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Abstract: Efficient distributed processing is vital for collaborative searching tasks of robotic
swarm systems. Typically, those systems are decentralized, and the members have only limited
communication and processing capacities. What is illustrated in this paper is a distributed processing
paradigm for robotic swarms moving in a line or v-shape formation. The introduced concept is capable
of exploits the line and v-shape formations for 2-D filtering and processing algorithms based on a
modified multi-dimensional Roesser model. The communication is only between nearest adjacent
members with a simple state variable. As an example, we applied a salient region detection algorithm
to the proposed framework. The simulation results indicate the designed paradigm can detect
salient regions by using a moving line or v-shape formation in a scanning way. The requirement of
communication and processing capability in this framework is minimal, making it a good candidate
for collaborative exploration of formatted robotic swarms.

Keywords: swarm robotics; sensor networks; pattern formation; distributed processing;
collaborative exploration

1. Introduction

Searching large areas for a particular signal or feature is a formidable task that, at the moment,
has no satisfactory solution. Typical approaches include the use of very few high complexity robotic
devices that randomly explore the area of interest in a sequential fashion [1]. The disadvantages of
such approaches are apparent: long search time, high probability of missing the target, high cost,
and the possibility of loss of the agent, which again adds to the expected cost value. Also, to keep the
detection probability high enough, one has to pursue a large number of false positives, further adding
to the time cost for such a scenario. Using multi-robot systems to perform such tasks in parallel will be
a better choice.

Swarm robotics is a particular approach for multi-robot systems that takes inspiration from the
self-organized behaviors of social animals such as birds, bees and fish groups, etc. [2]. Those systems
are generally with a scalable decentralized scheme that the members do not have any global knowledge,
and only have local sensing and limited communication capability [3]. This area has been perceived to
have relevance in a variety of application areas ranging from exploration of virgin territories (mid-air [4]
or underwater [5]), area coverage for military defense to contamination detection or tracking [6], etc.
Ordinarily, the members in swarms are homogeneous. However, some complex applications require
to use multiple types of sensors and robots simultaneously, all of which could not be integrated into
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a single type of agent. Those applications, therefore, require the system have some heterogeneity [7].
Depending on the requirements of different tasks, it may need physically heterogeneous members,
or the heterogeneity in behavior could be achieved in physically homogeneous teams by specializing
the behaviors [8].

In this paper, we are adopting robotic swarms for collaborative searching tasks. To cope with
this, the swarms must first move together and then make a decision together under the condition of
limited sensing and communication [9]. One conventional approach is searching randomly in an area
to get the optimal target location. This idea is also the basis of particle swarm optimization (PSO)
algorithm [10], which have many extensions of imitating species including ants, fish groups as well
as glowworms [11]. However, robots in those solutions in an open area have the high probability
of losing contact with each other and, therefore, lose the ability to finish the task [12]. By forming
a specific formation and moving together to search an unknown area in a scanner-like way is a better
option for those tasks.

Formation forming is one of the fundamental research topics of swarm collaborative behaviors.
It aims at deploying robots regularly and repetitively that keeps specific distances from each
other to get the desired pattern during moving. There are numbers of research works dealing
with formation control problems in literature: structure-based methods (leader-follower [13],
virtual structure [14]), behavior-based approaches (finite state machine [15], potential fields [16],
consensus-based methods [17]) as well as multicellular mechanism-inspired paradigms [18].
In particular, flying geese inspired line or v-shape formation control is well-studied in this area. It is
easy to deploy and has the significant potential for searching an area in a cooperative and parallel way.
Sousselier et al. proposed a line formation algorithm for the underwater environment searching task [1].
Nathan et al. introduced a forming method which employed a small set of distributed positioning
rules, i.e., coalescing, gap-seeking and stationing rules, to guide the movements of artificial flocking
agents aimed to get the v-like formation [19]. Li et al. demonstrated a v-shape formation method
from control engineering standpoint. By combining the visual communication constraints and a cost
function, a gradient-based navigation control algorithm was given for the forming task [20]. However,
applying those formations to collaborative searching tasks require processing the sampled data
instantly during moving. Especially the swarm member is under the condition of local communication
and limited processing capacity.

In fact, the event searching scheme with those formations requires fast processing capability.
Since the system is designed to be decentralized, uploading the sampled and possibly pre-processed
data to an entity outside the swarm and then communicating the decision back to the appropriate
swarm agents is simply not an option. Fast, in-swarm distributed processing is essential for timely
decision making to increase the ability to avoid false negatives at the cost of allowing false positives.
This paper illustrates an in-swarm distributed processing paradigm for flying geese inspired line
and v-shape formations that have the capability of covering and exploring vast areas effectively.
We have shown a formation-based method for collaborative decision making in a scanner-like
way of a low-complexity robots swarm with distributed processing paradigm [21]. In this work,
formation formed swarm was treated as a moving sensor network, in which could utilize some
multi-dimensional-based algorithms in a distributed manner [22]. We extended the work to more
general cases that address not only the line formation case but also the v-shape case on both distributed
signal processing and collaborative decision making aspects. An example of distributed salient region
detection algorithm is applied to this paradigm to show the effectiveness.

The main contributions of this paper are the real-time realization of a modified 2-D Roesser model
for in-swarm distributed processing of line and v-shape formations. This work extends the results
in [22] that only work for rectangular static 2-D sensor networks. The approach allows detecting
signals of interest during motion without communicating data into or out of the swarm. A salient
region detection example is given to show the effectiveness of the proposed paradigm.
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2. Problem Statements

We are proposing to develop a distributed processing scheme that assigns one swarm agent
per sampling point and processes data using simple communication with only nearest neighbors.
As shown in Figure 1, suppose the line and v-shape formation are already created and moving
perpendicular to the direction of formed patterns (v in the Figure). By constraint the information i is
only exchanged between closest neighbors, denote un and yn are input and output of moving node n,
the distributed processing problem can be written as follows:

yn(t) = f [un(t), in−1(t), in+1(t), in(t− 1)] (1)

where it(n − 1) and it(n + 1) are signals received by node n from the previous and next adjacent
member in the swarm respectively. it−1(n) is the stored self-state of last time slot. That means the
system has propagation causality in the directions of signal transmission. Here we assume that the
signals that need to be exchanged are simple, and can be transmitted by radio or visual beacons
without packet loss. Now the distributed processing problem translates to how to apply suitable filters
into this scheme depending on task requirements.

(a) Line Case (b) V-Shape Case

Figure 1. Desired Distributed Processing Procedure.

3. Methods

Due to its many advantages, we propose a modified 2-D Roesser model for distributed
processing problem under the line and v-shape formations. This two-dimensional processing model,
initially designed for centralized (image) processing, has many features that are of particular interest
for the problem at hand: scalability, high network capacity, and low node complexity.

3.1. Standard 2-D Roesser Model

There are several causality structures (and therefore directions of propagation) that can be chosen
within this framework. The choice of the structure depends on different aspects of swarm operations
and is discussed in more details later on. For reasons of simplicity, we initially introduce the case of
“quarter plane causal” of a standard 2-D model, which can easily be transformed to other regions of
support, and then present the modified model for line and v-shape processing case.

In its most basic, linear form, the 2-D Roesser state space model is given by [23]:[
xh(n1 + 1, n2)

xv(n1, n2 + 1)

]
=

[
A11 A12

A21 A22

] [
xh(n1, n2)

xv(n1, n2)

]
+

[
B1

B2

]
u(n1, n2) (2a)

y(n1, n2) =
[
C1 C2

] [xh(n1, n2)

xv(n1, n2)

]
+ Du(n1, n2) (2b)

where (xh(n1, n2), xv(n1, n2))
T is the state vector, xh and xv are the horizontal and vertical propagating

components, u(n1, n2) and y(n1, n2) are the input and output signals of the filtering process,
respectively. The direction of response propagation is shown in Figure 2. The center node (n1, n2)
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in the figure receives the state information from only the closest adjacent nodes horizontally and
vertically (see xh(n1 − 1, n2) and xv(n1, n2 − 1) in the figure). By combing with its own sample input
u(n1, n2), the node is able to compute its output y(n1, n2) as well as the transmission status xh(n1, n2)

and xv(n1, n2) respectively. Those status again propagate to next neighbor nodes (n1 + 1, n2) and
(n1, n2 + 1).

Figure 2. Standard 2-D Roesser model with first quadrant causality.

While the Roesser model in its original form clearly creates first quadrant causality, other options
exist. For example on a square lattice, four different quarter-plane causalities correspond to the four
different diagonal signal propagation directions, that in turn can be combined to generate the total
outputs. The following three causalities exist for a 2-D quarter-plane by changing the left-hand side

of Equation (2a) to

[
xh(n1 − 1, n2)

xv(n1, n2 + 1)

]
,

[
xh(n1 − 1, n2)

xv(n1, n2 + 1)

]
and

[
xh(n1 + 1, n2)

xv(n1, n2 − 1)

]
, which cooresponding to

2nd, 3rd and 4th quadrant causalities respectively.
By comparing the standard Roesser model and the distributed processing problem we modeled in

Equation (1), we found that the two models have similarities. If we replace in−1(t), in+1(t) and in(t− 1)
in (1) with the corresponding horizontal status xh and vertical status xv in (2), the distributed processing
problem will be solved by transmitting the status variable with certain propagation causalities defined
above. The work in [22] provides a distributed processing model for the case of a fixed rectangular
two-dimensional lattice of a sensor network. Since the full 2-D sampling lattice is not available at
any given time for moving swarm in formations, one cannot perform the algorithm in (2) as outlined
in Figure 2. Therefore modified versions need to be formulated for moving line or v-shape cases
where the agents need to remember the state of the previous time instant to simulate the vertical
status propagation.

3.2. Modified 2-D Roesser Model Based Distributed Processing

Assume for a moment the line-formatted swarm motion is in the direction of the n2 axis in
Figure 3. Then all sampling lattice locations (n1, n2), n2 = 0, 1, 2... with n1 fixed are represented
by the same swarm agent, uniquely identified as agent n1. Sampling at location (n1, n2) then just
happens t time units (t = n2/v) after sampling at (n1, 0), where v is the agent speed in the n2 direction,
and agent speed is defined merely as sampling periods per time. In this case, only the horizontal
part of Equation (2a) requires communication between neighboring agents. All the computations are
executed entirely inside each line agent. Therefore this scheme (unlike the 2-D process before) has a
sampling and processing rate limit that is dictated by the swarm speed itself. A slow-moving swarm
takes more time to arrive at the next sampling instant n2 and thus has plenty of time for propagating
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the state value from left to right, vice versa, or in both ±n1 directions. The question of causality choice
is almost trivial for this case, only in the first and second quadrant, since the swarm does not have any
information about the un-scanned area.

Figure 3. Roesser Model Based Distributed Processing in 1-D Case.

By assigning n1 as a member among the swarm, the left part members are (n1 − 1, · · · , n1 − k)
while the right part members are (n1 + 1, · · · , n1 + l), the processing procedure of v-shape case and
line case are similar in most respects. The shape of the coverage area may differ according to the final
formation of the swarm. Details will be shown in the following sections of results and discussions.

3.3. Distributed Salient Region Detection

Salient region detection can be utilized to perform fast scene analysis and target tracking. Here we
assume the formations will be used to detect salient regions of an unknown area. In this example,
suppose every single agent can acquire image sequences and calculate some simple features, such as
average color weight or intensity, which is treated as the input of each agent. According to the
center-surrounding mechanism [24], saliency values for those features should be the differences
between the current region and its neighbors. The difference equations of this mechanism for a N1×N2

filter with first quadrant causality can be written as:

y(n1, n2) = |
N1−1

∑
k1=0

N2−1

∑
k2=0

u(n1, n2)−
u(n1 − k1, n2 − k2)

N1 × N2
| = |ỹ(z1, z2)| (3)

where u and y are the inputs and outputs respectively. Let N1 = N2 = 2, the following filter in its z
transform can be established for the transfer function above:

H(z1, z2) =
ỹ(z1, z2)

u(z1, z2)
= −1

4
z−1

1 −
1
4

z−1
2 −

1
4

z−1
1 z−1

2 +
3
4

(4)

Based on the multidimensional system theory [25], one corresponding Roesser state space model
for this transfer function in the first and second quadrant causality is written as (5) and (6) respectively.

[
xh(n1 + 1, n2)

xv(n1, n2 + 1)

]
=

[
0 0
− 1

4 0

] [
xh(n1, n2)

xv(n1, n2)

]
+

[
1
− 1

4

]
u(n1, n2) (5a)

y1(n1, n2) = |
[
− 1

4 1
] [xh(n1, n2)

xv(n1, n2)

]
+

3
4

u(n1, n2)| (5b)
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[
xh(n1 − 1, n2)

xv(n1, n2 + 1)

]
=

[
0 0
− 1

4 0

] [
xh(n1, n2)

xv(n1, n2)

]
+

[
1
− 1

4

]
u(n1, n2) (6a)

y2(n1, n2) = |
[
− 1

4 1
] [xh(n1, n2)

xv(n1, n2)

]
+

3
4

u(n1, n2)| (6b)

where xh(n1, n2) and xv(n1, n2) are horizontal and vertical state variables respectively. The salient
value can be assigned to a scanned region by combining the two directions of propagation causalities:

y(n1, n2) = y1(n1, n2) + y2(n1, n2) (7)

4. Results

For line case, we split a large scene to 21 × 35 blocks to simulate distributed sampling and
processing procedure. As shown in Figure 4, this segmentation simulates 21 robots formatted a line in
n1 axis, moving in n2 direction and processing in 35 consecutive time slots. The simulation dataset
consists of 222 large scenes of forest captured by unmanned aerial vehicle (UAVs), which meets our
searching requirement of unknown environments, is referring to the work of Xu et al. [26].

35

30

25

20

15

5

1

10

n1  

(Swarm Members)

n2
(Time-slots)

Figure 4. Simulation Configuration of Line Scan Case.

By using the average intensity feature as the input of each member and applying (5)–(7), the
salient region detection results are obtained, as shown in Figure 5.

Figure 5a shows an original scene. Start from the bottom row of the split scene with zero initial
condition, the line formed swarm scan the whole scene line by line to the top. The state values of
each block sampled by swarm members are calculated by applying (5), and then transmitted to the
neighbors on left or right depends on the propagating causalities defined before. Based on the received
state values, stored previous state values and the input (average intensity of the block) of each sample
node, the output of each block is obtained by combining the outputs of both causalities. Figure 5b
is the region saliency map obtained by putting the outputs to the corresponding location of a gray
image and resize it to the same dimension as the original scene. We applied a discrimination threshold
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σ = 20 to eliminate negligible values. We can see this method can detect the blue roof of a house from
the original scene since it is more salient than the surroundings.

(a) (b)

(c) (d)

Figure 5. Simulated Distributed Salient Region Detection of Swarm Formations. (a) Original Scene;
(b) Detection Result of Line Scan Case; (c) Coverage Area of V-Shape Scan Case; (d) Detection Result of
V-Shape Scan Case.

The simulation procedure of distributed processing for the v-shape case is similar to line formation
case. The difference is that the horizontal states propagation route is bent which causes the coverage
area change. The line case is able to cover the whole scene shown in Figure 4, while the coverage
of the v-shape case is shown in Figure 5c, the white blocks are the covered area. Despite the swarm
in this formation case have some blind area initially, it could be ignored in a long distance scanning.
The salient region detection result of the same original scene is shown in Figure 5d, we can see it still
holds the similar salient region location compares to the line case. More visual results are presented
in Figure 6. Figure 6a shows the original scene of our simulation. Figure 6b,d demonstrate the
processing results of line case and v-shape case respectively. Figure 6c,e are shown the thresholded
results. The gray blocks indicate the salient regions in the scene, and the white one indicates the most
salient region.

By splitting all the images in the dataset, and running the proposed methods for line and v-shape
case, we get the results of detected salient regions. With comparing with the results with manually
labeled salient regions of original scenes, the statistical results of proposed methods are shown in
Figure 7 for line case and Figure 8 for v-shape case respectively. Figures 7a and 8a illustrate the number
of salient regions (shown with the bars) and the detecting true positives (shown with the dots) in each
scene. Figures 7b and 8b give the number of false positives for line and v-shape case respectively.
We can see the number of false positives in the v-shape case is higher than that in line case. Since the
state propagation direction is bent, the reference blocks are not exactly left or right blocks. It makes
the salient value is not the same as the line case, use the same threshold to segment the saliency map
will get different results. Additionally, Figures 7c and 8c show the number of false negatives of those
two situations. This number of v-shape case is also more significant than line case because there are
some blind areas of v-shape scanning. With long distance scanning, the blind areas can be ignored.
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(a) (b) (c) (d) (e)

Figure 6. Formation Based Distributed Salient Region Detection. (a) Original Scene; (b) Line Case;
(c) σ = 20 (Line); (d) V-shape Case; (e) σ = 20 (V-shape).

The average results of the above values are shown in Table 1. The recall rate and precision rate of
line formation case is 95.77% and 88.96% respectively. Those rates are both higher than the v-shape
case, which is 84.95% and 80.86% correspondingly. Since the salient region detection is typically used
for rough inspection of an area, after this procedure, one may take other operations to the specific
region for detail inspection. Under this consideration, those rates are acceptable for salient region
detection tasks. This example evaluated proposed distributed framework is suitable for formation
formed swarm tasks.

Table 1. Statistical Results.

Line Case V-Shape Case

No. of Scenes 222

No. of Salient Regions 732

True Positives (TPs) 701 621

False Positives (FPs) 87 147

False Negatives (FNs) 31 111

Recall Rate: TPs/(TPs + FNs) 95.77% 84.95%

Precision Rate: TPs/(TPs + FPs) 88.96% 80.86%
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Figure 7. Statistical Results of Line Formation Case. (a) True Positives of Each Scene; (b) False Positives
of Each Scene; (c) False Negatives of Each Scene.
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Figure 8. Statistical Results of V-shape Formation Case. (a) True Positives of Each Scene; (b) False
Positives of Each Scene; (c) False Negatives of Each Scene.
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5. Discussion

It can be seen from the listed results above, the presented distributed processing method for
collaborative salient region detection is proved to be effective with swarms in line or v-shape formations.
Here are some more questions that have to be discussed.

5.1. Unbalanced V-Shape Formation

The final shape of the v-shape formation may vary, i.e., it may result in unbalanced formations,
which will influence the coverage area of the swarm. As shown in Figure 9, we tested several
unbalanced v-shape cases for our distributed salient region detection algorithm. The images in the
first row are the coverage areas of different unbalanced formations. The images in the second row are
the corresponding detection results. Although the coverage area has changed, the detected salient
region is the same in those situations. That means the overall properties of the algorithm still hold.

Figure 9. Distributed Salient Region Detection with Unbanlenced V-shape.

5.2. Imperfect Formations

Since the sensor zero drift or controller precision of the swarm member introduces position errors,
it will result in imperfect formations. Figure 10 shows an example of processing with an inaccurate
v-shape, we can see since the relative positions of members are not changing during flying, the salient
region is still detected. Therefore, it can still hold the effectiveness under the condition of imperfect
formations with position errors. The detected region is the same as in Figure 9.

(a) (b)

Figure 10. Results with Imperfect V-Shape Scan. (a) Imperfect V-shape Scan Coverage;
(b) Processing Results.

5.3. Other Concerns

The proposed processing method is based on spatial related multidimensional system theory.
The relative positions of members in the swarm are essential for processing. In the initial or transient
phase of pattern formation, if the relative positions are totally disordered, the output of the method
will be invalid unless the positions of every member in the swarm are recorded, and some recovery
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algorithms are applied. We can use other strategies to avoid this case, for example, forming the
formation using a slower speed before reaching the interest area, or revisit the area after formation, etc.
Furthermore, the proposed example of salient region detection we have shown is only able to detect
static or slowly moving salient targets. Nevertheless, by applying other filters (e.g., velocity filter [27])
to the distributed processing framework, the introduced Roesser model based distributed processing
paradigm has the capability to detect other events or dynamically changing signals.

6. Conclusions

This paper introduces a new distributed processing paradigm for formation formed robotic
swarms in searching tasks. The in-swarm distributed processing is performed using a modified 2-D
Roesser model with half-plan causality. The concept is illustrated using a line (or v-shape) scanning
swarm that implements the 2-D algorithm sequentially, i.e., by executing the 2-D filtering algorithm
line by line. The effectiveness of this framework is shown by an example of salient region detection
task, making it a good candidate for collaborative sensing of robotic swarms.
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