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Abstract: This paper proposes a new type of torsional vibration sensor based on fiber Bragg grating
(FBG). The sensor has two mass ball optical fiber systems. The optical fiber is directly treated as
an elastomer and a mass ball is fixed in the middle of the fiber in each mass ball fiber system,
which is advantageously small, lightweight, and has anti-electromagnetic interference properties.
The torsional vibration signal can be calculated by the four FBGs’ wavelength shifts, which are
caused by mass balls. The difference in the two sets of mass ball optical fiber systems achieves
anti-horizontal vibration and anti-temperature interference. The principle and model of the sensor,
as well as numerical analysis and structural parameter design, are introduced. The experimental
conclusions show that the minimum torsional natural frequency of the sensor is 27.35 Hz and the
torsional vibration measurement sensitivity is 0.3603 pm/(rad/s2).
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1. Introduction

Rotating machinery has become an important branch of mechanical equipment and is widely
used in industrial production. Mechanical vibration often results in various malfunctions in rotating
machines during operation. The vibration of rotating machinery can be classified into bending vibration,
axial vibration and three forms of torsional vibration. Axial vibration and bending vibration are
easier to detect due to the obvious forms of vibration, so many more mature detection methods are
available for these vibration types after a long period of research. Conversely, torsional vibration
form is not obvious, the detection is complication and initially has not received enough attention.
Torsional vibration of shafts is an important form of vibration in all kinds of rotary machinery.
Torsional vibration is circumferential vibration caused by torque changing with time acting on the
shaft [1]. Long-term torsional vibration can cause shaft structure stress fatigue failure when the
vibration frequency is close to the natural frequency of the structure, resulting in greater fracture.
Therefore, studying methods and techniques of detecting torsional vibration of rotating machinery is
of considerable significance.

Many scholars have contributed to the study of torsional vibration measurements. As early as
1916, German scientist Geiger designed a mechanical torsional vibration meter to measure torsional
vibration of engine shafting, which marked the beginning of torsional vibration measurement. After a
century of deep research, measurement methods for torsional vibration are being constantly enriched,
and mainly include contact methods, non-contact methods, and sensorless methods [1].

The contact methods are a class of methods that directly measure torsional vibration by using
the sensor rotating with the rotating shaft. Ji et al. [2] proposed measuring torque changes in shafts
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with two resistance strain gauges attached to the surface of the shaft, which were 45◦ to the axis
and perpendicular to each other. Yang et al. [3] used two identical piezoelectric acceleration sensors
mounted symmetrically in the circumferential tangential direction on the rotating shaft to measure the
tangential acceleration of the rotating shaft. Liao et al. [4] presented a torsional vibration measuring
device based on the principle of inertia, effectively eliminating radial vibration. Binglin et al. [5]
proposed a novel and highly accurate indirect torsional vibration receptance measurement method for
shaft structures.

Non-contact methods involve sensors being fixed outside rotating shafting that do not rotate
with the shaft. Sometimes, this method uses the existing structure or auxiliary structures are installed
on the shaft. Jiang et al. [6] proposed a measuring method for the torsional vibration of aeroengine
rotors by adopting eddy current displacement sensors and structures on the aeroengine rotor, such as
aeroengine speed measurement fluted discs. He et al. [7] improved the above method [6] to avoid the
impact on the measurements caused by profile error. They used groove or protrusion on the shaft as
the key phase mark and recorded the key phase signal measured by a non-contact displacement sensor
as the reference starting point. Zhao et al. [8] presented a torsional vibration measurement system
consisting of a photoelectric incremental encoder and a signal acquisition instrument. Zhang et al. [9]
described a method for rotor torsional vibration measurement based on the electromagnetic induction
effect. This method is accurate, simple to install, and is user-friendly in terms of operation.

Furthermore, there are some non-contact measurement methods based on the laser Doppler
principle [10–13]. Xiang et al. [10] proposed a laser torsional vibrameter to measure the torsion
vibration of a rotating shaft system under electrical network impact, which was based on laser
Doppler velocimetry. Huang et al. [11] introduced a measurement method for the torsional vibration of
high-speed rotary machine, which was more real-time, and the dynamic range was considerably
extended compared with other measurement methods based on the laser Doppler technique.
Liu et al. [12] developed two types of fiber-optic sensor based on the laser Doppler principle
for instantaneous torsional vibration measurements: either differential or reference instruments,
which were more easily applicable.

In addition to the above methods, sensorless detection techniques have been used for the
measurement of torsional vibration, in which conventional physical quantity sensors are no longer
used, but the stator current of the drive motor is directly extracted and analyzed to monitor the
working condition of the rotating equipment and the motor itself [14–16]. Shi et al. [14] used sensorless
detection techniques to carry out a vibration monitoring experiment and verified the feasibility of the
stator current signal of the motor to measure the vibration fault, which was more sensitive to torsional
vibration than transverse vibration.

Among the above torsional vibration measurement methods, electrical measurement and
magnetoelectric measurement methods are susceptible to electromagnetic interference, non-contact
gear measuring methods have trouble transmitting signals, and the laser Doppler method uses
expensive equipment and the measurement process is susceptible to environmental interference.

Compared with the above sensing technology, the emerging fiber grating sensors have
many advantages including their small size, immunity from electromagnetic interference,
strong environmental adaptability, easy implementation of dynamic and distributed detection,
and long-distance transmission. Fiber Bragg grating (FBG) has been applied to the measurement of
torsional vibration. Sheng et al. [15,16] designed a two FBG rotary position sensor based system to
detect the rotating angle of a rotor. The two FBGs are affixed to the metal rod along the axial direction
and separated from each other by 90 degrees on the circumference. When the rotor rotates, the force of
the two magnets on the rotor to the magnet at the end of the metal rod constantly changes, which causes
the deflection curve of the metal rod to change continuously, thus resulting in the constant change
in wavelength of the FBGs. Due to the use of a magnetic field, the sensor is susceptible to external
interference. Yu et al. [17] designed a device for measuring static and tiny torsion. The inner ring is
fixed on the base, and one end of the two FBGs is affixed on the surface of the rotatable outer ring,
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and the other end is fixed on the base. The sensor is not affected by temperature and has a sensitivity
of 0.743 nm/◦. However, it is not suitable for torsional measurement of dynamic rotating machines.
Kruger et al. [18] stuck two FBGs on opposite sides of the shaft in the direction of 45 ◦ along the
axis to measure torsional vibration. On this basis, Li et al. [19] established a complete strain sensing
model and analyzed the decoupling principle of bending and torsional coupled vibrations, which was
verified by experiments on a rotor platform. The theory of this measurement method is based on the
equal diameter circular axis, so it is not applicable to stepped axes. In addition, this method requires
FBGs to be directly affixed to the shaft, so it is not suitable for severe working conditions.

In order to overcome the above mentioned drawbacks, a new type of torsional vibration sensor
based on fiber Bragg grating is proposed in this paper. The sensor has two mass ball fiber systems.
A mass ball is fixed in the middle of the fiber in each mass ball fiber system. This system is small,
lightweight, and has anti-electromagnetic interference properties. The torsional vibration signal can
be calculated by the FBGs’ wavelength shifts that are caused by the mass ball. The combination
of the two sets of mass ball optical fiber systems effectively resists transverse vibration and
temperature interference.

2. Sensor Principles and Model

According to the sensing principle of FBG, when the fiber grating receives axial stretching
or compression, or the ambient temperature changes, the center wavelength of the fiber grating
correspondingly shifts due to the grating cycle and the effective refractive index changes. The relation
between strain, temperature, and center wavelength shifts ∆λ can be written as [20]:

∆λ

λ
= (1− Pe)∆ε + (α f + ξ f )∆t (1)

where Pe is the strain-optic coefficient of optical fiber, af is the coefficient of thermal expansion, and xf
is the thermal-optic coefficient. Normally, Pe is 0.22, af is 0.55 × 10−6/◦C, and xf is 5.775 × 10−6/◦C.

2.1. Principle of the Sensor

A schematic diagram and photograph of the proposed rotating mechanical torsional vibration
sensor are shown in Figure 1. The sensor is mainly composed of a shell, an inner disk, two copper
mass balls, and four FBGs. The shell and the inner disk are connected together by a thread, and each
disk has a center hole. The center hole of the shell was fitted with a rotating shaft, the diameter of
which was smaller than that of the center hole of the inner disk. Each of two identical copper mass
balls was provided with a through hole, of which the diameter was slightly larger than that of the
optical fiber to allow the optical fiber to pass through the mass ball. Two mass balls were fixed on the
middle of optical fiber 1 and optical fiber 2 with 502 glue. #1FBG and #2FBG were placed on both sides
of the mass ball on optical fiber 1, #3FBG and #4FBG were placed on both sides of the mass ball on
optical fiber 2. The same tension was applied to optical fiber 1 and optical fiber 2, two sides of which
were mounted on the bumps of the inner disk with glue. The two optical fibers were parallel to each
other and the distances to the center of the round hole were equal. There were two limit slots on the
inner disk used to limit the movement range of the two mass balls to prevent optical fibers from being
pulled off.
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ball optical fiber system can be seen as a combination of its axial vibration along the X direction (as 
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acting on the mass ball can be divided into several categories: (1) gravity mg, the direction of which 
is always vertical downward, where m is mass of the mass ball and g is the acceleration of gravity;  
(2) the inertia force -ma caused by torsional vibration, the direction is tangential along the rotating 
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which is the inertia force caused by the radial vibration of the rotating shaft; and (4) the pulling force 
of the optical fiber, of which the direction is outward along the fiber. 

Figure 1. (a) The schematic diagram and (b) photograph of the proposed rotating mechanical torsional
vibration sensor.

As shown in Figure 1, the sensor is mounted on the rotating shaft, the optical fiber are drawn from
the gap between the inner disk of the sensor and the rotating shaft. When torsional vibration of the
rotating shaft occurs, the forces in the tangential of the two mass balls change. The relationship between
torsional vibration acceleration and the strain of the fiber grating can be obtained by establishing the
differential relation between the forces acting on the two mass balls. Finally, the torsional vibration
signal can be measured by the wavelength shift of the four FBGs.

2.2. Mathmatical Model of the Sensor

The sensor rotates with the rotating shaft and is subjected to torsional vibration in a clockwise
direction. The force diagram of the sensor is shown in Figure 2. The vibration of the sensor′s mass ball
optical fiber system can be seen as a combination of its axial vibration along the X direction (as shown
in Figure 3a) and the lateral vibration along the Y direction (as shown in Figure 3b). The forces acting
on the mass ball can be divided into several categories: (1) gravity mg, the direction of which is always
vertical downward, where m is mass of the mass ball and g is the acceleration of gravity; (2) the inertia
force -ma caused by torsional vibration, the direction is tangential along the rotating shaft, where a is
the acceleration of mass ball caused by torsional vibration; (3) interference force F, which is the inertia
force caused by the radial vibration of the rotating shaft; and (4) the pulling force of the optical fiber,
of which the direction is outward along the fiber.
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Figure 2. The force diagram of the mass ball optical fiber systems of the sensor.

Initially, the same tension T0 is applied to the two fibers to make #1FBG, #2FBG, #3FBG, and #4FBG
have an equal pre-strain ε0. The relationship between tension T0 and pre-strain ε0 is:

T0 = EAε0 (2)

where E represents the Young′s Modulus of optical fiber and A represents the cross-sectional area of
the optic fiber. Since the mass balls are fixed on the fiber, the mass balls are subjected to the first three
forces to create a slight displacement in the X and Y direction, causing the fibers to stretch or shrink,
and so the mass balls are subjected to the fourth force simultaneously. According to the balance of
force and the law of orthogonal decomposition, we can determine the relation between the first three
forces and strain of the fibers.

Firstly, we analyzed the forces of the mass balls and the strain of FBGs in the X direction of the
sensor. For optical fiber 1, we determined from Figure 2 that the first three forces of the mass ball in
the X direction are mgsin θ, ma, and Fsin γ, which make the mass ball move x1 in the X direction. As a
result, #1FBG is stretched and #2FBG is compressed, and the strain increments of #1FBG and #2FBG
are ∆εx, and −∆εx. So, Equation (3) is obtained for optical fiber 1 in the X direction,

mg sin θ + ma + F sin γ = 2EA∆εx (3)

where θ is the angle between mg and Y axis direction, and γ is the angle between F and Y axis direction.
Using a similar process, we can determine from Figure 2 that # FBG is stretched and #4FBG

is compressed in the X direction, the strain increments of #3FBG and #4FBG are ∆εx
′ and −∆εx

′,
respectively. So Equation (4) for optical fiber 2 in the X axis direction can be expressed as:

mg sin θ −ma + F sin γ = 2EA∆ε′x (4)

Figure 3a depicts the axial (X-direction) vibration model of the mass ball fiber grating system of
the sensor. The axial stiffness of the fiber can be written as:

k f =
EA

l
(5)
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where l represents half of the initial length of the optical fiber. The axial equivalent stiffness of the
mass ball fiber grating system can be expressed as:

Kx = 2k f =
2EA

l
(6)

So the resonant frequency of the axial vibration of the mass ball-fiber grating system ωx can be
expressed as:

ωx =

√
Kx

m
=

√
2EA
ml

(7)
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Figure 3. Equivalent vibration model of sensor’s mass ball optical fiber system: (a) axial vibration
model along the X direction and (b) lateral vibration model along the Y direction.

Then, we analyzed the forces of the mass balls and the strain of the FBGs in the Y direction of
the sensor. As shown in Figure 2 for optical fiber 1, the first three forces acting on the mass ball in the
Y axis direction are mgcosθ, 0, and Fcosγ, which makes the mass ball fiber system vibrate laterally,
and the displacement of the mass ball in the Y direction is y1. #1FBG and #2FBG are stretched in the Y
direction, which increases the tension of optical fiber 1 by ∆T. The angle between the optical fibers on
both sides of the mass ball and the X direction are both a. The strain increases of #1FBG and #2FBG are
both ∆εy, so we can obtain Equation (8) as:

mg cos θ − F cos γ− 2∆T sin α = mrω2 (8)

where ω is angular velocity of rotational axis and r is the distance from the position of the mass ball to
the axis.

Similarly, for optical fiber 2, the tension increment of optical fiber 2 is ∆T′, the angle between the
optical fibers on both sides of the mass ball and the X direction are both β, and the strain increments of
#3FBG and #4FBG are both ∆εy. We can obtain Equation (9) as:

−mg cos θ + F cos γ− 2∆T′ sin β = mrω2 (9)

In the transverse vibration model shown in Figure 3b, the system freely vibrates when the resultant
force of the above three kinds of changing external forces acting on the mass ball is kept at zero. In the
position shown in the picture, the displacement of the mass ball is y, and the tension of the fiber can be
described as:

T = T0 + k f (
√

l2 + y2 − l) (10)

The resultant force of the tensions of the optical fibers on both sides of the mass ball can be
written as:

Fy = 2T sin α (11)
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The lateral equivalent stiffness of the mass ball-fiber grating system can be expressed as:

Ky =
Fy

y
(12)

Combining Equations (5) and (10)–(12), we can obtain Equation (13). Since y is much smaller than
l, Equation (13) is further simplified as:

Ky =
2T0 + 2k f (

√
l2 + y2 − l)√

l2 + y2
≈ 2T0

l
(13)

So, according to the theory of vibration and Equation (2), the resonant frequency of the lateral
vibration of the mass ball-fiber grating system can be expressed as:

ωy =

√
2T0

ml
=

√
2EAε0

ml
(14)

Combining Equations (3) and (4), the relationship between torsional vibration acceleration and
the strain increments of the optical fibers in the X direction can be described as:

2ma = 2EA(∆εx − ∆ε′x) (15)

where ε1, ε2, ε3 and ε4 are the strains of 1#FBG, 2#FBG, 3#FBG, and 4#FBG, respectively, which can be
expressed by: 

ε1 = ∆εy + ∆εx + ε0

ε2 = ∆εy − ∆εx + ε0

ε3 = ∆ε′y − ∆ε′x + ε0

ε4 = ∆ε′y + ∆ε′x + ε0

(16)

According to Equation (1), we can obtain the following equation:

∆λ1
λ = (1− Pe)ε1 + (α f + ξ f )∆t

∆λ2
λ = (1− Pe)ε2 + (α f + ξ f )∆t

∆λ3
λ = (1− Pe)ε3 + (α f + ξ f )∆t

∆λ4
λ = (1− Pe)ε4 + (α f + ξ f )∆t

(17)

Combining Equations (16) and (17), the strain increment ∆εx of optical fiber 1 and the strain
increment ∆εx

′ of optical fiber 2 in the X direction can be expressed as:{
∆εx = 1

2(1−Pe)
(∆λ1

λ1
− ∆λ2

λ2
)

∆ε′x = 1
2(1−Pe)

(∆λ4
λ4
− ∆λ3

λ3
)

(18)

where λ1, λ2, λ3, and λ4 represent the center wavelength of #1FBG, #2FBG, #3FBG, and #4FBG,
respectively; and ∆λ1, ∆λ2, ∆λ3, and ∆λ4 represent the center wavelength shift of #1FBG, #2FBG,
#3FBG and #4FBG, respectively.

Since λ1 ≈ λ2 ≈ λ3 ≈ λ4 >> ∆λ1, ∆λ2, ∆λ3, ∆λ4, and combining Equations (15) and (18),
the torsional vibration acceleration a of the mass ball can be written as:

a =
EA

2m(1− Pe)

∆λ1 + ∆λ3 − ∆λ2 − ∆λ4

λ
(19)
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According to the relationship between angular acceleration β and tangential acceleration a
expressed as a = βr, the relationship between angular acceleration β and FBGs’ wavelength shift
is described as:

β =
EA(∆λ1 + ∆λ3 − ∆λ2 − ∆λ4)

2mr(1− Pe)λ
(20)

So the angular acceleration sensitivity of the sensor can be expressed as:

S =
∆λ1 + ∆λ3 − ∆λ2 − ∆λ4

β
=

2mr(1− Pe)λ

EA
(21)

It can be known from Equation (21) that the angular acceleration sensitivity S is a certain value,
which is related to the mass m of the sensor′s mass ball and radius r of the mass ball′s location.
Therefore, the desired sensitivity can be obtained by adjusting these two parameters.

3. Numerical Analysis and Structural Parameter Design

From Equations (7) and (14), we can see that the mass ball optical fiber vibration system of the
sensor has two natural frequencies: ωy and ωx. In order to study the vibration characteristics and
measurement range of the sensor, it was necessary to determine the minimum natural frequency of the
sensor. We know that ωy << ωx, so the minimum natural frequency of the torsional vibration of the
sensor is ωy, which is affected by m, l, and ε0. According to Equation (21), the sensitivity is affected by
m and r.

Since the minimum natural frequency is related to l, and the sensitivity is independent of it, we
firstly determined the value of l. The smaller value of l should be taken as far as possible because the
minimum natural frequency is negatively correlated with l. The length of fiber grating gate used in the
experiment was 5 mm, and the possible maximum radius of the mass ball was 13 mm (according to
the mass range), so l was taken as 20 mm. The Young’s Modulus of optical fiber Ef is 69 GPa and the
outer diameter of the optic fiber was 125 µm. So, according to Equation (14), the relationship between
frequency ωy and mass (m)/center wavelength shift (∆λ) of fiber grating under prestrain ε0 is shown
in Figure 4.
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Figure 4. The relationship between frequency ωy and mass and center wavelength shift of fiber grating
under prestrain.

It can be seen from Figure 4 that the natural frequency ωy decreases with increasing mass of the
mass ball, and increases with increasing center wavelength shift of FBG under prestrain. When the
mass of the mass ball was small, ∆λ had a more obvious impact on the natural frequency. Thus,
the value of m and ∆λ were set according to the vibration range to be measured by the sensor. In order
to obtain as large a vibration range as possible, a small–medium mass and a large ∆λ should be selected.
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ωy and S are related to the mass of mass ball. When ∆λ = 2 nm, l = 20 mm, according to
Equations (14) and (21). The curves of the natural frequency and sensitivity versus mass are shown in
Figure 5. From Figure 5, we can see that as the mass of the mass ball increases, the minimum natural
frequency of the system decreases non-linearily. When m > 2 g, the natural frequency curve becomes
flat and the change in mass has little effect on the minimum natural frequency. However, the sensitivity
of the system increases linearly with the increase in the mass of the mass ball; the higher the value of r,
the higher the value of the corresponding sensitivity.

In summary, in order to simultaneously ensure that the sensitivity is large enough and the natural
frequency is not too small, we should choose a mass ball with a moderate range of mass. In this paper,
the mass of the mass ball was 4.08 g, half the length of the optical fiber l was 20 mm, and the distance
from the position of the mass ball to the axis r was 30 mm.

Figure 6 is schematic diagram of the pre-strain loading device of the sensor′s FBGs. The left
end of the optical fiber is pressed on the iron plate by magnet blocks to fix it, and the drawn optical
fiber is connected to the FBG interrogator (resolution: 1 pm; sampling rate: 4000 Hz; test bandwidth:
1525–1565 nm) and the computer. The right end of the optical fiber is clamped by magnet blocks after
being passed around the pulley. The mass ball is supported by the iron plate to ensure that the mass
ball has no force on the optical fiber when the optical fiber is applied with tension in the assembly
process of the sensor. In the optical fiber binding process of the sensor, the number of right-side magnet
blocks can be adjusted to change the tensile force of the optical fiber on the basis of wavelength shift
of the sensor’s FBG obtained by the computer. Four FBGs are distributed on two grating strings,
each of which has two FBGs. The fiber Bragg grating used in the sensor was single-mode fiber grating,
fiber type SMF-28e, and SLSR ≥ 4 dB. The gate area of each FBG was 5 mm, the emission spectral
bandwidth was 0.1–0.2 nm, the reflectivity was 80%, and the core diameter was 125 mm. When the
wavelength shift of sensor’s FBG reached 2 nm, the weight of the suspended magnet blocks was
150 g, so the optical fiber was subjected to a pull force of 1.5 N, and the glue was loaded at this time.
When the colloid solidified, the center wavelength of each FBG of the sensor shifted, as shown in
Table 1. The average FBGs center wavelength shift of the two mass ball optical fiber systems were
1.999 nm and 2.032 nm. According to Equation (14), the torsional vibration natural frequencies of the
sensor’s #1 and #2 mass ball optical fiber systems were 29.99 and 29.74 Hz, respectively. The sensitivity
of the sensor was 0.3603 pm/(rad/s2), which was calculated by Equation (21).
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Table 1. Center wavelength shift of each fiber Bragg grating (FBG) of the sensor.

Number of FBGs #1FBG #2FBG #3FBG #4FBG

Initial center wavelength (nm) 1539.688 1542.635 1549.608 1551.632
Wavelength after prestress (nm) 1541.682 1544.638 1551.639 1553.665

Wavelength shift after prestress (nm) 1.994 2.003 2.031 2.033

4. Experiments and Discussion

Figure 7 shows a schematic diagram and photograph of the sensing characteristics experiment
for the FBG-based torsional vibration sensor. The sensor and two counterweights are mounted on the
rotary shaft, which is fitted with bearings at both ends. One end of the beam is fixed to the end of
the shaft by means of bolts and couplings, and the other end is connected with the vibration exciter
through a connecting piece. Thus, the vibration exciter provides a tangential vibration signal to the
shaft through the beam. The vibration exciter is driven by a signal generator and power amplifier;
the signal generator generates a control signal, which is transmitted to the exciter after amplification by
the power amplifier, and the exciter outputs the corresponding excitation signal. A 4507B piezoelectric
sensor is fixed at the vibration exciter, the signal of which is transmitted to the computer via the
collecting module, so we can record the magnitude of the acceleration of the excitation signal from
the piezoelectric acceleration sensor. The optical fiber output interface of the FBG torsional vibration
sensor is connected to FBG interrogator, which is connected to the computer on which the FBG signal
is displayed.
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4.1. Amplitude-Frequency Property Experiments

4.1.1. Exciter Excitation Experiments

Firstly, we studied the sensor’s amplitude-frequency properties. In the experimental process,
the acceleration amplitude was set at 5 m/s2 and remained unchanged. The frequency changed
from 0 to 1000 Hz. The experiment was repeated two times. The amplitude-frequency characteristic
curves of the sensor’s two mass ball-optical fiber systems are shown in Figure 8. From Figure 8,
we determined: (1) the amplitude-frequency curves of the two mass ball optical fiber systems are
roughly the same, and when the frequency is within 0 and 15 Hz, the curve is almost parallel
to the horizontal axis, which indicates that the working range of the sensor is 0–15 Hz; (2) the
resonant frequencies of the two mass ball optical fiber systems of the sensor were 29 and 27 Hz,
which are basically consistent with the numerical simulation resonant frequencies of 29.99 and 29.74 Hz.
Moreover, the resonant frequency of the #1 mass ball optical fiber system was slightly larger than the
resonant frequency of the #2 mass ball optical fiber system, which may be caused by the deviation in
the position of the two systems’ mass balls during assembly.Sensors 2017, 17, x FOR PEER REVIEW  11 of 16 
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4.1.2. Hammering Excitation Experiments

In order to further explore and verify the dynamic characteristics of the sensor, we carried out
hammering excitation experiments on the sensor. As shown in Figure 7, the signal generator and
power amplifier are switched off, the exciter does not work and only plays the role of supporting the
beam. Using the hammer to hit the end of the beam in the vertical direction, a tangential pulse signal
was provided to the shaft and then the shaft was free to vibrate. The torsional vibration resonant
frequency was obtained from the response signals of the sensor. Figure 9 shows the time domain
and spectrum map of the response signals of the sensor under hammering excitation. It can be seen
from Figure 9 that the responses of the two mass ball optical fiber systems of the sensor are good,
and the first-order torsional vibration natural frequency of the sensor′s #1 and #2 mass ball optical
fiber systems are 29.39 and 27.35 Hz, respectively, which is more accurate than the result of the exciter
excitation experiment and consistent with the theoretical value.
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4.2. Sensitivity Experiments

In the experimental system shown in Figure 7, the exciter provides the torsional vibration signal
for the shaft, the beam is in the horizontal position, and the distance between the excitation point on the
beam and the axis of the shaft d is 305 mm. If the excitation acceleration of the exciter is a, the torsional
vibration acceleration β would be a/d. During the experiment, the frequency of excitation acceleration
was always kept at 2 Hz, the excitation acceleration amplitude increased from 5 to 30 m/s2, and then
decreased to 5 m/s2 with the purpose of investigating the hysteresis of the sensor. The experimental
data were recorded every 5 m/s2, and the experiment was repeated three times.

Figure 10 shows the time domain signal of each FBG under excitation with an acceleration amplitude
of 20 m/s2 and frequency of 2 Hz. The signals of #1FBG and #4FBG had the same phase and change trend,
and the signals of #2FBG and #3FBG had the same phase and change trend. According to Equation (21)
and as shown in Figure 11, we can obtain the change curve of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 under the above
excitation. It can be seen from Figure 11 that the frequency of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 is basically consistent
with the excitation frequency. Thus, the plot of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 versus vibration angle acceleration
is shown in Figure 12. Figure 12a shows the maximum difference in the measured data between each
experiment in the same or two directions. The average value of the upper limit of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4

in the experiment ∆λ max was 36 pm, thus the repeatability error and hysteresis error of the sensor
can be calculated as ∆Rmax/∆λmax = 5.556%, and ∆Hmax/∆λmax = 2.778%, respectively. In order to
further study the sensor characteristics of the sensor, we averaged the six sets of experimental data and
obtained the linear fitted curve shown in Figure 12b. We obtained the following data from Figure 12b:
(1) the maximum difference between the measured value and the fitted straight line ∆Lmax was 0.495, so
the linearity of the sensor ∆Lmax/∆λ max was 1.376%; (2) the fitting equation can be expressed as
∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 = 0.3604β + 0.0614, so according to Equation (21), the angular
acceleration sensitivity of the sensor was 0.3604 pm/(rad/s2). The average single FBG sensitivity was
0.3604/4 pm/(rad/s2), considering the wavelength shift of each FBG under the prestress (Table 1) and
the wavelength shift of each FBG caused by the vibration interference (which can reach the level of
gravitational acceleration). For measuring the rotation, the safety factor was chosen as 100 (one level above
the gravitational acceleration), so the measurement range was 1994/100/(0.3604/4) rad/s2 = 221 rad/s2.
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4.3. Anti-Interference Characteristic Experiments

In the actual measurement of the torsional vibration of a shaft, the lateral vibration of the
shaft inevitably simultaneously occurs with the torsional vibration, so we needed to explore the
sensor’s anti-interference characteristics on lateral vibration. We slightly modified the experimental
apparatus in Figure 7 by attaching a 4507B piezoelectric acceleration sensor to the surface of the
rotating shaft. We hammered the rotating shaft in the measuring direction of the 4507B piezoelectric
sensor (perpendicular to the paste surface of the sensor) to provide the shaft with a transverse vibration
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signal, and acceleration of hammering should meet the condition a < g = 9.8 m/s2. Then the sensor’s
paste position was changed according to Figure 13 and the above steps were repeated.
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The time-domain waveforms of FBGs obtained from this experiment were similar to those in
Figure 9. According to Equation (21), the time-domain plots of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 and ∆λ1 + ∆λ3

− ∆λ2 − ∆λ4 shown in Figure 14a at four different hammering positions can be obtained. Figure 14b
shows the results of ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 at different percussion positions under multiple beats.
It can be seen that ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 changes in the range of 3 pm at different percussion
positions, and there is no significant difference between them, which indicates that the sensor has good
anti-jamming characteristics for lateral vibration.Sensors 2017, 17, x FOR PEER REVIEW  14 of 16 
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4.4. Temperature Effects Experiments

From Equations (17) and (18), we can see that the proposed sensor can compensate for temperature,
which means the measurement results are not disturbed by temperature. In order to verify this
characteristic, we examined the temperature influences on the FBGs of the sensor. Figure 15 shows the
temperature influence testing system. A thermostat was used to control the surrounding temperature
of the sensor. The experiments were performed within the range of 30 to 90 ◦C and the sampling
internal was 10 ◦C. After averaging three sets of experimental data, the temperature response curves
of this sensor were created (Figure 16). The figure shows that the center wavelength shift of each FBG
varied linearly versus temperature, and the temperature response ∆λ1 + ∆λ3 − ∆λ2 − ∆λ4 of this sensor
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was insensitive and had little variation from −3 to 6 pm in the range of 30 to 90 ◦C, which indicates
that temperature interference have been effectively compensated.
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5. Conclusions

A new type of torsional vibration sensor based on fiber Bragg grating was proposed in this
paper. The sensor has two mass ball optical fiber systems. In each mass ball fiber system, the optical
fiber was directly treated as an elastomer and a mass ball was fixed in the middle of the optical fiber.
The torsional vibration signal was calculated by the wavelength shifts of four FBGs, which were
caused by the mass balls. The difference in the two sets of mass ball optical fiber systems achieved
anti-horizontal vibration and anti-temperature interference. Moreover, this sensor is small, lightweight
and provides anti-electromagnetic interference. Experimental results showed that the minimum
torsional natural frequency of the sensor is 27.35 Hz and the torsional vibration measurement sensitivity
is 0.3603 pm/(rad/s2). In addition, the mass of the sensor, the mass of the sphere, and the length of
the fiber can be adjusted according to different requirements to obtain better dynamic performance to
measure the torsional vibration in different ranges.
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