threshold, and the number of CSs. The authors
in [21] considered a centralized collaborative spectrum sensing for an energy-harvesting CRN and
formulated the optimization problem to maximize the expected throughput. Based on the finite-horizon
partially observable Markov decision process (POMDP), they derived the dynamic sensing access
policy. The authors in [22] aimed to investigate the impact of sensing probability, access probability,
and energy queue capacity on the maximum achievable throughput. They proposed a two-step
opportunistic spectrum access for CRN with energy harvesting and derived the sensing probability.
The authors in [23] also formulated the optimization problem to maximize the area throughput of
CRN under the performance constraint of primary network. They adopted the stochastic geometry
theory to analyze system performance and proposed an efficient algorithm to allocate the bandwidth
and time resources for facilitating both the EH and data transmission.
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However, the previous works [14–23] did not consider the case that the PU may reoccupy the idle
channel during the CS’s data transmission time. According to this master of literature, only a small
amount have taken the case mentioned above into account in designing the energy-efficient spectrum
sensing scheme. The authors in [4] considered a framework to jointly optimize design parameters
(sensing duration, transmission duration, and the number of cognitive users) that maximized the
energy-efficiency. On the basis of the [4], the authors in [5] optimized transmission power and sensing
time to maximize energy efficiency and proposed an iterative algorithm to reduce the complexity of
solving the optimization problem. The previous works [4,5] both considered possibility of resuming
PU activity during transmission period of the CSs. However, they did not use the energy harvesting to
provide the energy supplies for CSs.

1.2. Contribution

The contribution of this paper is twofold. First, we introduce the Harvesting-Sensing-Transmission
(HST) framework for EH-CSN. Within this framework, to guarantee high quality of service (QOS) for
CSs, we consider the case that the PU may reoccupy the idle channel during the CS’s data transmission
time. We jointly optimize harvesting time, sensing time and transmission time to maximize the
throughput of EH-CSN under the energy causality and collision constraint. In order to reduce the
analytic complexity of the proposed problem and to improve the convergence speed of the computation,
the optimized problem is formulated as a function based on two time fractions, which will represent
the harvesting time, sensing time and transmission time.

In addition, by exploiting the hidden constraints of the optimization problem, we derive the
exact lower and upper bounds of the time fraction β. Based on the derived interval of β, we prove
the uniqueness and existence of the optimal (α∗, β∗). Through mathematical reformulation, we derive
the theoretical expression to determine the optimal α∗ and β∗. An iterative algorithm is proposed to
determine the optimal design parameters for CSN.

This remainder of this paper is organized as follows: Section 2 introduces our system model.
Problem formulation and solution is presented in Section 3. Simulation results are presented and
discussed in Section 4. Finally, our conclusions are provided in Section 5.

2. System Model

Considering a EH-CSN comprised of a pair of energy harvesting enabled CS transceivers and a
pair of power-supplied PU transceivers. The EH-CSN is assumed to operate in a time-slotted fashion.
The CS stores the harvested energy in its energy storage device (e.g., a super capacitor). Such a
device cannot charge and discharge simultaneously, and the energy storage device stops working
while CS turns on spectrum sensing or data transmission. That is, the CS is assumed to operate in a
“energy half-duplex mode” [24]. Moreover, compared to the harvested energy, the battery capacity is
assumed to be infinite, which can avoid the energy overflow. The CS is permitted to access the licensed
frequency band not occupied by the PU opportunistically. Consider π0 to be the probability that a PU
is active and π1 be the probability that a PU is passive. π0 + π1 = 1, π0 and π1 can be found based on
the long-term measurements. According to [4,25], the durations of PUs’ states are assumed to be an
exponential distribution with averages of τ0 and τ1. Then, π0 = τ0

/
(τ0 + τ1) and π1 = τ1

/
(τ0 + τ1).

The time-slotted duration T is assumed to be divided into three parts: harvesting duration
αT, sensing duration βT and transmission duration (1− α− β) T, where α is the time fraction of
harvesting and is defined as the ratio of harvesting duration to T, β is the time fraction of sensing
and is defined as the ratio of sensing duration to T. Then, the probability that PU may resume its

activity when CS transmits data can be expressed as PI = 1− e−
(1−α−β)T

τ0 . The average rate of energy
harvesting and the average energy consumed rate of sensing are assumed to be eH (J/s) and eS (J/s),
respectively. Moreover, the eH and eS will take some unchanged values at a specific time or in a specific
area. Moreover, the battery has a storing efficiency η (0 6 η 6 1). The energy consumption of the CS



Sensors 2018, 18, 2540 4 of 14

should not exceed the harvested energy within a time slot, that is ηeHαT > eSβT, which indicates the
energy constraint.

If the sampling frequency is fs and an energy detector is adopted by CS to calculate the energy
statistic over the sensing duration βT, the number of sampling points is L = βT × fs. A PU’s
transmitted signal is assumed to be an independent and identically distributed (iid) random process
with zero mean and variance σ2

x . The noise is also assumed to be a real-valued Gaussian variable
with zero mean and variance σ2

n . The received signal power at the CS’s transmitter is σ2
r =

∣∣hpc
∣∣ σ2

x ,
and hpc is the channel gain from PU’s transmitter to CS’s transmitter. If the k-th sampling point of

the CS is y (k), then the energy statistic established by CS is S = 1
L

L
∑

k=1
|y (k)|2. When the sampling

points are sufficient, S follows the Gauss distribution because of the central limit theorem (CLT).
f (x/Hθ) , θ ∈ {0, 1} is assumed to be a probability density function of S under the hypotheses H0 and
H1, and

f (x/H0) =
e
−
(x−σ2

n)
4σ4

n/L
√

2π
√

2σ4
n/L

, 0 ≤ x < ∞,

f (x/H1) =
e

−
(x−σ2

n−σ2
r )

4(σ2
r +σ2

n)
2
/

L

√
2π

√
2(σ2

r +σ2
n)

2/
L

, 0 ≤ x < ∞.

(1)

Nevertheless, formula (1) is obtained by satisfying the condition that the received signal and noise
are both real valued. If they are both circularly symmetric and complex valued, the parameters of the
probability density function will be changed. However they are outside the scope of our discussion.

Then, the detection probability Pd and the false alarm probability Pf are given by

Pd = Q

(
λ−(σ2

n+σ2
r )

(σ2
n+σ2

r )
/√

βT fs/2

)
,

Pf = Q

(
λ−σ2

n

σ2
n

/√
βT fs/2

)
,

(2)

where λ is the detection threshold. From formula (2), we know that the Pd and Pf interact with each
other. It is hard to obtain the highest detection probability while keeping the lowest false alarm
probability. We usually need to design the appropriate sensing parameters for achieving the trade-off
between the detection probability and false alarm probability.

In our proposed model, the battery capacity is assumed to be infinite and to be the ideal one
without any energy losses. If the battery capacity is finite, we will add another constraint which avoids
the energy overflow, thus making the performance analysis intractable. In addition, the proposed
model assumes that the harvested energy will be consumed completely in each time slot. However, in
some scenes, in order to ensure the reliability of the data transmitting, the transmitted power needs to
reach a certain value. In that case, we will add another constraint that satisfies the requirement for
the transmitted power. Moreover, if the sensor node is assumed to operate in a “energy full-duplex
mode”, we need to redesign the assignment policy and reconsider the optimization object. Whether
the above-mentioned more complicated models would affect the assignment policy of time resource
and energy resource needs to be studied more in depth in a new study, and is beyond the scope of
this paper.

3. Problem Formulation and Solution

An important metric for the system performance of a CSN is average throughput. According to
the [26], we know that CS’s achievable throughput consists of two parts: C0 and C1, where C0 is
the volume of data transmitted during the transmission duration when the PU is absent and C1 is
the volume of data transmitted during the transmission duration when the PU is present. C1 is not
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considered since CS would be collided with PU, which results in the high data error rate at CS’s
receiver. The C1 is very small compared to the C0. In this paper, we will only take C0 into account
rationally. If no false alarm is generated at CS’s transmitter over sensing duration βT, C0 can be
given by

C0 = (1−α−β)T
T log2 (1 + γcs) , (3)

where γcs denotes the ratio of the received power to the noise power at the CS’s receiver. The energy
left for data transmission can be expressed as ηeHαT − eSβT. Then, the γcs can be expressed as

γcs =
|hcs |(ηeHαT−eS βT)

σ2
n(1−α−β)T

, (4)

where hcs is the channel gain from CS’s transmitter to CS’s receiver. It must be noted that the
propagation issues will affect the optimal energy harvesting time, sensing time and transmission
time. However, no matter what value the propagation issue is set to, the method to analyze the
optimization objective keeps the same. For simple analyticity, the propagation issue hcs gets the value 1.
If the probability of false alarm and the possibility that the PU may reoccupy the idle channel during
the CS’s data transmission are taken into account for investigating the achievable throughput. The
average achievable throughput R of the CS in each time-slot is given by

R = C0

(
1− Pf

)
π0 (1− PI) . (5)

From formula (5), one can see that α and β are the only two parameters which affect the system
performance of EH-CSN in our proposed scheme. The harvesting duration, sensing duration, and
transmission duration are completely controlled by α and β. Finally, the goal of this paper is to
design α and β together with an eye toward maximizing the achievable throughput under the collision
constraint and energy constraint. Then, we formulate the optimization problem as follows:

max
{α,β}

C0

(
1− Pf

)
π0 (1− PI),

s.t. Pd ≥ P̄th,
ηeHαT > eSβT,
α + β < 1,
α > 0, β > 0,

(6)

where Pth is the target detection probability, which represents the collision constraint. Choosing the

Pd = Pth, the detection threshold can be expressed as λ =
(
σ2

r + σ2
n
) (

1 +
Q−1(Pth)√

βT fs/2

)
. From the

section “Optimality conditions” in [27], the Karush–Kuhn–Tucker (KKT) optimality conditions and
complementary slackness are adopted in this optimization problem. It is not necessary for us to discuss
the convexity of formula (6) with respect to α and β. Using Lagrange multipliers, we can transform the
constrained optimization problem into an unconstrained optimization problem as follows:

ψ (α, β) = −C0

(
1− Pf

)
π0 (1− PI) + µ1 (eSβT − ηeHαT) + µ2 (α + β− 1)− µ3α− µ4β , (7)

where µ1, µ2, µ3, µ4 are non-negative Lagrange multipliers.
Differentiating ψ (α, β) with respect to α and β respectively, we can derive that

dψ(α,β)
dα = C (α, β) F (β) θ (α, β)π0 − F(β)θ(α,β)

ln 2[σ2
n(1−α−β)+ηeHα−eS β]

(ηeH − ηeH β− eSβ)π0

+ (α + β− 1)C (α, β) F (β) θ (α, β) π0T
τ0
− µ1ηeHT + µ2 − µ3

(8)
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dψ(α,β)
dβ = C (α, β) F (β)π0θ (α, β) +

(eS−ηeHα−eSα)F(β)π0θ(α,β)
ln 2[σ2

n(1−α−β)+ηeHα−eS β]

+ exp

(
−(A
√

β+B)
2

2

)
× (α+β−1)C(α,β)Aπ0√

2π×2
√

β
θ (α, β)

+ (α + β− 1)C (α, β) F (β)π0θ (α, β) T
τ0
+ µ1eST + µ2 − µ4,

(9)

where
γ = σ2

r
σ2

n
, A = γ

√
T fs
/

2, B = Q−1 (Pth
)
(1 + γ) ,

C (α, β) = log2

(
1 + ηeHα−eS β

σ2
n(1−α−β)

)
,

F (β) = 1− Pf = 1−Q
(

A
√

β + B
)

,

θ (α, β) = 1− PI = e−
(1−α−β)T

τ0 ,

(10)

and the complementary slackness conditions are given by

µ∗1 (eSβ∗T − ηeHα∗T) = 0,
µ∗2 (α

∗ + β∗ − 1) = 0,
µ∗3α∗ = 0, µ∗4 β∗ = 0,
µ∗1 ≥ 0, µ∗2 ≥ 0, µ∗3 ≥ 0, µ∗4 ≥ 0.

(11)

In EH-CSN, eSβ∗T − ηeHα∗T = 0 denotes that the harvested energy is completely consumed by
spectrum sensing, it will not leave any energy for data transmission. α∗ + β∗ − 1 = 0 shows that the
duration of data transmission is zero. α∗ = 0 shows that the duration of energy harvesting is zero,
and β∗ = 0 shows that the duration of spectrum sensing is zero. If any of the above-mentioned four
situations occur, EH-CSN will not work properly. Thus, in our optimization problem, the optimal
Lagrange multipliers µ∗1 , µ∗2 , µ∗3 , µ∗4 always need to get zero.

Theorem 1. There exists an unique optimal set (α∗, β∗) that maximizes the achievable throughput, where
β∗ ∈ [β1, β2] and β1, β2 meet the conditions ρ (β1) = 1 and ξ (β2) = 0, respectively. In the meantime, β∗

meets the following equation:

ln
(

1− ηeH
σ2

n
+ ηeH−ηeH β−eS β

σ2
n

τ0
T (1−ρ(β))

)
= 1

ρ(β)
× ηeH−ηeH β−eS β

(σ2
n−ηeH)

τ0
T (1−ρ(β))+ηeH−ηeH β−eS β

. (12)

The optimal α∗ = 1− β∗ − τ0
T (1− ρ (β∗)), where

ρ (β) =
ηeH−ηeH β−eS β
F(β)(ηeH+eS)

× 1√
2π
× exp

(
−(A
√

β+B)2

2

)
× A

2
√

β

ξ (β) = ρ (β)− T
τ0

(
1 + eS

ηeH

)
β + T

τ0
− 1.

(13)

Proof. See Appendix A.

Then, we propose Algorithm 1 to determine the optimal (α∗, β∗) that maximizes the achievable
throughput. Bisection is firstly used to numerically find the lower bound β1, the upper bound β2 and
the optimal β∗, and it is denoted as bis ( f (x) , g (x) , x1, x2), where f (x) and g (x) are the functions
that we want to determine the root of f (x) = g (x), while x1, x2 are the lower and upper bounds to
which the root belongs.

The algorithm firstly reduces the interval which the sensing fraction β belongs to. This step
provides an advantage of speeding up the searching rate. In addition, the derived lower and upper
bounds for β guarantee the unique root of the equation ς (β) = υ (β). The proposed algorithm is
designed based on the existence and uniqueness of the optimal sensing fraction β, which has been
proved in Appendix A. The relationship between α and β is expressed as α = 1− β− τ0

T (1− ρ (β)),
which is demonstrated in Figure 1.
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Based on the assumption that the durations of PU’s states are assumed to be an exponential
distribution, we derive the optimal time assignment policy and propose the efficient algorithm to
determine the optimal design parameters for CSN. However, we need to know that the durations
of PUs’ states may not always follow the exponential distribution and do not have the memoryless
property in many actual application scenes. When PU busy periods are correlated, for example,
it follows log-normal distribution, then the probability that PU may resume its activity when CS
transmits data can be expressed as another complicated formula. As result, it is necessary for us
to adopt another method to solve the optimization problem in that case. In the meantime, we may
hardly determine the exact lower and upper bounds of the time fraction. Moreover, it may be hard to
prove the uniqueness and existence of the optimal time set. Compared to our proposed algorithm, the
approaches to solve the optimization problem when PU busy periods are correlated may be completely
different. Thus, our proposed model is suitable for the PU’s state with exponential distribution. If we
encounter other distribution, we need to exploit specific method to solve those problems.

Algorithm 1 Finding the optimal set (α∗, β∗)

1: Input fs, T, γ, eH , eS, τ0, P̄th, σ2
n

2: Compute β1 = bis
(

ρ (β) , 1, 0, ηeH
eH+eS

)
3: Compute β2 = bis

(
ξ (β) , 0, 0, ηeH

ηeH+eS

)
4: Compute β∗ = bis (ς (β) , υ (β) , β1, β2)

5: Compute α∗ = 1− β∗ − τ0
T (1− ρ (β∗))

6: Return (α∗, β∗)
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Figure 1. β vs. the corresponding α, for different P̄th.

4. Simulations

The above theoretical analysis is verified and shown through numerical simulations in this section.
The simulation parameters are summarized in Table 1, where the γ is just the signal-to-noise radio.
Taking the solar energy as an example, the harvesting efficiency of solar energy is usually assumed to
be 0.5 J/s, which is usually greater than the noise variance. The EH-CSN can obtain the maximum
throughput when the time fraction set is (α∗ = 0.1205, β∗ = 0.2389) calculated from Algorithm 1.
In order to demonstrate the accuracy of the optimal α∗ and β∗ derived from the Algorithm 1 in
Section 3, we consider that α, β both vary in the range [0, 1]. In order to avoid the overflow in
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computation, we must add some constraints to formula (5) for calculating the achievable throughput,
that is

R =

{
0, ηeHαT − eSβT ≤ 0, or 1− α− β ≤ 0,

C0

(
1− Pf

)
π0 (1− PI) , else.

(14)

Table 1. Simulation parameters

Parameter Value

Noise variance σ2
n 10−8 W

Time-slot duration T 50 ms
The average rate of energy harvesting eH 0.5 J/s
The average consumed energy rate of sensing eS 0.1 J/s
The sampling frequency fs 100 kHz
τ0 0.3
τ1 0.2
Storing efficiency η 0.7
γ −16 dB
The target detection probability Pth 0.9

Figure 2 plots the normalized achievable throughput against α and β. The exhaustive search
method is used to search the maximum point of the normalized throughput. Then, we can get the
optimal simulation solution (0.12,0.238) for (α∗, β∗), which perfectly matches with the theoretical
solution (0.1205,0.2389) derived from the proposed Algorithm 1. Thus, the proposed algorithm is
efficient to determine the optimal time assignment policy.

Figure 2. Normalized achievable throughput versus α&β (γ = −16 dB).

Next, in order to provide a better understanding on how the γ affects the system performance,
we take the achievable throughput, the optimal α∗ and β∗ as a function of γ. Figure 3 plots the optimal
α∗, β∗ and the corresponding achievable throughput against γ respectively. Figure 4 plots the lower
bound β1, the upper bound β2 and the optimal β∗ versus γ. One can see that the β∗ increases firstly
and decreases subsequently as γ increases. In the meantime, the α∗ changes a little as γ increases. This
is because when the γ is lower than a certain value, the CS needs more sensing duration to improve
the detection probability, which satisfies the target detection performance. When the γ continues to
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increase above a certain value, the CS needs less sensing duration to determine the status of PU while
keeping the high detection performance. Then, it will leave more time for CS to transmit data, which
would lead to the increasing of achievable throughput. However, the γ continues to increase, the
residual time (1− α∗ − β∗)× T will not vary very much, which makes CS obtain the stable throughput.
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Figure 3. The optimal α∗,β∗ and achievable throughput versus γ.
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Figure 4. The lower bound β1, the upper bound β2 and the optimal β∗ versus γ.

Finally, the impact of varying γ on the false alarm probability for different P̄th, at the corresponding
optimal (α∗, β∗) is demonstrated in Figure 5. In this paper, the false alarm probability target is not taken
as an additional constraint to the optimization problem (6). If the false alarm probability constraint
is set to 0.1, which is shown with the red line. It is easily shown that the derived optimal operating
point (α∗, β∗) cannot meet the false alarm probability target if the γ is less than a certain threshold
value—for example, when P̄th = 0.9, γ = −9 dB just meets the false alarm probability target 0.1 and
the corresponding optimal operating point is (α∗ = 0.107, β∗ = 0.164). If γ < −9 dB, the false alarm
probability target cannot be satisfied at any points.
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Figure 5. Probability of false alarm Pf vs. γ, for different P̄th.

5. Conclusions

In order to design an optimal time assignment policy for EH-CSN, we formulated the optimization
problem to maximize the achievable throughput under the collision constraint and the energy
constraint. We derived the lower and upper bounds of the time fraction of energy harvesting in
the process of solving the optimization problem. Analytical and simulation results showed that there
existed a unique time fraction set to maximize the achievable throughput. An efficient algorithm was
proposed to find the optimal set of time fractions. Finally, our theoretical analysis is also verified
through numerical simulations.
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Appendix A. Proof of Theorem 1

Substituting µ∗1 = 0, µ∗2 = 0, µ∗3 = 0, µ∗4 = 0 into dψ(α,β)
dα = 0 and dψ(α,β)

dβ = 0, we compute
dψ(α,β)

dα − dψ(α,β)
dβ = 0 and derive the following expression:

F(β)(ηeH+eS)

ln 2(σ2
n(1−α−β)+ηeHα−eS β)

= A×C(α,β)√
2π×2
√

β
e
−(A
√

β+B)
2

2 . (A1)

From dψ(α,β)
dα = 0 , we can easily get the following equation:

C (α, β) =

1
ln 2×

ηeH−ηeH β−eS β

σ2
n(1−α−β)+ηeH α−eS β

1+(α+β−1) T
τ0

. (A2)
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Substituting formula (A2) into formula (A1), it is derived that

ηeH−ηeH β−eS β
F(β)(ηeH+eS)

× 1√
2π
× exp

(
−(A
√

β+B)
2

2

)
× A

2
√

β
= 1− T

τ0
(1− α− β) . (A3)

Then, the left-hand side of the above equation can be denoted as

ρ (β) =
ηeH−ηeH β−eS β
F(β)(ηeH+eS)

× 1√
2π
× exp

(
−(A
√

β+B)
2

2

)
× A

2
√

β
. (A4)

Substituting formula (A4) into formula (A3), we can get the expression of α as follows:

α = 1− τ0
T (1− ρ (β))− β (A5)

According to the constraint conditions from the formula (6), that is ηeHαT > eSβT and α + β < 1,
it is derived that

0 < β < ηeH
eS+ηeH

,
1− β > α > eS

ηeH
β.

(A6)

From formula (A3), due to T
τ0
(1− α− β) > 0, we can derive ρ (β) < 1. Substituting formula (A5)

into ηeHαT > eSβT, it is derived that

ρ (β)− T
τ0

(
1 + eS

ηeH

)
β + T

τ0
− 1 > 0. (A7)

Let
ξ (β) = ρ (β)− T

τ0

(
1 + eS

ηeH

)
β + T

τ0
− 1. (A8)

Then, ξ (β) > 0. Obviously, ρ (β) and ξ (β) both decrease with β, which is in the range 0 <

β < ηeH
eS+ηeH

. β1 and β2 are assumed to satisfy the ρ (β)|β=β1
− 1 = 0 and ξ (β)|β=β2

= 0, respectively.

From (A8), we can get ξ (β)− (ρ (β)− 1) = T
τ0
− T

τ0

(
1 + eS

ηeH

)
β, the right term T

τ0
− T

τ0

(
1 + eS

ηeH

)
β is

always greater than zero for 0 < β < ηeH
eS+ηeH

. Thus, we can get ξ (β) ≥ ρ (β)− 1. It can be concluded

that 0 < β1 ≤ β ≤ β2 < ηeH
ηeH+eS

.
According to the denotation of C (α, β) in formula (10) and formula (A2), it is derived that

log2

(
1 + ηeHα−eS β

σ2
n(1−α−β)

)
=

1
ln 2×

ηeH−ηeH β−eS β

σ2
n(1−α−β)+ηeH α−eS β

1−(1−α−β) T
τ0

. (A9)

Substituting formula (A5) into formula(A9), we can derive that

ln
(

1− ηeH
σ2

n
+ ηeH−ηeH β−eS β

σ2
n

τ0
T (1−ρ(β))

)
= 1

ρ(β)
× ηeH−ηeH β−eS β

(σ2
n−ηeH)

τ0
T (1−ρ(β))+ηeH−ηeH β−eS β

. (A10)

Through some mathematical processing, Equation (A10) can be expressed as

1

ρ(β)×ln

(
1− ηeH

σ2
n
+

ηeH−ηeH β−eS β

σ2
n

τ0
T (1−ρ(β))

) = 1 +
(
σ2

n − ηeH
) τ0

T
1−ρ(β)

ηeH−ηeH β−eS β .
(A11)

Let
ς (β) = 1

ρ(β) ln

(
1− ηeH

σ2
n
+
(ηeH−ηeH β−eS β)

σ2
n

τ0
T (1−ρ(β))

) ,

υ1 (β) =
1−ρ(β)

ηeH−ηeH β−eS β ,
υ (β) = 1 +

(
σ2

n − ηeH
) τ0

T υ1 (β) .

(A12)
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Then, we can rewrite Equation (A11) as follows:

ς (β) = υ (β) . (A13)

Thus, the optimal β∗ must satisfy the equation ς (β) = υ (β). Then, the proof of the existence and
uniqueness for the optimal β∗ will be shown in the subsequent parts.

Because ρ (β) decreases with β, it is easily derived that ς (β) and υ1 (β) increase with β for

β1 6 β 6 β2. Due to lim
β→β1

ς (β) = 0, lim
β→β2

ς (β) = +∞, lim
β→β1

υ (β) = 1, lim
β→β2

υ (β) = 1 + σ2
n−ηeH
ηeH

, there at

least exists one point which makes ς (β) = υ (β) over the range β1 6 β 6 β2. Therefore, the existence
of the optimal β∗ has been proved. Then, we will show the uniqueness for the optimal β∗.

Three cases should be considered when we analyze the relationship between ς (β) and υ (β)

versus β.
(1) If σ2

n < ηeH . In this case, υ (β) is decreasing in β and ς (β) is increasing in β.
Thus, ς (β) intersects υ (β) once, which is shown in Figure A1.

(2) If σ2
n = ηeH . In this case, υ (β) is a constant value which equals 1. Thus, ς (β) intersects υ (β)

once, which is shown in Figure A1.
(3) If σ2

n > ηeH . In this case, υ (β) is also increasing in β. Let β4 > β3, u (β) =

ln
(

1 + (ηeH−ηeH β−eS β)

σ2
n

τ0
T (1−ρ(β))

− ηeH
σ2

n

)
, and v (β) = ς (β) − υ (β); then, ς (β) = 1

ρ(β)u(β)
. Computing the

v (β2)−v (β1), we can derive that

v (β4)−v (β3) =
1

ρ (β4) u (β4)
− 1

ρ (β3) u (β3)
−
(

σ2
n − ηeH

) τ0

T
[υ1 (β4)− υ1 (β3)]

>
1

u (β4)

[
1

ρ (β4)
− 1

ρ (β3)

]
−
(

σ2
n − ηeH

) τ0

T

[
1− ρ (β4)

ηeH − ηeH β4 − eSβ4
− 1− ρ (β3)

ηeH − ηeH β3 − eSβ3

]
>

σ2
n

τ0
T (1− ρ (β4))

ηeH − ηeH β4 − eSβ4

ρ (β3)− ρ (β4)

ρ (β3) ρ (β4)
−

τ0
T
(
σ2

n − ηeH
)
(1− ρ (β4))

ηeH − ηeH β4 − eSβ4
+

τ0
T
(
σ2

n − ηeH
)
(1− ρ (β3))

ηeH − ηeH β3 − eSβ3

>
σ2

n
τ0
T (1− ρ (β4)) (ρ (β3)− ρ (β4))

ηeH − ηeH β4 − eSβ4
−

τ0
T
(
σ2

n − ηeH
)
(1− ρ (β4))

ηeH − ηeH β4 − eSβ4
+

τ0
T
(
σ2

n − ηeH
)
(1− ρ (β3))

ηeH − ηeH β3 − eSβ3

>
τ0

T
(1− ρ (β3))

σ2
n (ρ (β3)− ρ (β4))

ηeH − ηeH β3 − eSβ3
> 0.

(A14)

Thus, v (β) increases with β, and lim
β→β1

v (β) = −1, lim
β→β2

v (β) = + ∞, and there must exist only

one β that makes v (β) = 0. Thus, ς (β) intersects υ (β) once, which is shown in Figure A1.
Based on the above analysis, it can be concluded that there exist unique

β over the range β1 6 β 6 β2. The existence and uniqueness of β has been proved. Once the eH
and σ2

n are given, the relationship between ς (β) and υ (β) will be determined. From ς (β) = υ (β),
the bisection method can be adopted to acquire the optimal β∗. After getting the optimal β∗ ,
the optimal α∗ can be expressed as α∗ = 1− β∗ − τ0

T (1− ρ (β∗)). According to the noise distribution
characteristics of CSN and the developmental level of energy harvesting, σ2

n < ηeH is almost available
for the communication systems generally.
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(a) σ 
n
2 < η e

H
(b) σ 

n
2 = η e

H
(c) σ 

n
2 > η e

H

ς (β)
ς (β) ς (β)

υ (β)

υ (β)

υ (β)

Figure A1. Illustration of ς (β) and υ (β) versus β over the range β1 6 β 6 β2.
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