
sensors

Article

Analysis and Modeling Methodologies for Heat
Exchanges of Deep-Sea In Situ Spectroscopy
Detection System Based on ROV

Xiaorui Liu †, Fujun Qi *,†, Wangquan Ye, Kai Cheng, Jinjia Guo and Ronger Zheng

Optics and Optoelectronics Laboratory, College of Information Science and Engineering,
Ocean University of China, Qingdao 266100, China; liuxiaorui@stu.ouc.edu.cn (X.L.);
jxyewaqu@163.com (W.Y.); chengkai@ouc.edu.cn (K.C.); opticsc@ouc.edu.cn (J.G.);
rzheng@ouc.edu.cn (R.Z.)
* Correspondence: fujunqi@ouc.edu.cn
† These authors contributed equally to this work.

Received: 26 June 2018; Accepted: 16 August 2018; Published: 20 August 2018
����������
�������

Abstract: In recent years, cabled ocean observation technology has been increasingly used for deep
sea in situ research. As sophisticated sensor or measurement system starts to be applied on a remotely
operated vehicle (ROV), it presents the requirement to maintain a stable condition of measurement
system cabin. In this paper, we introduce one kind of ROV-based Raman spectroscopy measurement
system (DOCARS) and discuss the development characteristics of its cabin condition during profile
measurement process. An available and straightforward modeling methodology is proposed to
realize predictive control for this trend. This methodology is based on the Autoregressive Exogenous
(ARX) model and is optimized through a series of sea-going test data. The fitting result demonstrates
that during profile measurement processes this model can availably predict the development trends
of DORCAS’s cabin condition during the profile measurement process.

Keywords: remotely operated vehicle (ROV); autoregressive exogenous model; profile measurement;
model-based prediction; Raman spectroscopy

1. Introduction

Cabled ocean observation technology is gradually becoming an effective tool for ocean research.
It provides abundant power and bandwidth communication channels for underwater sensors and
relevant systems and supports them to carry out real-time studies on ocean processes across a long time
period [1]. Compared with traditional research methods that are limited in endurance and loading,
the cabled ocean observation platform has abundant mechanical and electric payload to integrate more
sophisticated sensor or measurement systems [2,3]. Take Raman spectroscopy measurement technology
for instance, Raman spectroscopy measurement technology can measure the target substance of solid,
liquid, and gas phases, thereby greatly extending the range of research. It also has the capability
to measure small samples and provides geochemical traverses across a heterogeneous sample [4–6].
Since the first deep ocean Raman in situ spectrometer (DORISS) was sent down to the seafloor at a
depth of 3600 m in 2004 [4], a relevant measurement system has been widely applied in the cabled
observation field [7–10]. Present progress in deep sea Raman spectroscopy technology has enabled
measurement for multi-element molecules (CH4, SO4

2−, H2S, HS−, etc.) in seafloor spices of different
phases. Multiple chemical distributions across the seawater profile can also be recorded for further
analysis [11,12].

Currently, there are basically two kinds of cabled observation platforms, seafloor observatory
network and remotely operated vehicle (ROV). Deep sea Raman measurement system both used
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to mount and successfully apply on these two platforms. The seafloor observatory network is
one kind of relatively stationary system [13]. The example observatory system is the North East
Pacific Time-Integrated Undersea Networked Experiments (NEPTUNE) [14,15] and South China Sea
observatory network [16,17]. Compared to the observatory network, ROV is more flexible ship-based
cabled observation platform. Although its operating period of a single task is less than the observatory
network, during this process it can cruise on the seafloor and measure spots (hydrothermal vent,
cold seep filed, and so on) and specific vertical seawater layers that the operator is interested in [4].
The mechanical arm and other actuator devices of ROV also make it possible to carry out complex
experimental operations on in situ target species of interest [18]. On the other hand, ROV, as a real-time
platform, has more flexibility in profile measurement process than subsurface buoys. Based on the
above characters, ROV has become an ideal platform to integrate multiple measurement systems
and execute measurements for the deep sea environment [19]. In this work, one newly developed
ROV-based Raman spectroscopy measurement system (Deep Ocean Compact Automatic Raman
Spectrometer, DOCARS) is introduced. It was deployed on the remotely operated vehicle Faxian and
on the research vessel Kexue, and successfully executed measurement of the seawater hydrothermal
field and seawater profile (at Southwest Pacific). As increasingly sophisticated devices are integrated
into the in situ measurement system, it unavoidably presents more requirements for systematic
stability. Take Raman spectroscopy for example, high-precision optical devices usually are sensitive to
temperature, humidity, and pressure of the system cabin [7]. ROV research tasks usually comprise of
two stages, one is the profile measurement stage and the other is the seafloor cruising stage. In this
process, the measurement system on ROV needs to ensure not only perennially cold (274–276 K) in
seafloor [20,21], but also temperature gradient in seawater profile. For the in situ measurement system,
it has to ensure temperature changes from 303 K to 275 K during the deep diving process (with depth
of 2000 m) [22], which may cause frequency shift and calculation error [23,24] of spectrum data. So,
it will be useful to build a straightforward model to predict the system cabin condition development
trend during profile detection [25].

Currently, there is little research on the modeling methodology of condition inside deep sea in
situ measurement system. G. McDonald et al. [26] and O. Karim et al. [27] tried to build a model
to simulate the heat balance of the junction box of the seafloor observatory network. These models
could quantify temperature distribution inside junction box when seawater temperature is stable,
but it cannot apply to the profile condition that has a dynamic and complex temperature distribution.
Nasr, K. Ben et al. [28] proposed a numerical simulation method for specific mechanical structure,
but this method is unable to simulate heat exchange during profile process because material character
of DOCARS’s shell contradict with boundary condition of his method.

In this paper, we firstly describe the design of DOCARS, then a novel modeling methodology
is discussed to realize and predict the cabin condition development when DOCARS is in the profile
measurement process. This methodology is built based on Autoregressive Exogenous (ARX) prediction
model and optimized with data abstracted from practical sea-going research. The result of the fitting
degree between simulation and measured data indicates the availability of this modeling methodology.

2. System Design

DOCARS was equipped with several modules, including the adapter, optical load, and feedback
unit. The adapter includes underlying hardware such as an Ethernet switch, power supply circuit,
and relay protection module. The feedback unit includes varieties of sensors to provide the ship-based
terminal with system status information (such as condition parameters and electric parameters).
The optical load includes a customized high-sensitivity 532nm Laser (AUT-FSRL-532-300T, Aunion
Tech Co., Ltd., Shanghai, China), a customized Raman spectrograph with high-resolution volume
phase holographic (P&P Optica Inc., Waterloo, ON, Canada) and a charge-coupled-device (CCD)
camera (Andor-iDus-416, Oxford Instruments plc, Oxfordshire, UK). The software, HoloGRAMSTM



Sensors 2018, 18, 2729 3 of 13

(Ver. 3.2, Kaiser Optical Systems Inc., Ann Arbor, MI, USA) was used for calibration and spectral
data acquisition.

In order to integrate all modules requiring diverse communication interfaces and power standards,
DOCARS adopts a kind of dual-controller structure, as shown in Figure 1. In this structure, control
functionality is shared by two diverse controllers that are mutually connected with a serial data bus.
The main controller, PC-104 single board computer (PCM-3363), has an Ethernet interface and strong
process capability. PCM-3363 is designed to communicate with the ship-based terminal and manipulate
optical sensors. The auxiliary controller is designed based on microchip (MSP430). Compared with
PCM-3363, MSP430 has higher reliability and strong resistance to Electromagnetic interference (EMI),
which make it qualified for controlling underlying hardware.
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Figure 1. Schematic Diagram of DOCARS system.

In terms of system logic, the above configuration constitutes a layered structure whose
communication channel has unidirectional order-flow and data-flow (spectral data and other sensor
data). During the profile measurement process, Raman spectrogram and various sensor information
(temperature, pressure, and humidity of the cabin) was collected, processed, and eventually uploaded
to the ship-based terminal. In return, the ship-based terminal sends a variety of orders to the in situ
measurement system, guaranteeing that the underwater system is operating on appropriate status.
In this structure, the PCM-3363 and microchip board, together with the ship-based terminal, work as a
distributed system entity. They operate different software respectively, to ensure operation of DOCARS
system. The systematic control function is divided into two parts: optical sensors control and spectrum
data process.

Considering the application and maintenance cost of an ocean-oriented system, reliability is the
first factor during design and installation. As in situ measurement system, DOCARS need to have
enough resistance against the deep sea environment on its optical sensors. In practical sea-going
research, DORCAS was powered and deployed in the field by the ROV Faxian. According to different
measurement combination for ROV tasks, it can be installed on the different spots of ROV Faxian,
as showed in Figure 2.

When DOCARS was mounted together with another laser induced breakdown measurement
system (Libs-Sea) [7,10] that had a similar weight and dimensions as DOCARS, these two systems
would be installed on two sides of the ROV to maintain structural balance. When DOCARS
was mounted on ROV individually, it would be installed on the ROV back for the same reason.
These arrangements have no difference during the profile measurement process, but will affect
measurement results for targets on the seafloor (hydrothermal vent or other spots) because the back
installation case laser spot of DOCARS is located out of the operation range of the ROV actuators
and camera.
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Figure 2. ROV installation solutions for DOCARS system. (a) Back mounting case. (b) Side
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In order to analyze and model the profile measurement process, this article abstracts the sea-going
research data collected in the PACManus hydrothermal area and the South China Sea; the mapping
information is shown in Figure 3. The PACManus hydrothermal area is located at the crest of the
Paul Ridge approximately 80 km off the Rabaul Volcano on the New Britain Arc [1]. The Paul Ridge
is ~20 km long, 1–1.5 km wide and is characterized by an 800 m-long central neovolcanic zone.
The Formosa Ridge is a 30-km-long, 5-km-wide submarine ridge with water depth around 1225 m
located at the passive margin of the northeastern South China Sea [3].
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area at Paul Ridge in Bismarck Sea [1].

In these spots ROV Faxian carrying the DOCARS system completed profile measurement three
times (every time both including floating and diving parts), the detailed information of these processes
is showed in Table 1. In each profile measurement we acquired seawater temperature recordings
from the CTD of ROV and condition data (temperature, humidity, and pressure) inside DORCAS.
Through appropriate modeling methodology we could predict the changing trend of cabin condition
of DOCARS and then provide dependency for compensation and tuning algorithm for sophisticated
optical sensors.

www.geomapapp.org
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Table 1. Information of profile measurement process.

Index Investigation Area Profile Depth (m)

#31 PACManus hydrothermal field, Paul Ridge 1731
#35 PACManus hydrothermal field, Paul Ridge 2180
#52 South China Sea, Formosa Ridge, cold seep site 1170

As mentioned in the above section, the change in cabin condition may leave a negative effect on
the optical devices in the DOCARS system, inducing a spectrum shift or laser power fluctuation [4].
The former is derived from the temperature drift of the camera and CCD, the latter corresponds to the
laser output power [5]. In this paper, we mainly discuss the frequency shift of the Raman spectrum
induced by temperature. Since different materials have different expansion characters in changeable
conditions, rapid temperature decline during diving (or floating) could induce deformation of grating
and then cause spectrum shift of optical sensors, such as the camera or CCD [18]. Typical Raman
spectrum of seawater is shown in Figure 4a, the specific target substance corresponds to a unique
peak in the Raman spectrum. Figure 4a is the typical Raman spectrum of the seawater sample, in this
spectrum the H–O–H bending peak (~1640 ∆cm−1, corresponds ~583 nm in wavelength) of water
and the S–O stretching peak of SO4

2- (~981 ∆cm−1, corresponds ~561 nm in wavelength) are evident.
Figure 4b displays the development of SO4

2− and cabin temperature (#52, floating measurement
process). It can be found that the Raman peak frequency of SO4

2− would decrease with increasing
cabin temperature. It also can be found that the frequency shift range of the spectrum is not unbounded,
the Raman peak of SO4

2− only decreased in a limited range (561.15–561.27 nm); out of this range it
would tend to maintain regardless of the temperature change. In order to further demonstrate the effect
of cabin temperature on the Raman frequency shift, data collected by the OUC-Raman instrumental
node (applied in seafloor observatory network) [16,17] is employed in this section. Comparing to the
ROV platform, the instrumental node of the seafloor network is located in a fixed seafloor position that
has relatively stable water conditions. This enables us to exclude other factors’ effects on the substance
Raman peak shift. Secondly, OUC-Raman node’s optical window is made up of sapphire material that
also can be observed in the Raman spectrum. Since the sapphire window is hardly affected by other
natural factors, its Raman peak can be used to evaluate the degree of frequency shift. One data sample
(~40 h) of Raman spectrum sampled by the OUC-Raman system is shown in Figure 4c. It displays three
parameters: temperature of cabin condition and the Raman peak frequency of the sapphire material
and sulfate ion. In Figure 4c it can be found that Raman peak frequency of the sapphire and sulfate ion
will decrease as cabin temperature increased. Since the temperature gradient inside the OUC-Raman
system (~274 K) is far smaller than that inside DOCARS (~303 K), the Raman peak frequency kept
pace with the temperature change in this small range.
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The temperature-induced Raman frequency shift is one of obstacles for Raman quantitative
analysis and automatic data process [19]. In order to solve this problem, there are two solutions;
one is to build a relationship between the temperature factor and Raman frequency shift. The other
solution is actively maintaining a steady state of cabin condition. The first solution is difficult to handle
because this relationship is related to the multiple optical devices (laser, camera, CCD, etc.), it is hard
to acquire a data compensation method with a general purpose [8]. Although the second solution is
more feasible, it is still limited by power consumption (ROV is strict with its power management).
It needs a measurement system that uses as little power for condition maintenance as possible. In order
to realize the second solution, the controller of DOCARS should predict cabin condition change and
make a moderate adjustment, which needs to have a full understanding towards the development
model of cabin condition during the profile measurement process.

3. Modeling for Profile Measurement Process

The entity of DOCARS is encapsulated with a customized 4000 m-class, 7075 aluminum alloy
shell. Cabin temperature is one property of the cabin condition. In the profile measurement
process, changeable seawater temperature (Ts) could affect DOCARS’s cabin condition through shell
conduction, which would induce its pressure (P) and temperature (Tc) to change. Through comparing
with tradition algorithms, it is found that the ARX (discrete autoregressive) model is an effective
method to model the cabin condition and predict its development trend.

3.1. Temperature Prediction

Typically, the shell of the DORCAS system can be modeled as a cylinder of radius R and its
thermal conductivity character stays constant during entire profile detection process, heat exchange
between the cabin atmosphere and seawater will be abstracted as the radial heat conduction model [26].
The equation of this process is shown as Equation (1).

∂θ

∂t
= λ

(
∂2θ

∂t2 +
1
r

∂θ

∂r

)
(t > 0, 0 < r < R) (1)

In Equation (1), θ (r, t) is temperature of a specific point of the shell; it is a function of time
t and distance from the shell center r. In order to solve Equation (1), traditional methods assume
media (seawater) temperature is constant for the whole process [26]. Then, the above equation will be
simplified and solved.
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Although this simplification has been widely applied in multiple cases [25,27], it cannot be applied
for the DOCARS system. The main obstacle is that the shell material of DORCAS is sandwiched
between two media (cabin condition and outer seawater) and the temperature of these media both
change during the profile measurement process. For this process it can hardly take numerical
simulation using the above method [26]. A feasible solution is adopting a system identification method
to fit the target process. Since the heat exchange efficiency between the cabin condition and seawater is
relatively viscous, this article adopts a discrete autoregressive model (ARX) for system identification.
In practical operation, sensors would sample Ts and Tc of the cabin condition synchronously, so the
ARX model in this paper could ignore sampling delay time (Nk) and be described as a set of differential
expressions, as shown in Equations (2)–(4).

A(z)y(t) = B(z)u(t) + v(t) (2)

A(z) = 1 + a1z−1 + a2z−2 + . . . + amz−m (3)

B(z) = 1 + b1z−1 + b2z−2 + . . . + bnz−n (4)

In Equations (2)–(4), y(t) is cabin temperature at time sequence t, and u(t) is temperature of
seawater. Parameters m and n are orders of the numerator and denominator in ARX characteristic
equations. v(t) stands for White-noise disturbance value.

An ARX-based predictive model is applicable to all finite-order systems with rational spectral
density [29]. It also has low complexity and computation amount. These features make it suitable
for embedding into the software of DOCARS. While DOCARS executes profile measurement,
the microchip will monitor temperature, humidity, and pressure of the cabin condition and make
gradient inversion with ARX model. If there is obvious deviation between the inversion result and
expected value, the microchip will drive the relevant actuator to stabilize it.

When it comes to parameter estimation of the ARX model, the first step is to estimate the
appropriate order of the model. This article uses Akaike’s information criterion (AIC) to calculate the
system model order, and then estimates model parameters using the least square method (LSM) [30].
Since the sampling process of CTD (Ts) and sensors inside the cabin (Tc, P) are all stationary random
processes, this guarantees that the estimation vector θ̂(A, B) is an unbiased and consistent estimate of
the real parameter vector θ(A, B).

In order to depress coupling of identification samples, we utilize the floating process of #31 task
(D31UP), diving process of #52 task (D52DOWN), and diving process of #35 task (D35UP) for parameter
estimation, then validate the result with the rest of the data sets. When generating a simulation output,
the algorithm sets a 200 step (1 s per step) prediction horizon, because in application this time margin is
enough for the ship-based terminal and actuator to respond. By comparing the prediction output with
the measured data, we will validate the availability of the present ARX model. The comparison result
is shown in Figures 5 and 6. Based on data comparison in the above diagrams, it will be found there is
no obvious difference in fitting degree between the validation set and identification set. Furthermore,
data collected during #31 diving task did not start before ROV water entry, but at a depth of about
100 m. The fitting degree for this process (92.42%) indicates that the prediction calculation permits
suspension or restart at a specific initial condition (Tc, Ts).
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3.2. Pressure Prediction

Since cabin condition is sealed with shell material, the state of atmosphere of cabin condition
primarily obeys Van der Waals equation, as shown in Equation (5).

V3
m − (b + RT/P) · V2

m + aVm/P − ab/P = 0 (5)

In Equation (5), parameters a, b are Van der Waals constants (pure nitrogen atmosphere,
a = 1.36 L2·atm·mol−2, b = 0.04 L·mol−1), it could be further deducted into Equations (6) and (7).

P/T = RT/(Vm − b)− α (6)

α = a/V2
m · T (7)

According to Van der Waals equation, we know the atmosphere of the cabin has a fairly constant
ratio of temperature and pressure. However, by analyzing the measured development trend of cabin
temperature (Tc) and pressure (P) in a time series, especially combining with CTD data of ROV, we find
that the ratio of Tc and P of the cabin’s atmosphere was fluctuating throughout the whole profile
measure process and tended to converge after ROV reached the seabed, shown in Figure 7.
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In Figure 7 it was found that cabin temperature continuously decreased as the ROV dived 
down (cooling effect of seawater), which indirectly affected the state of the cabin atmosphere. 
Moreover, the follow-up mode of Tc and P is not strictly synchronous (ratio of these two parameters 
show a damped oscillation trend). Similarly, as discussed in the above content, it is intended to 
describe this trend with a discrete dynamic model (ARX model) instead of the Van der Waals 
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(a) Temperature (Tc) and pressure (P) development trend inside cabin across time sequence t. (b) The
ratio of Tc to P.

In Figure 7 it was found that cabin temperature continuously decreased as the ROV dived down
(cooling effect of seawater), which indirectly affected the state of the cabin atmosphere. Moreover,
the follow-up mode of Tc and P is not strictly synchronous (ratio of these two parameters show a
damped oscillation trend). Similarly, as discussed in the above content, it is intended to describe this
trend with a discrete dynamic model (ARX model) instead of the Van der Waals equation. In these
recording processes the condition maintenance function of DOCARS was turned off, so we could
investigate the natural transition of the atmosphere state inside DOCARS. For the sake of building
the atmosphere condition model of DOCARS, it takes a similar estimation and validating mechanism
as in the last chapter, utilizing the floating process of #31 task (D31UP), diving process of #52 task
(D52DOWN), and floating process of #35 task (D35UP) for order estimation (based on AIC) and
parameter estimation (based on LSM), then to validate the result with the rest of data sets (D52UP and
D31DOWN). Comparison between simulation output and measured data is showed in Figures 8 and 9.
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Figure 8. Data validation between real measurement group and predicted simulation group (Tc-P).
(a) Comparison for diving profile measurement process of #52 ROV task. (b) Comparison for floating
profile measurement process of #31 ROV task. (c) Comparison for floating profile measurement process
of #35 ROV task. (d) Trend of P/Tc during diving profile process of #52 ROV task. (e) Trend of P/Tc

during floating profile process of #31 ROV task. (f) Trend of P/Tc during floating profile process of #35
ROV task.
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ROV task. (d) Trend of P/Tc during floating profile process of #52 ROV task.

The validation result indicates that the ARX model has a higher fitting level on the diving process
(average fitting is more than 90%) than that on the floating process (has an average fitting degree
more than 85%). This trend also could be found by validating the ratio of cabin temperature (Tc) and
pressure (P). Through the P/T curve it is found that in the floating process the trend of the ratio of
Tc and P is relatively steady and well-traced by the predictive curve most of the time, but in the end
of the floating process there is a peak that the predictive curve does not trace the real process well.
The ROV log indicates this peak took place when the DORCAS was floating across the thermocline
layer in which the seawater temperature changes the most drastically in the entire profile range [22].
It is observed that the peak of the ratio is closely related to floating and diving speed of ROV (actually
it is the temperature changing speed ∆Ts/∆t), as shown in Table 2.

Table 2. Information of profile measurement process.

Diving ID Time to across
Thermocline ∆t (s) Temperature Shift ∆Ts (K) ∆Ts/∆t (10−3 K/s)

D31DOWN 2358 11.32 4.80
D31UP 326 17.03 52.23
D35UP 361 14.96 41.44

D52DOWN 2164 15.86 7.32
D52UP 317 20.183 63.67

From what is shown in Table 2 the relationship between Tc/P peak and ∆Ts/∆t can be built.
When ROV is diving or floating across the thermocline layer, the Tc/P curve of DORCAS will produce
obvious peak distortion, the degree of such distortion is directly proportional to temperature gradient.
On the other hand, the present fitting percentage is enough for engineering applications, if the
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temperature gradient is kept under 5.0 × 10−3 K/s (like that of D52DOWN process), the simulated
Tc/P ratio will match the actual well.

Through this ARX model, the existing controller inside DOCARS will make use of condition
sensors (temperature, humidity, and pressure) to inverse and predict the gradient of the cabin condition
during diving or floating processes. The error between prediction and expectation will be regarded as
dependency on the temperature control or data compensation algorithm.

4. Conclusions

This paper describes the design of the DOCARS measurement system and strategy for its cabin
condition maintenance. The DORCAS system is specially designed to mount on a ROV platform
for deep sea in situ measurement. It is developed to collect and analyze chemical distribution of
seawater. This paper discusses that during profile measurement processes the cabin temperature of the
system will cause a frequency shift of the Raman spectrum. According to measurement data acquired
from multiple measurement systems (DOCARS of ROV and OUC-Raman of seafloor observatory
network), it is found that the Raman peak frequency of the target substance will experience a shift
as the cabin temperature changes. That will affect the quantitative analysis and automatic process
for the Raman spectrum data. In order to solve this problem, it needs to maintain a stable cabin
condition of DOCARS. In this paper, we propose a modeling methodology to predict the change trend
of cabin temperature and pressure during the profile measurement process. A set of data abstracted
from sea-going researches is utilized to validate this methodology. Through analysis on the system
model and profile measurement process, a predictive ARX model (200 steps ahead) is adopted and
shows a good fitting degree for real development trends (Tc-P, Tc-Ts) of DOCARS. A criterion for this
predictive model is also derived in terms of the temperature gradient across a thermocline layer.

The ARX model was trained by limited sea-going samples to build the heat-transfer character
of the deep-sea measurement system, but the trained ARX model also had a good predictive result
for other sea-going samples (as shown in Figures 6 and 9). In the next stage of this research, efforts
will be taken to design a temperature controlling module for DOCARS system. Since the trained
ARX has good applicability, its simulation data generated by the ARX model can help to validate the
effectiveness of the temperature controlling module. This will increase the designing efficiency and
decrease the experimental cost. On the other hand, although the ARX-based model provides practical
guidance to maintain stable cabin condition of the DOCARS system, there exist some issues that have
to be improved to make it more useful.

Firstly, the ARX-based predictive model needs further validation and optimization, especially
its validity in more capricious and extreme underwater conditions. In terms of the model, ∆Ts/∆t
is both related to actual thermal distribution across the profile, seawater, and moving speed of ROV.
Some subsection optimization could be considered to suppress the deviation between the real and
predicted trend.

Secondly, considering that the temperature and pressure of the cabin (Tc, P) are parallel collected,
this paper ignores the sample delay between seawater temperature and cabin temperature. Seawater
temperature data comes from the CTD sensor of ROV; there exists sample delay (Nk) between
the u(t) and y(t) in the ARX model (Ts-Tc). Although the sampling rate greatly outweighs the
temperature changing trend, it also could try to add the Nk into the ARX estimation to acquire
optimized prediction performance.

Author Contributions: X.L. and F.Q. proposed the idea. J.G., K.C., X.L. and W.Y. developed the deep sea
Raman system, then completed Sea-going test and Data acquisition. X.L. and W.Y. performed the data process.
X.L. wrote the draft of the manuscript. F.Q. and R.Z. supervised the research project and revised the draft.

Funding: This research was funded by the National Key Research and Development Program of China
(Grant Number is 2016YFC0302101) and National High-tech R&D Program of China (Grant Number is
2012AA09A405).



Sensors 2018, 18, 2729 12 of 13

Acknowledgments: The authors would like to thank Xin Zhang, Zengfeng Du from the Chinese Academy of
Science (Key Lab of Marine Geology and Environment, Institution of Oceanology, Qingdao, Shandong province,
China) for their support and suggestion for this research work. They also would like to thank the crew of research
vessel Kexue for their enthusiastic support and efficient work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhang, X.; Du, Z.; Zheng, R.; Luan, Z.; Qi, F.; Cheng, K.; Wang, B.; Ye, W.; Liu, X.; Lian, C.; et al. Development
of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal
vent and cold seep fluids. Deep Sea Res. Part I 2017, 123, 1–12. [CrossRef]

2. Peltzer, E.T.; Zhang, X.; Walz, P.M.; Luna, M.; Brewer, P.G. In situ, Raman measurement of HS−, and H2S in
sediment pore waters and use of the HS−: H2S ratio as an indicator of pore water pH. Mar. Chem. 2016, 184,
32–42. [CrossRef]

3. Zhang, X.; Du, Z.; Zheng, R.; Luan, Z.; Qi, F.; Cheng, K.; Wang, B.; Ye, W.; Liu, X.; Chen, C.; et al. Development
of a new hybrid Raman insertion probe for deep-ocean science. In Proceedings of the MTS/IEEE Oceans
Conference, Monterey, CA, USA, 19–23 September 2016.

4. Brewer, P.G.; Malby, G.; Pasteris, J.D.; White, S.N.; Peltzer, E.T.; Wopenka, B.; Freeman, J.; Brown, M.O.
Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Res. Part I 2004, 51, 739–753.
[CrossRef]

5. Zhang, X.; Hester, K.C.; Ussler, W.; Walz, P.M.; Peltzer, E.T.; Brewer, P.G. In situ Raman-based measurements
of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophys. Res. Lett. 2011, 38,
134–144. [CrossRef]

6. White, S.N. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold
seep minerals. Chem. Geol. 2009, 259, 240–252. [CrossRef]

7. Tian, Y.; Xue, B.; Song, J.; Lu, Y.; Zheng, R. Non-gated laser-induced breakdown spectroscopy in bulk water
by position-selective detection. Appl. Phys. Lett. 2015, 107, 111107. [CrossRef]

8. Dunk, R.M.; Peltzer, E.T.; Walz, P.M.; Brewer, P.G. Seeing a Deep Ocean CO2 Enrichment Experiment in a
New Light: Laser Raman Detection of Dissolved CO2 in Seawater. Environ. Sci. Technol. 2005, 39, 9630–9636.
[CrossRef] [PubMed]

9. Berndt, C.; Crutchley, G.; Klaucke, I.; Jegen, M.; Lebas, E.; Muff, S.; Lieser, K.; Roth, T.; Chi, W.-C.; Feseker, T.;
et al. Geological controls on the gas hydrate system of Formosa Ridge, South China Sea. In Proceedings of
the Oceans Conference, Taipei, Taiwan, 7–10 April 2014; pp. 1–4.

10. Guo, J.; Lu, Y.; Cheng, K.; Song, J.; Ye, W.; Li, N.; Zheng, R. Development of a compact underwater
laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials. Appl. Opt. 2017,
56, 8196–8200. [CrossRef] [PubMed]

11. Du, Z.; Chen, J.; Ye, W.; Guo, J.; Zhang, X.; Zheng, R. Investigation of Two Novel Approaches for Detection
of Sulfate Ion and Methane Dissolved in Sediment Pore Water Using Raman Spectroscopy. Sensors 2015, 15,
12377–12388. [CrossRef] [PubMed]

12. Wei, Z.; Song, M.; Yin, G.; Wang, H.; Ma, X.; Song, H. Cross Deployment Networking and Systematic
Performance Analysis of Underwater Wireless Sensor Networks. Sensors 2017, 17, 1619. [CrossRef] [PubMed]

13. Yinger, P.; Tennant, P.; Reardon, J.; Harkins, G.; McGuire, C.; Harrington, M.; Mulvihill, M. Commissioning
of a system that terminates on the seafloor. In Proceedings of the MTS/IEEE Oceans Conference, San Diego,
CA, USA, 23–27 September 2013.

14. Barnes, C.R.; Best, M.M.R.; Bornhold, B.D.; Juniper, S.K.; Pirenne, B.; Phibbs, P. The NEPTUNE Project—A
cabled ocean observatory in the NE Pacific: Overview, challenges and scientific objectives for the installation
and operation of Stage I in Canadian waters. In Proceedings of the 5th International Symposium on
Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,
Tokyo, Japan, 17–20 April 2007; pp. 308–313.

15. El-Sharkawi, M.A.; Upadhye, A.; Lu, S.; Kirkham, H.; Howe, B.M.; McGinnis, T.; Lancaster, P. North east
pacific time-integrated undersea networked experiments (NEPTUNE): Cable switching and protection.
IEEE J. Oceanic Eng. 2005, 30, 232–240. [CrossRef]

http://dx.doi.org/10.1016/j.dsr.2017.02.005
http://dx.doi.org/10.1016/j.marchem.2016.05.006
http://dx.doi.org/10.1016/j.dsr.2003.11.005
http://dx.doi.org/10.1029/2011GL047141
http://dx.doi.org/10.1016/j.chemgeo.2008.11.008
http://dx.doi.org/10.1063/1.4931128
http://dx.doi.org/10.1021/es0511725
http://www.ncbi.nlm.nih.gov/pubmed/16475344
http://dx.doi.org/10.1364/AO.56.008196
http://www.ncbi.nlm.nih.gov/pubmed/29047684
http://dx.doi.org/10.3390/s150612377
http://www.ncbi.nlm.nih.gov/pubmed/26016919
http://dx.doi.org/10.3390/s17071619
http://www.ncbi.nlm.nih.gov/pubmed/28704959
http://dx.doi.org/10.1109/JOE.2004.839938


Sensors 2018, 18, 2729 13 of 13

16. Ye, W.; Li, Y.; Li, W.; Qi, F.; Zheng, R. Shore-based terminal of OUC-Raman instrument node for seafloor
cabled observatory network. In Proceedings of the 10th International Conference on Sensing Technology
(ICST), Nanjing, China, 11–13 November 2016.

17. Liu, X.; Qi, F.; Ye, W.; Song, Z.; Zheng, R. Design and reliability analysis for underwater control system in
OUC-Raman instrument node of seafloor observatory network. In Proceedings of the 10th International
Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016.

18. Yang, D.; Guo, J.; Liu, Q.; Luo, Z.; Yan, J.; Zheng, R. Highly sensitive Raman system for dissolved gas analysis
in water. Appl. Opt. 2016, 55, 7744–7748. [CrossRef] [PubMed]

19. Du, Z.; Li, Y.; Chen, J.; Guo, J. Feasibility investigation on deep ocean compact autonomous Raman
spectrometer developed for in situ detection of acid radical ions. Chin. J. Oceanol. Limnol. 2015, 33,
545–550. [CrossRef]

20. Klein, I.; Diamant, R. Observability Analysis of DVL/PS Aided INS for a Maneuvering AUV. Sensors 2015,
15, 26818–26837. [CrossRef] [PubMed]

21. Duraibabu, D.B.; Leen, G.; Toal, D.; Newe, T.; Lewis, E.; Dooly, G. Underwater Depth and Temperature
Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications. Sensors 2017, 17, 1228.
[CrossRef] [PubMed]

22. Tandeo, P.; Autret, E.; Piollé, J.F.; Tournadre, J.; Ailliot, P. A Multivariate Regression Approach to Adjust
AATSR Sea Surface Temperature to In Situ Measurements. IEEE Geosci. Remote Sens. Lett. 2009, 6, 8–12.
[CrossRef]

23. Chen, Y.; Howe, B.M.; Yang, C. Actively Controllable Switching for Tree Topology Seafloor Observation
Networks. IEEE J. Oceanic Eng. 2015, 40, 993–1002. [CrossRef]

24. McGinnis, T.; Michel-Hart, N.; Mathewson, M.; Shanahan, T. Deep profiler for the ocean observatories
initiative Regional Scale Nodes: Rechargable, Adaptive, ROV Servicable. In Proceedings of the MTS/IEEE
Oceans Conference, San Diego, CA, USA, 23–27 September 2013.

25. Toma, D.M.; Mànuel-Làzaro, A.; Nogueras, M.; Del Rio, J. Study on Heat Dissipation and Cooling
Optimization of the Junction Box of OBSEA Seafloor Observatory. IEEE/ASME Trans. Mech. 2015, 20,
1301–1309. [CrossRef]

26. Mcdonald, G.; Naiman, M. Heat-transfer advances for submerged oceanographic systems. In Proceedings of
the MTS/IEEE Oceans Conference, Biloxi, MI, USA, 29–31 October 2002.

27. Karim, O.; Crebier, J.C.; Gillot, C.; Schaeffer, C.; Mallet, B.; Gimet, E. Heat transfer coefficient for water cooled
heat sink: Application for standard power modules cooling at high temperature. In Proceedings of the
Power Electronics Specialists Conference, Vancouver, BC, Canada, 17–21 June 2001.

28. Nasr, K.B.; Chouikh, R.; Kerkeni, C.; Guizani, A. Numerical study of the natural convection in cavity heated
from the lower corner and cooled from the ceiling. Appl. Therm. Eng. 2006, 26, 772–775. [CrossRef]

29. Zhao, W.; Chen, H.; Zheng, W. Recursive Identification for Nonlinear ARX Systems Based on Stochastic
Approximation Algorithm. IEEE Trans. Automat. Control 2010, 55, 1287–1299. [CrossRef]

30. Eng, Y.H.; Teo, K.M.; Chitre, M.; Ng, K.M. Online System Identification of an Autonomous Underwater
Vehicle via In-Field Experiments. IEEE J. Oceanic Eng. 2016, 41, 5–17. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/AO.55.007744
http://www.ncbi.nlm.nih.gov/pubmed/27661606
http://dx.doi.org/10.1007/s00343-015-4096-8
http://dx.doi.org/10.3390/s151026818
http://www.ncbi.nlm.nih.gov/pubmed/26506356
http://dx.doi.org/10.3390/s17061228
http://www.ncbi.nlm.nih.gov/pubmed/28555006
http://dx.doi.org/10.1109/LGRS.2008.2006568
http://dx.doi.org/10.1109/JOE.2014.2362830
http://dx.doi.org/10.1109/TMECH.2014.2336791
http://dx.doi.org/10.1016/j.applthermaleng.2005.09.011
http://dx.doi.org/10.1109/TAC.2010.2042236
http://dx.doi.org/10.1109/JOE.2015.2403576
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Design 
	Modeling for Profile Measurement Process 
	Temperature Prediction 
	Pressure Prediction 

	Conclusions 
	References

