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Abstract: This paper focuses on the problem of high-update-rate and high accuracy inertial
measurement unit signal generation. In order to be in accordance with the vehicle’s kinematic
and dynamic characteristics as well as the characteristics of pseudorange of post-processed global
navigation satellite system and their rate measurements, a novel dual quaternion interpolation and
analytic integration algorithm based on actual flight data is proposed. The proposed method can
simplify the piecewise analytical expressions of angular rates, angular increments and specific force
integral increments. Norm corrections are adopted as constraint conditions to guarantee the accuracy
of the signals. Numerical simulations are conducted to validate the method’s performance.
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1. Introduction

Inertial measurement unit (IMU) signal generators have been used in numerous engineering fields
for algorithm testing and verification to reduce experimental costs and shorten developing time under
laboratory conditions. It can be used in industrial robots for motion control [1–3], path planning of
unmanned aerial vehicles (UAV) [4], tightly coupled integrated navigation research [5–7] and guidance
system simulation [8]. A Global Navigation Satellite System (GNSS) signal simulator is required
to generate multiple synchronous signals, one for each satellite in view, and to generate consistent
navigation data for the receiver to be able to compute the position. Moreover, a corresponding IMU
signal simulator is also necessary to provide gyro and accelerometer measurements for the strapdown
inertial navigation system (SINS) and GNSS integration research.

The followings are required for a IMU signal generator to be used in the tightly coupled
SINS/GNSS integration simulation:

(1) GNSS’s pseudorange and their rate measurements corresponding to the simulated navigation
parameters such as position and velocity as well as satellite ephemeris are required.

(2) The simulated gyro measurements and accelerometer measurements in the trajectory are
coincident with the vehicle’s kinematic and dynamic characteristics.

(3) The IMU size effects as well as the level arm effects caused by the displacements of the GNSS
receiver antenna from the IMU reference point can be simulated. For this purpose, the analytic
angular rate and the angular acceleration data are required.

(4) Various SINS algorithms and update rates can be evaluated under the dynamic environment in
trajectories through simulations.
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In this paper, an actual-flight-data based IMU signal generation algorithm is presented.
Actual GNSS navigation data files (including satellite ephemeris) and observation data files (including
GNSS’s pseudorange and their rate measurements) can be obtained through practical flight
experiments. The post-processed GNSS navigation solution and a low-cost loosely coupled
SINS/GNSS integrated navigation system provide position, velocity and attitude parameters at discrete
time intervals (1 Hz). The spline interpolation method is used to generate analytic continuous-time
kinematic simulation trajectory. The main contributions of this paper can be summarized as follows:
(1) A novel IMU signal generation algorithm is proposed based on dual quaternions and actual
flight data. (2) The effectiveness and efficiency of the proposed algorithm are validated by extensive
simulation experiments. (3) Compared with state-of-the-art methods, the proposed method generates
signals with the highest accuracy in a relatively short computation time.

This paper is organized as follows. Section 2 introduces the related works about the IMU
signal generator and dual quaternions. Section 3 provides a dual quaternion representation of angular
increments and specific force integral increments for IMU measurements simulation. Section 4 provides
two-point piecewise cubic spline interpolation, analytic integration, norm corrections and error analysis
of interpolated dual quaternions. Simulation tests for analytic IMU signal generator validation are
presented in Section 5. Conclusions are drawn in Section 6.

2. Related Works

For the IMU signal generator, over the decades, various approaches have been developed, which
can be classified into three general categories: pure mathematical models [9–13], kinematic or dynamic
models [14–17] and actual flight-data based methods [18,19].

The methods based on pure mathematical models mainly depend on the vehicle’s straightforward
manoeuvre, such as climbing up, straight flight, turning flight and diving. Moreover, the integration
of these manoeuvres can be simulated. Two types of highly straightforward models are commonly
used. The first one is the linear acceleration that has phase step with 50 g, wherein the acceleration
is a constant. The other one is the circular motion or turn that has radial acceleration with 50 g;
furthermore, all the velocities and derivations follow the sinusoidal waveform. Although the form is
adopted, all of them are highly straightforward. A trajectory generated by these methods can neither
reflect the complex kinematics and dynamics of a vehicle nor be conducive to combining with actual
flight experiments to produce consistent simulation trajectory using satellite signals and multi-sensor
measurement data such as those from image sensors. In kinematic and dynamic model based methods,
classical kinematic or dynamic equations are used to generate inertial sensor measurements under
flight simulation conditions, and the impact of the pneumatic environment of a vehicle can also
be considered. The drawback is that it is generally challenging to predetermine the position and
attitude of the vehicle precisely in the simulated trajectory. In addition, physical and mathematical
models are often excessively complex to be described, and the degree of approximation between
the generated trajectory and the vehicle’s actual motion depends on the accuracy of the kinematic
models. Based on actual flight data, the incremental outputs of the inertial sensors are inversely
deduced from the attitude, velocity and positioning information using a numerical strapdown inertial
navigation system (SINS) attitude and velocity updating algorithm, which can be referred to as an
inverse SINS algorithm. Generally, this algorithm requires high update rate of data of navigational
parameters (100 Hz–1000 Hz). Because the inverse SINS algorithm is used, the accuracy influences of
the strapdown inertial navigation algorithm and update rates are not considered. It is not feasible to
simulate error factors such as size effects and lever arm effects because of the lack of the angular rate
and the angular acceleration data in numerical simulations using the inversed SINS algorithm.

Dual quaternions (DQ) can provide a uniform representation of the rotational and translational
motion of a rigid body in space. It was proposed by Clifford in 1873 and based on the dual quaternion
algebra to describe the spiral variation. In 1992, dual quaternion was first used in the inertial navigation
field by Branets and Shmyglevsky [20]. They analysed its feasibility and drew the outline of various
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coordinates’ relationships in SINS. In 2004, Y.X Wu elaborated upon strapdown inertial navigation
system algorithms based on the dual quaternion and demonstrated the consistency of the differential
equations between dual quaternion algorithms and traditional algorithms [21]. Compared with the
general methods, the superior accuracy performance of the dual quaternion has been proved [21,22].
In [21], the author analysed the algorithm errors and proved that the algorithm based on DQ was
superior to conventional ones in terms of the accuracy of the translational components (velocity
vectors and position vectors) from both the analytic forms and the numerical simulation perspectives.
Moreover, it was indicated that the new algorithm was a better choice than all conventional algorithms
for applications in high-accuracy navigation systems and high-manoeuvre applications. In [22],
the accuracy advantage of the algorithm based on DQ was analysed, and the analytic comparisons
indicated that the thrust velocity solution as well as the attitude and gravitational velocity solution
were superior to the traditional navigation algorithms in terms of accuracy.

In this study, a novel dual quaternion interpolation and analytic integration algorithm is used
to generate high update rate and high accuracy IMU signals for actual-flight-data based integrated
navigation simulation, in which the piecewise analytical expressions of angular increments and specific
force integral increments in the body frame are simplified. A method to solve the norm constraint
problems in quaternion and dual quaternion interpolation is presented.

3. Dual Quaternion Representation of Angular Increments and Specific Force Integral Increments

In this section, the relationship between dual quaternion and angular rates in the body frame and
that between dual quaternion and specific force in the body frame are presented for ease of reference
and for providing the foundation for the dual quaternion interpolation.

3.1. Rotation and Translation Expressed as a Dual Quaternion

Rotation and translation between the inertial frame (i frame) and the body frame (b frame) can be
expressed as a dual quaternion in the following manner [21]

_q = q + εp = q + ε
1
2

ti ◦ q = q + ε
1
2

q ◦ tb (1)

where, _q = q + εp is the dual quaternion, and ε2 = 0. The real part q is the general quaternion to
facilitate the representation of rotation, p is the dual part of _q, and ◦ represents the quaternion or dual
quaternion multiplication. The translation component t can be defined as (see Appendix A for details)

{
tb = q∗ ◦

(
vi

ib −
∫ t

0 gi
ibdt
)
◦ q

ti = vi
ib −

∫ t
0 gi

ibdt
(2)

where, vc
ib is the velocity vector of frame b relative to frame i expressed in frame c, gc

ib is the gravitational
acceleration vector expressed in frame c.

The rotational and translational kinematics can be expressed as a differential equation of the dual
quaternion as

_̇q =
1
2

_q ◦ _
ω
_
ω
_
ω

b
ib (3)

in which
_
ω
_
ω
_
ω

b
ib = ωωωb

ib + ε
(

ṫb +ωωωb
ib × tb

)
(4)

where, _
ω
_
ω
_
ω

b
ib is a dual vector and generally referred to as twist,× represents the vector product, and ωωωc1c2

represents the angular rate vector of frame c2 relative to frame c1 ,
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Using 2q̇ = ωωωi
ib ◦ q = q ◦ωωωb

ib and the fact that q ◦ q∗ = 1, where ∗ represents the conjugate
operator, the following is obtained:

ṫb +ωωωb
ib × tb = q∗ ◦

(
v̇i

ib − gi
ib

)
◦ q + q̇∗ ◦

(
vi

ib −
∫ t

0
gi

ibdt
)
◦ q + q∗ ◦

(
vi

ib −
∫ t

0
gi

ibdt
)
◦ q̇ +ωωωb

ib × tb

= q∗ ◦
(

ai
ib − gi

ib

)
◦ q− q∗ ◦ q̇ ◦ q∗ ◦

(
vi

ib −
∫ t

0
gi

ibdt
)
◦ q + q∗ ◦

(
vi

ib −
∫ t

0
gi

ibdt
)
◦ q̇ +ωωωb

ib × tb

= q∗ ◦
(

ai
ib − gi

ib

)
◦ q + q∗ ◦

(
ti ×ωωωi

ib

)
◦ q +ωωωb

ib × tb

= q∗ ◦ fi
ib ◦ q = fb

ib

(5)

where fc
ib is the specific force vector expressed in frame c, ac

ib is the acceleration vector of frame b
relative to frame i expressed in frame c.

Substituting Equation (5) in Equation (4), we obtain

_
ω
_
ω
_
ω

b
ib = ωωωb

ib + εfb
ib (6)

where the twist is a combination of the angular velocity and the specific force in frame b.
Substituting Equation (6) in Equation (3), the twist is obtained as follows:

_
ω
_
ω
_
ω

b
ib = 2_q

∗ ◦ _̇q = ωωωb
ib + εfb

ib

= 2(q + εp)∗ ◦ (q̇ + εṗ)

= 2q∗ ◦ q̇ + ε2 (q∗ ◦ ṗ + p∗ ◦ q̇)

(7)

3.2. Integral Increments of Angular Rates and Specific Force in Body Frame

Integrating Equation (7) over the sampling time interval [tk − ∆T, tk], the angular rate increments
∆θθθ (tk) and the specific force integral increments ∆υυυ (tk) at time tk can be expressed as

∆θθθ (tk) =
∫ tk

tk−∆T
ωωωb

ib (t) dt =
∫ tk

tk−∆T
2 [q∗ (t) ◦ q̇ (t)] dt = −2

∫ tk

tk−∆T
[q̇∗ (t) ◦ q (t)] dt (8)

∆υυυ (tk) =
∫ tk

tk−∆T
fb

ib (t) dt = 2
∫ tk

tk−∆T
[q∗ (t) ◦ ṗ (t) + p∗ (t) ◦ q̇ (t)] dt

= 2 q∗ (t) ◦ p (t)|tk
tk−∆T − 2

∫ tk

tk−∆T
[q̇∗ (t) ◦ p (t)] dt+2

∫ tk

tk−∆T
[p∗ (t) ◦ q̇ (t)] dt

= 2 q∗ (t) ◦ p (t)|tk
tk−∆T − 4

∫ tk

tk−∆T
[q̇∗ (t) ◦ p (t)] dt

(9)

where {
q∗ (t) ◦ q̇ (t) = −[q∗ (t) ◦ q̇ (t)]∗ = −q̇∗ (t) ◦ q (t)
p∗ (t) ◦ q̇ (t) = −[p∗ (t) ◦ q̇ (t)]∗ = −q̇∗ (t) ◦ p (t)

(10)

considering q∗ (t) ◦ q̇ (t) and p∗ (t) ◦ q̇ (t) are quaternions with zero scalar parts.

4. Piecewise Constraint Interpolation and Analytic Integration Algorithm

In this section, a novel IMU signal generation algorithm is developed based on the dual quaternion
interpolation, which is suitable for implementation in navigation fields. The two-point piecewise
cubic spline interpolation and the analytic integration are used for the dual quaternion, and angular
increments and specific force increments can be obtained. Additionally, the error analysis and methods
for accuracy enhancement are also presented.
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An algorithm flow chart is illustrated in Figure 1 that provides the detailed steps to streamline
the algorithm proposed in this paper. The proposed method provides a necessary basis for the offline
test of the performance of SINS and its fusion with other sensors’ signals to verify the performance of
the integrated navigation algorithm. By using this algorithm, we can get IMU signal data with any
frequency. If the sensor (IMU) outputs and all the flight data can be collected, the proposed algorithm
is not necessary.

Figure 1. Algorithm flow chart.

The algorithm can be divided into the following three parts:

• Attitude Part

(1) Convert Euler angles (roll, pitch and yaw) from the navigation frame n to quaternion in frame i.
(2) Set the interpolation interval Tinterp. The cubic spline interpolation is adopted for the

quaternion. Combined with the constraint conditions, the discrete quaternion q and its
derivative are obtained.

(3) Using [0, T] as the new interpolation interval, the polynomial of q (t) are obtained.
(4) Calculate the angular rate and its integral increments.
(5) Use average approximation to modify the values of angular increments.

• Position Part

(1) Convert the position information (latitude, longitude and altitude) from the navigation frame
n to the inertial frame i.

(2) Set the interpolation interval Tinterp. The cubic spline interpolation is adopted for the position
and velocity. Then, the discrete velocity values can be obtained.

(3) Gravity values in the Earth-centered inertial (ECI) coordinates are calculated according to the
gravity formula.
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(4) Set the interpolation interval Tinterp. The cubic spline interpolation is adopted for the gravity
values. Then, discrete gravity integral values can also be obtained.

(5) Using the discrete quaternion and its derivative, discrete velocity values and its derivative,
discrete gravity and its integral values, discrete p and its derivative can be obtained.

(6) Using [0, T] as the new interpolation interval, the polynomials of p (t) are obtained.
(7) Combined with the polynomials of q (t), the specific force and its integral increments

are obtained.
(8) Use average approximation to modify the values of specific force integral increments.

• Solution Part

Based on the two sub-sample error compensation algorithms, the inertial sensor simulated
samples ∆υυυ and ∆θθθ are used to update pure SINS. The attitude and the position results are compared
with the actual flight data input.

In this algorithm, two sample time intervals are involved. The first one is the interpolation time
interval, which is the interval between the interpolation points selected from the original input data.
The second one is the integration time interval, which is the interval for the integration of angular rate
and specific force.

4.1. Dual Quaternion Calculation at Discrete Time Based on Actual Flight Data

The actual flight data including navigational parameters such as position ri
ib, velocity vi

ib and
quaternion q at discrete time tm can be obtained through a SINS/GNSS loosely integrated navigation
system in a UAV.

The dual quaternion and its derivative at discrete time tm can be calculated based on the
following equations:

_q(tm) = q(tm) + εp(tm)

= q(tm) + ε
1
2

(
vi

ib(tm)−
∫ tm

t0

gi
ibdt
)
◦ q(tm)

(11)

_̇q(tm) = q̇(tm) + εṗ(tm)

= q̇(tm) + ε
1
2

(
vi

ib(tm)−
∫ tm

t0

gi
ibdt
)
◦ q̇(tm) + ε

1
2

(
v̇i

ib(tm)− gi
ib

)
◦ q(tm)

(12)

where, gi
ib is the function of ri

ib. The gravitation integration is calculated as follows:

∫ tm

t0

gi
ibdt =

∫ tm

t0

gi
ib

(
ri

ib(t)
)

dt =
m

∑
j=1

∫ tj

tj−1

gi
ib

(
ri

ib(t)
)

dt (13)

ri
ib(t) can be obtained by the piecewise cubic spline interpolation in the time period

[
tj−1, tj

]
, Tj =

tj − tj−1.

ri
ib(t) =

{
T−2

j

[
vi

ib(tj) + vi
ib(tj−1)

]
− 2T−3

j

[
ri

ib(tj)− ri
ib(tj−1)

]}
(t− tj−1)

3

+
{

3T−2
j

[
ri

ib(tj)− ri
ib(tj−1)

]
− T−1

j

[
vi

ib(tj) + vi
ib(tj−1)

]}
(t− tj−1)

2 + vi
ib(tj−1)(t− tj−1) + ri

ib(tj−1)
(14)

Differentiate Equation (14) twice, and let j = m, t = tm and Tm = tm − tm−1. v̇i
ib(tm) in

Equation (12) can be calculated as
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v̇i
ib(tm) = 6

{
T−2

m

[
vi

ib(tm) + vi
ib(tm−1)

]
− 2T−3

m

[
ri

ib(tm)− ri
ib(tm−1)

]}
(t− tm−1)

+2
{

3T−2
m

[
ri

ib(tm)− ri
ib(tm−1)

]
− T−1

m

[
vi

ib(tm) + vi
ib(tm−1)

]} (15)

q̇(tm) in Equation (12) can be obtained by the interpolation.
The piecewise cubic spline interpolation for the quaternion is expressed by [23]

q(t) = amt3 + bmt2 + cmt + dm, t ∈ [tm−1, tm] , m ∈ {1, 2, 3, ...M} (16)

q̇(t) = 3amt2 + 2bmt + cm, t ∈ [tm−1, tm] , m ∈ {1, 2, 3, ...M} (17)

where am, bm, cm, dm are the coefficients of the polynomial, and they vary across the interpolation
intervals. The subscript m (or m− 1 in the following content) represents the time point.

q (tm) represents the piecewise cubic spline quaternion in the time interval t ∈ [tm−1, tm]

q(tm) = amt3
m + bmt2

m + cmtm + dm = am−1t3
m + bm−1t2

m + cm−1tm + dm−1 (18)

q̇(tm) = 3amt2
m + 2bmtm + cm = 3am−1t2

m + 2bm−1tm + cm−1 (19)

q̈(tm) = 6amtm + 2bm = 6am−1tm + 2bm−1 (20)

Considering the constraint condition ‖q (t)‖ = 1, the quaternion interpolation and its derivatives
can be rectified as follows:

q (t) =
q (t)
‖q (t)‖ (21a)

q̇ (t) =
d
dt

(
q (t)
‖q (t)‖

)
=

q̇ (t) · ‖q (t)‖ − q (t) · d
dt (‖q (t)‖)

‖q (t)‖2 (21b)

where,
d
dt

(‖q (t)‖) =
q0 (t) q̇0 (t) + q1 (t) q̇1 (t) + q2 (t) q̇2 (t) + q3 (t) q̇3 (t)

‖q (t)‖ (22)

Let t = tm, considering ‖q (tm)‖ = ‖q (tm)‖ = 1

q̇(tm)=
q̇(tm) · ‖q(tm)‖−q(tm) ·

[
q0(tm)q̇0(tm)+q1(tm)q̇1(tm)+q2(tm)q̇2(tm)+q3(tm)q̇3(tm)

]
/‖q(tm)‖

‖q(tm)‖2

= q̇(tm)− q(tm) ·
[
q0(tm)q̇0(tm) + q1(tm)q̇1(tm) + q2(tm)q̇2(tm) + q3(tm)q̇3(tm)

] (23)

where q0, q1, q2, q3 are the four elements of the quaternion, and q̇0, q̇1, q̇2, q̇3 are the derivatives of the
four elements of quaternion.

4.2. Two-Point Piecewise Cubic Spline Interpolation for Dual Quaternions

In order to obtain the analytic integrations of Equations (8) and (9), the cubic spline interpolation
for the dual quaternion is expressed by

_̃q(t) = _̃q(tm−1 + τ) = q̃(tm−1 + τ) + εp̃(tm−1 + τ)

= a(tm)τ
3 + b(tm)τ

2 + q̇(tm)τ + q(tm) + ε
[
c(tm)τ

3 + d(tm)τ
2 + ṗ(tm)τ + p(tm)

] (24)

˙̃_q(t) =
˙̃_q(tm−1 + τ) = ˙̃q(tm−1 + τ) + ε ˙̃p(tm−1 + τ)

= 3a(tm)τ
2 + 2b(tm)τ + q̇(tm) + ε

[
3c(tm)τ

2 + 2d(tm)τ + ṗ(tm)
] (25)
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where, Tm = tm − tm−1, τ ∈ [0, Tm]

a(tm) =
[
2T−3

m (q(tm−1)− q(tm)) + T−2
m (q̇(tm−1) + q̇(tm))

]
(26)

b(tm) =
[
−3T−2

m (q(tm−1)− q(tm))− T−1
m (q̇(tm−1) + q̇(tm))

]
(27)

c(tm) =
[
2T−3

m (p(tm−1)− p(tm)) + T−2
m (ṗ(tm−1) + ṗ(tm))

]
(28)

d(tm) =
[
−3T−2

m (p(tm−1)− p(tm))− T−1
m (ṗ(tm−1) + ṗ(tm))

]
(29)

subject to the following constraints of two-point boundary conditions{
_̃q(tm) = q̃(tm) + εp̃(tm) = q(tm) + εp(tm)
_̃q(tm−1) = q̃(tm−1) + εp̃(tm−1) = q(tm−1) + εp(tm−1)

(30)


˙̃_q(tm) = ˙̃q(tm) + ε ˙̃p(tm) = q̇(tm) + εṗ(tm)
˙̃_q(tm−1) = ˙̃q(tm−1) + ε ˙̃p(tm−1) = q̇(tm−1) + εṗ(tm−1)

(31)

_̃q is the dual quaternion interpolation in the time interval τ ∈ [0, Tm] without normalization, q̃ is the
quaternion interpolation in the time interval τ ∈ [0, Tm] without normalization, and p̃ is the dual part

interpolation of _̃q in the time interval τ ∈ [0, Tm].

4.3. Analytic Integration of Dual Quaternions

The twist, which is defined in the dual quaternion interpolations, is expressed by

_̃
ωωω

b
ib = 2_̃q

∗
◦ ˙̃_q = ω̃ωωb

ib + εf̃b
ib = 2(q̃ + εp̃)∗ ◦ ( ˙̃q + ε ˙̃p) = 2q̃∗ ◦ ˙̃q + ε2 (q̃∗ ◦ ˙̃p + p̃∗ ◦ ˙̃q) (32)

By substituting Equations (24) and (25) into Equation (32), integrating Equation (32) over the
sampling time interval [tk − ∆T, tk] and supposing tk = tm−1 + τl , the following equations can be
determined. 1/∆T represents the integration frequency.

∆θ̃θθ (tk) =
∫ tk

tk−∆T
ω̃ωωb

ib (t) dt = 2
∫ tk

tk−∆T
[q̃∗ (t) ◦ ˙̃q (t)] dt = 2

∫ τl

τl−∆T
[q̃∗ (tm−1 + τ) ◦ ˙̃q (tm−1 + τ)] dτ

= −ã∗(tm) ◦ ã(tm)τ
6
∣∣∣τl

τl−∆T
−
[

6
5

a∗(tm) ◦ b(tm) +
4
5

b∗(tm) ◦ a(tm)

]
τ5
∣∣∣τl

τl−∆T

−
[

3
2

a∗(tm) ◦ q̇(tm) + b∗(tm) ◦ b(tm) +
1
2

q̇∗(tm) ◦ a(tm)

]
τ4
∣∣∣∣τl

τl−∆T

−
[

2a∗(tm) ◦ q(tm) +
4
3

b∗(tm) ◦ q̇(tm) +
2
3

q̇∗(tm) ◦ b(tm)

]
τ3
∣∣∣∣τl

τl−∆T

− [2b∗(tm) ◦ q(tm) + q̇∗(tm) ◦ q̇(tm)] τ2
∣∣∣τl

τl−∆T
− 2q̇∗(tm) ◦ q(tm) τ|τl

τl−∆T

(33)
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∆υ̃υυ (tk) =
∫ tk

tk−∆T
f̃b

ib (t)dt = 2q̃∗ (t) ◦ p̃ (t)|tk
tk−∆T − 4

∫ tk

tk−∆T

[
˙̃q∗ (t) ◦ p̃ (t)

]
dt

= 2q̃∗ (tm−1 + τ) ◦ p̃ (tm−1 + τ)|τl
τl−∆T − 4

∫ τl

τl−∆T

[
˙̃q∗ (tm−1 + τ) ◦ p̃ (tm−1 + τ)

]
dτ

= 2 a∗(tm) ◦ c(tm)τ
6
∣∣∣τl

τl−∆T
+ [2a∗(tm) ◦ d(tm) + 2b∗(tm) ◦ c(tm)] τ5

∣∣∣τl

τl−∆T

+ [2a∗(tm) ◦ ṗ(tm) + 2b∗(tm) ◦ d(tm) + 2q̇∗(tm) ◦ c(tm)] τ4
∣∣∣τl

τl−∆T

+ [2a∗(tm) ◦ p(tm) + 2b∗(tm) ◦ ṗ(tm) + 2q̇∗(tm) ◦ d(tm) + 2q∗(tm) ◦ c(tm)] τ3
∣∣∣τl

τl−∆T

+ [2b∗(tm) ◦ p(tm) + 2q̇∗(tm) ◦ ṗ(tm) + 2q∗(tm) ◦ d(tm)] τ2
∣∣∣τl

τl−∆T

+ [2q̇∗(tm) ◦ p(tm) + 2q∗(tm) ◦ ṗ(tm)] τ|τl
τl−∆T + 2q∗(tm) ◦ p(tm)

− 2a∗(tm) ◦ c(tm)τ
6
∣∣∣τl

τl−∆T
−
[

12
5

a∗(tm) ◦ d(tm) +
8
5

b∗(tm) ◦ c(tm)

]
τ5
∣∣∣τl

τl−∆T

− [3a∗(tm) ◦ ṗ(tm) + 2b∗(tm) ◦ d(tm) + q̇∗(tm) ◦ c(tm)] τ4
∣∣∣τl

τl−∆T

−
[

4a∗(tm) ◦ p(tm) +
8
3

b∗(tm) ◦ ṗ(tm) +
4
3

q̇∗(tm) ◦ d(tm)

]
τ3
∣∣∣∣τl

τl−∆T

− [4b∗(tm) ◦ p(tm) + 2q̇∗(tm) ◦ ṗ(tm)] τ2
∣∣∣τl

τl−∆T
− 4q̇∗(tm) ◦ p(tm) τ|τl

τl−∆T

(34)

4.4. Norm Corrections of Dual Quaternion

The norm of the dual quaternion representing rotation and translation between the inertial frame
and the body frame is defined as∥∥∥_q∥∥∥2

=
_q ◦ _q

∗
= (q + εp) ◦ (q + εp)∗ = (q + εp) ◦ (q∗ + εp∗) = q ◦ q∗ + ε (q ◦ p∗ + p ◦ q∗)

= q ◦ q∗ + ε

(
q ◦
(

1
2

ti ◦ q
)∗

+

(
1
2

ti ◦ q
)
◦ q∗

)
= 1 + ε

(
q ◦ q∗ ◦

(
−1

2
ti
)
+

1
2

ti ◦ q ◦ q∗
)
= 1

(35)

in which, q ◦ q∗ = q2
0 + q2

1 + q2
2 + q2

3 = 1 , q ◦ p∗ + p ◦ q∗ = 2 (q0 p0 + q1 p1 + q2 p2 + q3 p3) = 0 and∥∥∥_q∥∥∥2
is the square of the dual quaternion norm. Generally, the cubic spline interpolation q̃ (t) and p̃ (t)

do not satisfy these constraints, which results in undesirable fluctuation errors in ∆θ̃θθ (tk) and ∆υ̃υυ (tk).
To solve these problems, norm corrections of the dual quaternion interpolation is brought into the

analytic integrations as follows:
_q =

_̃q/
∥∥∥_̃q∥∥∥ (36a)

_̇q =

(
˙̃_q
∥∥∥_̃q∥∥∥− _̃q

∥∥∥∥ ˙̃_q
∥∥∥∥) /

∥∥∥_̃q∥∥∥2
(36b)
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Substituting Equation (36) into Equation (7), the corrected twist is derived as

_
ωωω

b
ib = ωωωb

ib + εfb
ib

= 2
_̃q
∗∥∥∥_̃q∥∥∥ ◦

˙̃_q ◦
∥∥∥_̃q∥∥∥− _̃q ◦ d

dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥2 =
2_̃q
∗
◦ ˙̃_q∥∥∥_̃q∥∥∥2 −

2 d
dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥
=

_̃
ω
_
ω
_
ω

b
ib∥∥∥_̃q∥∥∥2 −

2 d
dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥ =
ω̃ωωb

ib + εf̃b
ib∥∥∥_̃q∥∥∥2 −

2 d
dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥
(37)

where

1∥∥∥_̃q∥∥∥2 =
1

(q̃ + εp̃) ◦ (q̃ + εp̃)∗
=

1
q̃ ◦ q̃∗ + ε (q̃ ◦ p̃∗ + p̃ ◦ q̃∗)

=
1

‖q̃‖2 + ε (q̃ ◦ p̃∗ + p̃ ◦ q̃∗)
· ‖q̃‖

2 − ε (q̃ ◦ p̃∗ + p̃ ◦ q̃∗)

‖q̃‖2 − ε (q̃ ◦ p̃∗ + p̃ ◦ q̃∗)
=
‖q̃‖2 − ε (q̃ ◦ p̃∗ + p̃ ◦ q̃∗)

‖q̃‖4

=
1

‖q̃‖2 − 2ε
q̃0 p̃0 + q̃1 p̃1 + q̃2 p̃2 + q̃3 p̃3

‖q̃‖4

(38)

Substituting Equation (38) into Equation (37), the angular rates and specific force can be
expressed as

ωωωb
ib + εfb

ib =
ω̃ωωb

ib

‖q̃‖2 + ε

[
f̃b

ib

‖q̃‖2 −
2 (q̃0 p̃0 + q̃1 p̃1 + q̃2 p̃2 + q̃3 p̃3) ω̃ωωb

ib

‖q̃‖4

]
−

2 d
dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥ (39)

2 d
dt

∥∥∥_̃q∥∥∥∥∥∥_̃q∥∥∥ is scalar and can be neglected in the vector computation for ωωωb
ib and fb

ib.

Considering the fact that sampling time ∆T is generally marginal (5 ms or less) over the sampling
time interval [tk − ∆T, tk], the following approximations can be adopted:

1

‖q̃‖2 ≈
2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2 (40)

2
(q̃0 p̃0 + q̃1 p̃1 + q̃2 p̃2 + q̃3 p̃3)

‖q̃‖4 ≈ A (tk)

≈ q̃0 (tk−∆T) p̃0 (tk−∆T)+q̃1 (tk−∆T) p̃1 (tk−∆T)

‖q̃ (tk−∆T)‖4 +
q̃2 (tk−∆T) p̃2 (tk−∆T)+q̃3 (tk−∆T) p̃3 (tk−∆T)

‖q̃ (tk−∆T)‖4

+
q̃0 (tk) p̃0 (tk) + q̃1 (tk) p̃1 (tk) + q̃2 (tk) p̃2 (tk) + q̃3 (tk) p̃3 (tk)

‖q̃ (tk)‖4

(41)
Based on the above equations, the integral angular rate increments in Equation (8) and specific

force integral increments in Equation (9) can be rewritten as

∆θθθ (tk) =
∫ tk

tk−∆T
ωωωb

ib (t) dt ≈ 2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2

∫ tk

tk−∆T
ω̃ωωb

ib (t) dt

=
2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2 · ∆θ̃θθ (tk)

(42)
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∆υυυ (tk) =
∫ tk

tk−∆T
fb

ib (t) dt ≈ 2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2

∫ tk

tk−∆T
f̃b

ib (t) dt− A (tk)
∫ tk

tk−∆T
ω̃ωωb

ib (t) dt

=
2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2 ∆υ̃υυ (tk)− A (tk)∆θ̃θθ (tk)

(43)

By this procedure, simulated IMU signals including gyro measurements and accelerometer
measurements can be calculated by the dual quaternion interpolation and the analytic integration.

As ωωωb
ib and ω̇ωωb

ib can be obtained analytically, the error sources such as the size effects and the lever
arm effects can also be simulated [24]. For example, when rb

bx, rb
by and rb

bz (the displacements of the x-,
y- and z- axis accelerometers, respectively, from the IMU reference point expressed in frame b ) are
specified, the size effect caused by the displacements of the accelerometers from the IMU reference
point can be simulated. Similarly, when rb

ba (the displacement of the GNSS receiver antenna from the
IMU reference point expressed in frame b ) is specified, the lever arm effect caused by the displacement
of the GNSS receiver antenna from the IMU reference point can also be simulated.

4.5. Error Analysis and Methods for Accuracy Enhancement

The error caused by approximations in Equations (40) and (41) can be expressed as:

δωωωb
ib =

(
1

‖q̃‖2 −
2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2

)
ωωωb

ib (44)

δfb
ib =

(
1

‖q̃‖2 −
2

‖q̃ (tk − ∆T)‖2 + ‖q̃ (tk)‖2

)
fb

ib −
(

2 (q̃0 p̃0 + q̃1 p̃1 + q̃2 p̃2 + q̃3 p̃3)

‖q̃‖4 − A (tk)

)
ωωωb

ib (45)

where A (tk) is defined in Equation (41), δωωωb
ib is the error vector of the angular rate, and δfb

ib is the error
vector of the specific force.

For a low dynamic vehicle trajectory, amplitudes of ωωωb
ib and fb

ib are generally negligible; therefore,
errors in Equations (44) and (45) can be neglected. For a high dynamic vehicle trajectory with large
angular rates and specific force, a smaller sampling integration time interval ∆T is to be selected to
reduce the errors.

In terms of the computational complexity, this algorithm only needs a series of sequential
calculations including interpolation, differentiation, multiplication and integration for each point.
When there are n points, the number of calculation steps is proportional to n. Therefore, the
computational complexity is O (n).

5. Simulation Tests for Analytic IMU Signal Generator Performance Validation

This section describes the numerical simulations to validate the proposed algorithm. We choose
the quaternion error and the position error as the test metrics to illustrate the performance of the
algorithm. The quaternion error means the error between the quaternion of the original data we input
and the quaternion of the results we obtained. The position error means the error between the position
in ECI coordinates of the original data we input and the position in ECI coordinates of the results we
obtained. The results of quaternion and the position in ECI coordinates are obtained by using the
strapdown inertial navigation solution with the angular increment and the specific force increment
obtained by the proposed algorithm.

The actual flight data including position, velocity, attitude and time as well as GNSS’s
pseudoranges and their rate measurements have been procured from post-processed GNSS navigation
solutions and a low-cost loosely coupled SINS/GNSS integrated navigation system in a UAV.
The information of the attitude and the position are used for the algorithm proposed in this paper
to generate the IMU signal. The update rate of flight data is 1 Hz and the total duration is 1200 s.
The flight profile includes climbing, turning, cruise and a few flying manoeuvres, which are illustrated
in Figure 2.
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Figure 2. Actual flight trajectory.

We choose 1 s as the analytic interpolation interval, i.e., Tinterp = T =1, which is consistent with
the sampling frequency of the satellite signals. The simulated angular rate integral increments and
the specific force integral increments are generated based on the dual quaternion interpolations at
a frequency of 400 Hz. That is to say, ∆T =0.0025 s. It is a common sampling frequency of SINS in
engineering. The strapdown inertial navigation simulation is performed to verify the accuracy of the
simulated gyro and accelerometer measurements. The coning and sculling compensation algorithms
are used for the attitude and velocity update, while the trapezoidal integration method is used for
the position update [24]. The strapdown inertial navigation simulation results are compared with the
flight trajectory at time tm without considering the initial alignment errors and instrument errors such
as gyro drifts, accelerometer biases and scale factor errors. The attitude and position error comparisons
of the simulation results are illustrated in Figures 3 and 4, respectively.

Figure 3. Curve of the quaternion error (based on DQ).
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Figure 4. Curve of the position error (based on DQ).

It can be observed in Figures 3 and 4 that the attitude quaternion error and position error
accumulate over time, which is consistent with the inertial navigation’s error characteristics (the
attitude error and the position error accumulate with time). In Figure 4, the fluctuation is mainly
owing to the use of the average approximation and the computing error, and it can be neglected.
The quaternion error is smaller than 9.66 × 10−11, and the position error is smaller than 0.021 m.
The simulated angular rate increments and specific force integral increments are highly satisfactory
and show high accuracy because the errors in Figures 3 and 4 are substantially smaller than those
caused by misalignments or bias and scale factor errors of gyros and accelerometers.

In order to further illustrate the algorithm’s performance, the inverse SINS algorithm in [18] and
the trajectory generation algorithm based on quaternion [19] are used with the same actual flight data.
For the inverse SINS algorithm, the interpolation interval is also set as 1 s and the integrated frequency
is 400 Hz. The attitude and position error comparisons of the simulation results are illustrated in
Figures 5 and 6, respectively.

Figure 5. Curve of the quaternion error (based on the inverse SINS).
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Figure 6. Curve of the position error (based on the inverse SINS).

According to the trajectory generation algorithm based on the quaternion [19], the following can
be obtained:

ωωωb
ib (t) =

2

‖qk (t)‖
2

 −q1,k (t) q0,k (t) q3,k (t) −q2,k (t)
−q2,k (t) −q3,k (t) q0,k (t) q1,k (t)
−q3,k (t) q2,k (t) −q1,k (t) q0,k (t)




q̇0,k (t)
q̇1,k (t)
q̇2,k (t)
q̇3,k (t)

 (46)

fb
ib,k (t) = ab

ib,k (t)− gb
ib,k (t)

= Cb
i,k (t) ai

ib,k (t)− Cb
i,k (t) gi

ib,k (t)

=
1

‖qk (t)‖
2

 c11,k (t) c21,k (t) c31,k (t)
c12,k (t) c22,k (t) c32,k (t)
c13,k (t) c23,k (t) c33,k (t)

 [ai
ib,k (t)− gi

ib,k (t)
] (47)

where cij,k (t) is the function of quaternion qk (t) . Using the first-order Taylor expansion for
1/‖qk (t)‖

2, Equations (46) and (47) can be rewritten as

ωωωb
ib (t) =

(
2−‖qk (t)‖

2
)  −q1,k (t) q0,k (t) q3,k (t) −q2,k (t)
−q2,k (t) −q3,k (t) q0,k (t) q1,k (t)
−q3,k (t) q2,k (t) −q1,k (t) q0,k (t)




q̇0,k (t)
q̇1,k (t)
q̇2,k (t)
q̇3,k (t)

 (48)

fb
ib,k (t) =

(
2−‖qk (t)‖

2
)  c11,k (t) c21,k (t) c31,k (t)

c12,k (t) c22,k (t) c32,k (t)
c13,k (t) c23,k (t) c33,k (t)

 [ai
ib,k (t)− gi

ib,k (t)
]

(49)

With the same actual flight data, the error result can be obtained by MATLAB simulation.
The attitude and the position errors are illustrated in Figures 7 and 8, respectively.
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Figure 7. Curve of the quaternion error (based on the quaternion).

In the strapdown inertial navigation system, the attitude accuracy is highly critical for the
whole system’s calculation. Through the simulation, it can be observed that the dual quaternion
interpolation algorithm developed in this study shows the highest attitude accuracy, with an error
of 9.660722× 10−11. The error in the quaternion interpolation algorithm (2.225313× 10−9) is lower
than that of the inverse SINS algorithm in [18] (2.048823× 10−7). Then, the position errors of the
three algorithms are compared. From Figures 4, 6 and 8, it can be observed that the dual quaternion
interpolation algorithm developed in this study shows the highest accuracy also, with a position norm
error of 2.575336× 10−2 m. The quaternion interpolation algorithm is the second, with a position
norm error of h m. The performance of the inverse SINS algorithm is the worst, with a position norm
error of 3.063631× 10−1 m. Furthermore, high order Taylor expansion approximation can be used in
Equations (46) and (47) to enhance attitude and position accuracy and the algorithm’s performance.
However, when comparing Equation (42) with Equation (48) and Equation (43) with Equation (49),
it is observed that Equations (48) and (49) show higher order than Equations (42) and (43), although
only the first-order Taylor expansion approximation is used. An increase in the order of the equations
increases the time cost.

Figure 8. Curve of position error (based on quaternion).
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The computation time of the three algorithms is shown in Table 1. From the data in the table we
can see that the computation time of the three algorithms is similar for the dataset containing 1200
data points. The algorithm based on the inverse SINS takes the most time and its accuracy is the
worst among the three algorithms. Although the proposed algorithm takes slightly more time than the
algorithm based on quaternion, the attitude accuracy obtained by the former one is better than that of
the latter one. The longer time is acceptable.

Table 1. The computation time of the three algorithms.

Algorithm Proposed in This Paper Algorithm Based on Inverse SINS Algorithm Based on Quaternion

784.74 s 813.14 s 750.92 s

Therefore, it can also be concluded that the analytic IMU signal generation algorithm, which
is based on the actual flight data of a UAV and dual quaternion interpolations, show high accuracy.
Moreover, it is capable of satisfying the requirements of dynamic simulations of SINS/GNSS integrated
navigation research studies, in which simulated IMU signals are to be consistent with GNSS’s
pseudoranges and their rate measurements in an actual flight test.

6. Conclusions

This paper proposed a new analytical IMU signal generation algorithm based on the dual
quaternion interpolation. Compared with other algorithms, the new algorithm provides a concise
analytical form for angular rate increments and specific force integral increments, and has higher
accuracy than other state-of-the-art algorithms. The simulation results indicate that the quaternion
error is smaller than 9.66 × 10−11, and the position error is smaller than 0.021 m. The accuracy
of the proposed algorithm is capable of satisfying the requirements of dynamic simulations of the
integrated navigation.

The applications can be extended to other SINS/multi-sensor integrated navigation or rigid body
motion control simulations. When the position, velocity and attitude data at discrete time epoches
are given, a continuous smooth six-degrees-of-freedom (6DOF) kinematic or dynamic trajectory can
always be generated through the dual quaternion interpolation.
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ECI Earth-centered inertial
DOF Degrees of freedom
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Appendix A. Derivation of (2)

The rotation can be described by angular rates ωωωb
ib , and ωωωb

ib can be calculated by ωωωb
ib= 2q∗ ◦ q̇ ,

where q is the real part of the dual quaternion _q.
The translation can be described by specific force fb

ib. Using the relationship between ωωωb
ib and q as

reference, the following is obtained

_
ωωω

b
ib = 2_q

∗ ◦ _̇q= 2(q + εp)∗ ◦ (q̇ + εṗ) = 2 (q∗ + εp∗) ◦ (q̇ + εṗ)

= 2q∗ ◦ q̇ + 2ε (q∗ ◦ ṗ + p∗ ◦ q̇)

= ωωωb
ib + εfb

ib

= ωωωb
ib + ε

(
ṫb +ωωωb

ib × tb
) (A1)

fb
ib = 2 (q∗ ◦ ṗ + p∗ ◦ q̇) = ṫb +ωωωb

ib × tb

= q∗ ◦ fi
ib ◦ q = q∗ ◦

(
ai

ib − gi
ib

)
◦ q

(A2)

ṫb = fb
ib −ωωωb

ib × tb =
(

ab
ib − gb

ib

)
−
[
ωωωb

ib×
]

Cb
i ti

= Cb
i

(
ai

ib − gi
ib

)
−
[
ωωωb

ib×
]

Cb
i ti

(A3)

Substituting Ċi
b = Ci

b

[
ωωωb

ib×
]

and Ċb
i = −

[
ωωωb

ib×
]

Cb
i in the above formula, the following

is obtained:

ṫb = Cb
i

(
ai

ib − gi
ib

)
+Ċb

i ti (A4)

If A = BC , according to the rule we have Ȧ = ḂC+BĊ. For the above formula, we can rewrite it as

ṫb = Ċb
i ti+Cb

i ṫi (A5)

ṫi = ai
ib − gi

ib (A6)

ti =
∫ t

0

(
ai

ib − gi
ib

)
dt = vi

ib −
∫ t

0
gi

ibdt (A7)
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