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Abstract: Accurate recognition and understating of human emotions is an essential skill that can
improve the collaboration between humans and machines. In this vein, electroencephalogram
(EEG)-based emotion recognition is considered an active research field with challenging issues
regarding the analyses of the nonstationary EEG signals and the extraction of salient features
that can be used to achieve accurate emotion recognition. In this paper, an EEG-based emotion
recognition approach with a novel time-frequency feature extraction technique is presented.
In particular, a quadratic time-frequency distribution (QTFD) is employed to construct a high
resolution time-frequency representation of the EEG signals and capture the spectral variations of the
EEG signals over time. To reduce the dimensionality of the constructed QTFD-based representation,
a set of 13 time- and frequency-domain features is extended to the joint time-frequency-domain and
employed to quantify the QTFD-based time-frequency representation of the EEG signals. Moreover,
to describe different emotion classes, we have utilized the 2D arousal-valence plane to develop four
emotion labeling schemes of the EEG signals, such that each emotion labeling scheme defines a set of
emotion classes. The extracted time-frequency features are used to construct a set of subject-specific
support vector machine classifiers to classify the EEG signals of each subject into the different emotion
classes that are defined using each of the four emotion labeling schemes. The performance of the
proposed approach is evaluated using a publicly available EEG dataset, namely the DEAPdataset.
Moreover, we design three performance evaluation analyses, namely the channel-based analysis,
feature-based analysis and neutral class exclusion analysis, to quantify the effects of utilizing different
groups of EEG channels that cover various regions in the brain, reducing the dimensionality of the
extracted time-frequency features and excluding the EEG signals that correspond to the neutral
class, on the capability of the proposed approach to discriminate between different emotion classes.
The results reported in the current study demonstrate the efficacy of the proposed QTFD-based
approach in recognizing different emotion classes. In particular, the average classification accuracies
obtained in differentiating between the various emotion classes defined using each of the four
emotion labeling schemes are within the range of 73.8%–86.2%. Moreover, the emotion classification
accuracies achieved by our proposed approach are higher than the results reported in several existing
state-of-the-art EEG-based emotion recognition studies.
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1. Introduction

Emotions comprise complex mental activities that can influence the physical and psychological
behavior of humans during social interactions and decision-making processes. In fact, identifying
human emotional states is considered a vital capability towards achieving intelligent and effective social
communications in several domains. For example, in the medical domain, discerning the patient’s
emotional state can provide caregivers with an indicator about the patient’s mental and physical
status [1,2] and the progress of the recovery process [3]. In the education domain, characterizing
the students’ emotional state in terms of the level of interest and active participation in the learning
process is crucial to achieve effective knowledge transfer and development systems [4]. In the road-
and aviation-safety domain, identifying the level of the boredom and vigilance emotional states of the
driver/pilot can contribute to reducing the rate of accidents [5].

The literature reveals that researchers have developed various approaches for emotion recognition
based on analyzing facial expressions [6–9], voice [10,11], combined visual and textual modalities [12]
and signals related to the autonomic nervous system (ANS), such as the heart rate, skin temperature,
respiration patterns, blood volume pressure and galvanic skin response (GSR) [13,14]. Despite the
promising results attained for the emotion recognition approaches that are based on facial expressions
and voice, these approaches are considered ineffective for subjects suffering from facial paralysis or
subjects who have the ability to conceal their real emotional states [3,15–17]. Moreover, the requirement
of having a camera or a voice recorder all the time to capture the facial expressions and record the
voice of the subject limits the applicability of these approaches when the subject is not directly
looking at the camera or when the surrounding environment is noisy [2]. In fact, these limitations,
which are associated with the facial expression- and voice-based emotion recognition approaches,
can be overcome by employing ANS-based emotion recognition approaches. Nonetheless, emotion
recognition approaches that are based on analyzing the signals related to the ANS are highly affected
by human physical activities. In particular, various human physical activities can produce ANS-related
signals that are quite similar to some ANS-related signals generated during several emotional states [2].
For example, performing physical activities can increase the heart rate, the respiratory rate and skin
perspiration, which can affect the accuracy of emotion recognition approaches that are based on
analyzing the heart rate, respiratory rate and GSR signals.

Recently, researchers have started to utilize physiological signals that are acquired from the central
nervous system (CNS) to recognize emotional states. The use of CNS-related physiological signals
to recognize human emotions is considered as a remedy to the limitations associated with the facial
expression-, voice- and ANS-based emotion recognition approaches. This can be attributed to the fact
that the CNS-related physiological signals are not affected by the previously mentioned limitations
associated with the other emotion recognition approaches [2]. In this vein, the electroencephalograph
(EEG) signals, which provide a quantitative measure of the electrical potentials generated at different
locations of the brain in response to a specific stimulus [18], are by far the most commonly-used
CNS-related physiological signal for designing emotion recognition systems [2,17]. The widespread
use of the EEG signals is attributed to several advantages of the EEG signals, including the non-invasive
nature, the high temporal resolution, the high portability of the EEG signal acquisition systems and the
low cost of the EEG signal recording systems [19]. Nonetheless, the task of analyzing EEG signals for
emotion recognition is considered challenging. This is due to the nonstationary nature of the EEG
signals, in which the spectral characteristics of the signals are changing over time [20]. Therefore,
analyzing the nonstationary EEG signals in either the time-domain or the frequency-domain is deemed
unsuitable [21,22]. In addition, the emotional responses with respect to the same stimulus can vary
significantly between subjects, which can introduce large inter- and intra-personal variations in the
recorded EEG signals. This in turn can increase the difficulty of discriminating between EEG signals
corresponding to different emotional states.

In this study, we propose an EEG-based approach for recognizing human emotions using
a set of time-frequency features extracted from a quadratic time-frequency distribution (QTFD).
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In particular, a QTFD is employed to construct a high resolution time-frequency representation of the
EEG signals that can capture the spectral variations of the EEG signals over time. In order to reduce
the dimensionality of the constructed QTFD-based time-frequency representation, a set of 13 time- and
frequency-domain-based features are extended to the joint time-frequency-domain and extracted
from the obtained QTFD-based time-frequency representation. Moreover, the two-dimensional
(2D) arousal-valence plane [23] is employed to describe the different emotion classes by developing
four emotion labeling schemes of the EEG signals, such that each labeling scheme defines a set of
emotion classes. These four emotion labeling schemes are: the one-dimensional two-class labeling
scheme (1D-2CLS), one-dimensional three-class labeling scheme (1D-3CLS), two-dimensional four-class
labeling scheme (2D-4CLS) and two-dimensional five-class labeling scheme (2D-5CLS). The extracted
time-frequency features are used to construct a set of subject-specific support vector machine (SVM)
classifiers to classify the EEG signals of each subject into different emotion classes that are defined
using each of the four labeling schemes.

In order to validate the performance of the proposed approach, we have utilized a publicly
available EEG dataset, namely the dataset for emotion analysis using electroencephalogram,
physiological and video signals (DEAP) [24], in which different emotion classes are described in
terms of the 2D arousal-valence plane [23]. In fact, the DEAP dataset has been utilized as a benchmark
dataset to evaluate the performance of the vast majority of the existing EEG-based emotion recognition
approaches, as depicted in Section 4.4. Three performance evaluation analyses were conducted to
evaluate the performance of the proposed QTFD-based approach in discriminating between the various
emotion classes defined for each of the four labeling schemes. The three performance evaluation
analyses are: the channel-based analysis, feature-based analysis and neutral class exclusion analysis.
These performance evaluation analyses are designed to quantify the effect of utilizing different
groups of EEG channels that cover various regions in the brain, reducing the dimensionality of
the extracted time-frequency features, and excluding the EEG signals that correspond to the neutral
class, which represents the no-emotion state, to improve the capability of the proposed approach to
discriminate between different emotion classes. The reported experimental results demonstrate the
efficacy of the proposed approach in discerning different emotion classes based on analyzing EEG
signals using QTFD. Moreover, the results presented in this study show that the performance of the
proposed approach outperforms those reported in several existing state-of-the-art approaches.

In this study, we aim to contribute to the ongoing research in the field of EEG-based emotion
recognition by introducing an EEG-based system that employs a set of time-frequency features
extracted from a QTFD-based representation to discriminate between different emotion classes that
are defined using various emotion labeling schemes. In fact, we hypothesize that analyzing the EEG
signals using QTFD can improve the accuracy of classifying different emotion classes compared with
other previously used time-frequency analyses, such as the short time Fourier transform (STFT) and
the wavelet transform (WT). The contributions of this study can be summarized in four aspects: (1) to
the best of our knowledge, this is the first study that employs the QTFDs to analyze EEG signals for
recognizing human emotions; (2) our study proposes a novel set of time-frequency features extracted
from the constructed QTFD-based representation to model the different emotion classes encapsulated
within the EEG signals; (3) in-depth analysis is carried out to quantify the effect of excluding the EEG
signals that correspond to the neutral class on the accuracy of emotion classification; (4) a new emotion
labeling scheme is developed to evaluate the performance of the proposed QTFD-based emotion
recognition approach, namely the 2D-5CLS. In fact, the 2D-5CLS utilizes the 2D arousal-valence
plane to define five different emotion classes, which makes the task of emotion classification more
challenging compared with the other labeling schemes employed in previous studies that utilize the
2D arousal-valence plane to define a lower number of emotion classes. To the best of our knowledge,
this is the first study that investigates the possibility of discriminating between five emotion classes,
which are defined based on the 2D arousal-valence emotion description model.
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The remainder of this paper is structured as follows: In Section 2, we provide a detailed
description of the utilized EEG dataset, constructed QTFD-based time-frequency representation,
extracted time-frequency features, emotion classification model and performance evaluation analyses.
In Sections 3 and 4, we present and discuss the results obtained for each of the three performance
evaluation analyses, and we compare the performance of our proposed approach with the performance
results reported for several existing state-of-the-art EEG-based emotion recognition approaches. Finally,
the conclusion is provided in Section 5.

2. Materials and Methods

2.1. The DEAP Dataset

In this study, we utilize a publicly available dataset for emotion analysis using EEG signals,
namely the dataset for emotion analysis using electroencephalogram, physiological and video signals
(DEAP) [24]. DEAP is a multi-modal dataset that comprises EEG and peripheral physiological signals
recorded for 32 subjects, including 16 females and 16 males, while watching a set of 40 one-minute
video stimuli. The content of each video stimulus was selected to evoke a specific emotional state.
For each subject, the recorded EEG signals associated with each video stimulus represent a single
trial. The total number of trials within the DEAP dataset is 1280 trials (40 trials per subject), and the
length of each trial is 63 s. In particular, each trial starts with a three-second baseline period followed
by 60 s of EEG signal recording that corresponds to the subject’s response with respect to a specific
video stimulus. After each trial, each subject was asked to quantify his/her emotional response
with respect to the displayed video in terms of five emotion description scales, namely valence,
arousal, dominance, like/dislike and familiarity scales. The values of the valence, arousal, dominance
and like/dislike scales are in the range [1–9], while the values of the familiarity scale are in the range
[1–5].

The literature reveals that the vast majority of the existing work related to EEG-based emotion
analysis has utilized the arousal and valence scales to describe different emotional states [4,23,24].
Therefore, in this study, we focus on the values of the valence and arousal scales to quantify and
describe the various emotional states. In fact, the valence scale quantifies the amount of pleasantness
that a subject can feel towards a specific stimulus [24]. Specifically, a valence value that is equal to one
indicates a sad or unhappy feeling, while a valence value that is equal to nine indicates a happy or
joyful feeling. On the other hand, the arousal scale quantifies the intensity of an elicited emotion that a
subject can feel with respect to a specific stimulus [24]. In particular, an arousal value that is equal to
one indicates a bored or calm feeling, while an arousal value that is equal to nine indicates excitement
or stimulation.

2.2. Emotion Labeling Schemes

In this study, various emotion classes are assigned to the EEG signals provided in the DEAP
dataset based on the 2D arousal-valence emotion description model [23]. In particular, the emotion
class associated with each trail in the DEAP dataset is described using two rating scales, namely the
arousal scale and the valence scale, where the values of the arousal and valence scales are in the range
[1–9]. Therefore, depending on the number of rating scales utilized to describe an emotion class and
the number of intervals defined for each rating scale, different labeling schemes can be developed
to label the EEG signals of each trial. In order to investigate the effect of having different labeling
configurations of emotion classes on the accuracy of our proposed QTFD-based approach, we have
developed four different emotion labeling schemes based on the arousal and valence values provided
in the DEAP dataset. The developed emotion labeling schemes can be summarized as follows:

(A) The one-dimensional two-class labeling scheme (1D-2CLS) [17,24–29]:
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In this labeling scheme, the arousal and valence scales are used independently to define two
emotion classes for each scale. Specifically, for each trial in the DEAP dataset, if the associated
arousal value is greater than five, then the trial is assigned to the high arousal (HA) emotion class.
Otherwise, the trial is assigned to the low arousal (LA) emotion class. Similarly, for each trial in
the DEAP dataset, if the associated valence value is greater than five, then the trial is assigned to
the high valence (HV) emotion class. Otherwise, the trial is assigned to the low valence (LV)
emotion class. Figure 1a illustrates the emotion classes defined based on the 1D-2CLS.

(B) The one-dimensional three-class labeling scheme (1D-3CLS) [4,28–31]:

This emotion labeling scheme utilizes the arousal and valence scales independently to define
three emotion classes for each scale. In particular, using the arousal scale, a trial is assigned
to the high arousal (HA) emotion class, the neutral emotion class or the low arousal (LA)
emotion class depending on whether the associated arousal value is within the interval [6.5–9],
(3.5–6.5) or [1–3.5], respectively. Similarly, using the valence scale, a trial is assigned to the high
valence (HV) emotion class, the neutral emotion class or the low valence (LV) emotion class
depending on whether the associated valence value is within the interval [6.5–9], (3.5–6.5) or
[1–3.5], respectively. Figure 1b illustrates the emotion classes defined based on the 2D-3CLS.

(C) The two-dimensional four-class labeling scheme (2D-4CLS) [32,33]:

This emotion labeling scheme utilizes the 2D arousal-valence plane, which was proposed by
Russell [23], to describe and quantify various emotional states. In particular, using the 2D
arousal-valence plane, an emotional state can be viewed as a point in the 2D plane defined by
the axes of the valence scale and the arousal scale, such that the arousal and valence scales are
represented by the vertical and horizontal axes, respectively, of the 2D plane. Therefore, the 2D
arousal-valence plane can be divided into four quadrants, where each quadrant represents
a specific emotion class. The emotion classes defined based on the 2D-4CLS are: the high
arousal/high valence (HAHV), low arousal/high valence (LAHV), low arousal/low valence
(LALV) and high arousal/low valence (HALV) emotion classes. The term “low” in each of the
four defined emotion classes indicates that the arousal value or the valence value is less than
five, while the term “high” indicates that the arousal value or the valence value is greater than
five. Figure 1c illustrates the emotion classes defined based on the 2D-4CLS.

(D) The two-dimensional five-class labeling scheme (2D-5CLS):

In this labeling scheme, we extend the 2D-4CLS to include the neutral emotion class,
which represents the no-emotion state. In particular, we divide the 2D arousal-valence plane
into five regions, where each region represents a specific emotion class. The emotion classes
defined based on the 2D-5CLS are: the HAHV, LAHV, LALV, HALV and neutral emotion classes.
The neutral emotion class is employed to represent the trials in which the arousal and valence
values fall within the interval (3.5–6.5). Figure 1d illustrates the emotion classes defined based
on the 2D-5CLS.

Figure 1 provides a graphical illustration of the defined emotion classes using each of the four
emotion labeling schemes. In addition, Table 1 shows the number of trials in the DEAP dataset
associated with each emotion class defined based on the 1D-2CLS, 1D-3CLS, 2D-4CLS and 2D-5CLS
labeling schemes, respectively.
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(a) (b)

(c) (d)

Figure 1. Graphical illustration of the developed four emotion labeling schemes. (a) The two emotion
classes defined for the arousal scale (top) and valence scale (bottom) using the 1D-2-class labeling
scheme (2CLS). (b) The three emotion classes defined for the arousal scale (top) and valence scale
(bottom) using the 1D-3CLS. (c) The four emotion classes defined using the 2D-4CLS. (d) The five
emotion classes defined using the 2D-5CLS.
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Table 1. The number of trials and feature vectors per emotion class for each labeling scheme. The table
includes the total number of trials for the 32 subjects, the total number of feature vectors (number
of trials × number of windows per trial) for the 32 subjects and the mean number of feature vectors
(number of trials × number of windows per trial/32 subjects) for each individual subject.

Emotion Labeling
Scheme Emotion Description Scale Emotion Class Number

of Trials

Number of Feature
Vectors for the

32 Subjects

The Mean Number of
Feature Vectors for

Each Individual Subject

1D-2CLS
Arousal Low arousal (LA) 543 15,747 492

High arousal (HA) 737 21,373 668

Valence Low valence (LV) 572 16,588 518
High valence (HV) 708 20,532 518

1D-3CLS

Arousal
Low arousal (LA) 304 8816 276

Neutral 607 17,603 334
High arousal (HA) 369 10,701 550

Valence
Low valence (LV) 297 8613 269

Neutral 537 15,573 404
High valence (HV) 446 12,934 487

2D-4CLS 2D arousal-valence plane

HAHV 439 12,731 398
LAHV 269 7801 244
LALV 274 7946 248
HALV 298 8642 270

2D-5CLS 2D arousal-valence plane

HAHV 368 10,672 334
LAHV 198 5742 179
LALV 208 6032 189
HALV 220 6380 199

Neutral 286 8294 259

2.3. EEG Signals Acquisition and Preprocessing

The EEG signals were recorded using the BioSemi ActiveTwo system (BioSemi B.V., Amsterdam,
The Netherlands) at a sampling frequency of 512 Hz using 32 Ag/AgCl electrodes that were arranged
according to the 10–20 international electrode placement system [34]. In this study, we have utilized
the preprocessed EEG signals provided by the DEAP dataset. In fact, the procedures that were
applied to obtain the preprocessed EEG signals of the DEAP dataset can be summarized as follows.
First, the raw EEG signals were downsampled to 128 Hz. Then, the electrooculography (EOG) artifacts,
which were generated from eye blinking, were reduced using the blind source separation technique [24].
In addition, the electromyography (EMG) artifacts in the high frequencies, which are generated by
muscle activities, were reduced by applying a bandpass frequency filter that had a bandwidth of
4–45 Hz [24]. Finally, the EEG signals were common averaged referenced.

2.4. Time-Frequency Analysis of EEG Signals

Time-domain signals can be generally categorized into two main groups: stationary signals and
nonstationary signals [35]. Stationary signals have spectral components and statistical properties that
are time-invariant. On the other hand, nonstationary signals, such as EEG signals [18,36,37], have
spectral characteristics that vary over time [20]. This implies that analyzing nonstationary signals in
either the time-domain or frequency-domain is considered inadequate [21,22]. In fact, using a joint
time-frequency-domain can capture the time-varying spectral components of nonstationary signals.
In this vein, the literature reveals that researchers have employed different time-frequency analysis
methods to construct time-frequency representations (TFRs) of nonstationary signals, such as the
short-time Fourier transform (STFT) [38] and wavelet transform (WT) [39]. However, STFT-based TFRs
have a low resolution in either the time-domain or the frequency-domain, which limits the ability to
utilize the STFT method to analyze nonstationary signals [35]. In addition, TFRs that are constructed
using the WT method, including the discrete wavelet transform (DWT) and the continuous wavelet
transform (CWT), are not invariant to frequency-shift and have a non-uniform resolution throughout
the time-frequency plane (TFP) [35].
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In this study, we hypothesize that the use of quadratic time-frequency distributions (QTFDs) to
construct a TFR of the EEG signals has the potential to provide discriminant features of EEG signals
that can enhance the classification accuracy of different emotional states. In fact, QTFDs have been
successfully employed to analyze EEG signals in other fields, such as seizure detection [21,40] and
decoding motor imagery tasks [18]. A QTFD is a nonlinear transform that maps a time-domain
signal into a joint time-frequency-domain that has an excellent resolution in both time and frequency.
Moreover, QTFDs are considered time- and frequency-shift-invariant [35,40,41]. Therefore, analyzing
the EEG signals using QTFDs can address the limitations associated with other time-frequency analysis
methods, such as STFT and WT.

To compute the QTFD of EEG signals, we have utilized a sliding window to divide the EEG
signal of each channel into a set of overlapped EEG segments. Therefore, the total number of window
positions per each trial is 29 positions. In fact, the number of positions per trail is computed by
subtracting one from the ratio between the number of samples per trial after removing the 3-s baseline
period, which is 60 s× 128 samples per second, and the overlap size, which is 256 samples. In particular,
the number of samples in each EEG segment was set to 512 samples, and the overlap between any two
consecutive EEG segments was set to 256 samples. Then, for each EEG segment, z(t), we constructed a
TFR by computing the QTFD using the following steps [18,35,36]:

I Compute the analytic signal, a(t), of the real-valued signal, z(t), as follows:

a(t) = z(t) + jHT {z(t)}, (1)

whereHT {·} is the Hilbert transform [42].

II Calculate the Wigner–Ville distribution (WVD) of a(t) as follows:

WVDa(t, f ) =
∫ ∞

−∞
a(t +

τ

2
)a∗(t− τ

2
)e−j2πτ f ∂τ, (2)

where WVDa(t, f ) and a∗(·) represent the WVD and the complex conjugate of a(t), respectively.

III Convolve the obtained WVDa(t, f ) with a time-frequency smoothing kernel, χ(t, f ), as follows:

$a(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
WVDa(φ, τ)χ(φ, τ)e−j2π f τ−j2πtφ∂τ∂φ, (3)

where $a(t, f ) represents the QTFD of a(t). In fact, the type of constructed QTFD is determined
based on the utilized time-frequency kernel. For example, the time-frequency kernel χ(t, f ) =
1 is used to construct the WVD, which is considered a QTFD [36]. The WVD produces
a TFR that has an excellent resolution in the time- and frequency-domain. Nonetheless,
the WVD-based TFR contains cross-terms that may distort the signal components [18,35,41]
and, hence, increases the difficulty to interpret the obtained TFR visually. Therefore, in this
study, we employ an exponential time-frequency kernel to reduce the effect of the cross-terms
and maintain an adequate resolution in both the time- and frequency-domain. The employed
exponential kernel is defined as follows:

χ(t, f ) = exp
(
− t2 f 2

β2

)
, (4)

where β > 0 is a parameter that controls the suppression of the cross-terms, and its value
is experimentally selected to be 0.5. The QTFD constructed using the kernel defined in
Equation (4) is known as the Choi–Williams distribution (CWD) [43].
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Figure 2 shows the top view of the TFRs computed for four EEG segments that are labeled using
the 2D-4CLS. The TFRs in the figure aim to illustrate the variations of the frequency content of each
EEG segment as a function of time. Moreover, the provided TFRs illustrate how the CWD can reduce
the cross-terms in comparison with the WVD, which in turn generates more distinguishable TFPs
that can be used for decoding emotional states. Therefore, in this study, the CWD is employed to
construct a TFR for each EEG segment. The implementation of the CWD was carried out using the
HOSA toolbox [44]. The dimensionality of the computed TFR of each EEG segment, which is obtained
based on computing the CWD of the analytic signal associated with the EEG segment, is equal to
M = 512 × N = 1024, where M and N represent the number of time-domain and frequency-domain
samples, respectively.

2.5. CWD-Based Time-Frequency Features

In order to reduce the dimensionality of the constructed CWD-based TFR, at each window position,
we have extracted a set of 13 time-frequency features from the computed CWD of each EEG segment
(i.e., the EEG signal encapsulated within the current window position of a specific EEG channel).
Then, the extracted time-frequency features from all EEG segments at a specific window position are
concatenated to construct a feature vector. Table 1 provides the total number of feature vectors for
the 32 subjects and the mean number of feature vectors per each individual subject computed for
each emotion class, where the emotion classes are defined using the four emotion labeling schemes
described in Section 2.2. The extracted time-frequency features are computed based on extending a
set of time- and frequency-domain features into the joint time-frequency-domain. In particular, eight
time-domain features are extended into the joint time-frequency-domain and computed based on the
constructed CWD-based TFR of each EEG segment [18]. These features include the mean (µ), variance
(σ), skewness (γ), kurtosis (κ), sum of the logarithmic amplitudes (SLA), median absolute deviation
(MAD), root mean square value (RMS) and inter-quartile range (IQR), where µ, σ, γ and κ are the
first-, second-, third- and fourth-order moments, respectively, and represent the higher order statistics
(HOS) of the computed QTFD. Table 2 provides a detailed description of the extracted time-frequency
features that were obtained by extending the time-domain features. In addition, five frequency-domain
features were extended into the joint time-frequency-domain and computed based on the constructed
CWD-based TFR of each EEG segment [18]. These features include the flatness (FLS), flux (FLX),
spectral roll-off (SRO), normalized Renyi entropy (NRE) and energy concentration (EC). Table 3
provides a detailed description of the five extracted time-frequency features obtained by extending
the frequency-domain features. Further details regarding the construction procedure and the physical
interpretation of the extracted time-frequency features can be found in our previous work [18].

2.6. Emotion Classification

Over the past decade, researchers have employed various classifiers to recognize various emotion
classes based on features that are extracted from the EEG signals. Among these classifiers, the support
vector machine (SVM) classifier with the Gaussian radial basis function (RBF) kernel has achieved
classification and generalization results that outperform other state-of-the-art classifiers, such as
the k-nearest neighbors (k-NN) [2,32,45], random forest [4], naive Bayes [28] and neural networks
classifiers [40,46,47].
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(a) (b)

(c) (d)

Figure 2. Top view images of the constructed time-frequency representations (TFRs) for four
EEG segments that are labeled using the 2D-4CLS. (a) The Wigner–Ville distribution (WVD)- and
Choi–Williams distribution (CWD)-based TFRs computed for an EEG segment that belongs to the
HAHV emotion class. (b) The WVD- and CWD-based TFRs computed for an EEG segment that belongs
to the LAHV emotion class. (c) The WVD- and CWD-based TFRs computed for an EEG segment
that belongs to the LALV emotion class. (d) The WVD- and CWD-based TFRs computed for an EEG
segment that belongs to the HALV emotion class. The time axis represents the indices of the samples
within the EEG segment, while the frequency axis represents the frequency components within the
EEG segment. The color map located to the right of each plot represents the values of the computed
WVD and CWD at each point in the time-frequency plane.
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Table 2. The extracted time-frequency features obtained by extending eight time-domain features to
the joint time-frequency-domain. SLA, sum of the logarithmic amplitudes.

Description of the
Time-Frequency Features

Mathematical Formulation of the Extracted
Time-Frequency Features

The mean of the CWD (µ) µ =
1

M× N

M

∑
t=1

N

∑
f=1

$a(t, f ) (5)

The variance of the CWD (σ) σ =
1

M× N

M

∑
t=1

N

∑
f=1

($a(t, f )− µ)2 (6)

The skewness of the CWD (γ) γ =
1

M× N × (σ)3/2

M

∑
t=1

N

∑
f=1

($a(t, f )− µ)3 (7)

The kurtosis of the CWD (κ) κ =
1

M× N × (σ)2

M

∑
t=1

N

∑
f=1

($a(t, f )− µ)4 (8)

Sum of the logarithmic amplitudes
of the CWD (SLA)

SLA =
M

∑
t=1

N

∑
f=1

log(|$a(t, f )|) (9)

Median absolute deviation of the
CWD (MAD)

MAD =
1

M× N

M

∑
t=1

N

∑
f=1
|$a(t, f )− µ| (10)

Root mean square value of the
CWD (RMS)

RMS =

√√√√( M

∑
t=1

N

∑
f=1

$a(t, f )

)
/(M× N) (11)

Inter-quartile range of the
CWD (IQR)

IQR =
1
N

N

∑
f=1

(
$a

(3(M + 1)
4

, f
)
− $a

( (M + 1)
4

, f
))

(12)

Table 3. The extracted time-frequency features obtained by extending five frequency-domain features
to the joint time-frequency-domain.

Description of the
Time-Frequency Features

Mathematical Formulation of the Extracted
Time-Frequency Features

The flatness of the CWD (FLS) FLS = M× N ×
∏M

t=1 ∏N
f=1(|$a(t, f )|)1/M×N

∑M
t=1 ∑N

f=1(|$a(t, f )|)
(13)

The flux of the CWD (FLX) FLX =
M−l

∑
t=1

N−k

∑
f=1

($a(t + l, f + k)− $a(t, f )), l = k = 1 (14)

The spectral roll-off of the CWD (SRO) SRO = λ
M

∑
t=1

N

∑
f=1

($a(t, f )), λ = 0.85 (15)

The normalized Renyi entropy of the
CWD (NRE)

NRE =
1

1− ν
log2

M

∑
t=1

N

∑
f=1

(
$a(t, f )

M× N × µ

)ν

, ν = 3 (16)

The energy concentration of the
CWD (EC)

EC =

(
M

∑
t=1

N

∑
f=1

√
|$a(t, f )|

)2

(17)
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In this study, we employ SVM classifiers with the RBF kernel to determine the emotion classes
associated with the feature vectors extracted from the EEG segments. Specifically, depending on the
utilized emotion labeling scheme, which are depicted in Section 2.2, the number of emotion classes
associated with each emotion labeling scheme varies from 2–5. Therefore, the choice of using a binary
or multi-class SVM classifier depends on the utilized emotion labeling scheme. Moreover, to address
the large variations in the responses of the subjects with respect to the same video stimulus, we employ
a subject-specific classifier rather than constructing one classifier for all the subjects [24]. Consequently,
for each subject, we construct a binary or multi-class SVM classifiers depending on the employed
emotion labeling scheme. More specifically, using the arousal scale in the 1D-2CLS, each feature vector
belongs to the HA or LA emotion class. Similarly, using the valence scale in the 1D-2CLS, each feature
vector belongs to the HV or LV emotion class. Therefore, using the use of the 1D-2CLS requires the
construction of two binary SVM classifiers for each subject. The first binary SVM classifier classifies the
feature vectors into HA and LA classes, while the second binary SVM classifier classifies the feature
vectors into into HV and LV classes. For the 1D-3CLS, each feature vector is assigned to one of the
three emotion classes defined based on the arousal scale, namely the HA, neutral and LA emotion
classes. Similarly, each feature vector is assigned to one of the three emotion classes defined based on
the valence scale, namely the HV, neutral and LV emotion classes. Accordingly, the use of the 1D-3CLS
implies the need to construct two multi-class SVM classifiers for each subject. The first classifier
classifies each feature vector into one of the three arousal-related emotion classes defined based on the
1D-3CLS, including the HA, neutral and LA classes, while the second classifier classifies each feature
vector into one of the three valence-related emotion classes defined based on the 1D-3CLS, including
the HV, neutral and LV classes. For the 2D-4CLS, each feature vector is assigned to one of the four
emotion classes defined based on the 2D-4CLS, namely the HAHV, LAHV, LALV and HALV emotion
classes. As a result, for each subject, we construct a multi-class SVM classifier to classify each feature
vector into one of the four emotion classes defined on the 2D-4CLS. Finally, for the 2D-5CLS, each
feature vector is assigned to one of the five emotion classes defined based on the 2D-5CLS, namely the
HAHV, LAHV, LALV, HALV and neutral emotion classes. Consequently, for each subject, we construct
a multi-class SVM classifier to classify each feature vector into one of the five emotion classes defined
based on the 2D-5CLS.

To construct the multi-class SVM classifiers, which are employed in the 1D-3CLS, 2D-4CLS
and 2D-5CLS labeling schemes, we utilize a one-against-one approach in which a binary SVM classifier
is trained for each pair of classes, and a voting procedure among all the trained binary classifiers is
applied to classify the feature vectors [48,49]. The use of the one-against-one approach to implement the
multi-class SVM classifiers can reduce the possibility of generating imbalanced training sets compared
to the one-against-all approach [49]. Moreover, in order to achieve the best performance for each of
the constructed SVM classifiers, we perform a two-dimensional grid-based search to find the values
of the RBF kernel parameter (ω > 0) and the SVM regularization parameter (C > 0) that minimize
the classification error of each SVM classifier. The implementation of the binary and multi-class SVM
classifiers is carried out using the LIBSVM [50].

2.7. Evaluation Analyses and Metrics

In order to evaluate the performance of the proposed QTFD-based features in recognizing different
emotion classes, we have developed three performance evaluation analyses:

A Channel-based analysis:

In this analysis, we investigate the effect of utilizing various groups of EEG channels, which cover
different regions of the brain, on the accuracy of recognizing the emotion classes defined
based on the four emotion labeling schemes. Recently, several studies have indicated that
the frontal, prefrontal, temporal, parietal and occipital regions of the brain are involved in
emotional responses [25,32,51–58]. In particular, Mohammadi et al. [58] utilized five pairs of
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electrodes that cover the frontal and frontal parietal regions of the brain, where these pairs are
F3-F4, F7-F8, FC1-FC2, FC5-FC6 and FP1-FP2, to recognize emotional states defined based on
the 2D arousal-valence plane. In another study by Zhuang et al. [25], the prefrontal, parietal,
occipital and temporal regions were found to have an important role in emotion recognition.
These regions of the brain are covered by the following pairs of electrodes: AF3-AF4, P3-P4, P7-P8,
CP5-CP6, O1-O2, and T7-T8. Therefore, in this study, we have selected 11 symmetrical pairs of
EEG channels out of the 16 pairs of EEG channels provided in the DEAP dataset. The selected
pairs of electrodes cover the parietal region (P3-P4, P7-P8 and CP5-CP6), frontal region (F3-F4,
F7-F8, FC1-FC2, FC5-FC6, AF3-AF4 and FP1-FP2), temporal region (T7-T8) and occipital region
(O1-O2). Table 4 presents the brain regions covered by the selected 11 pairs of EEG channels.
To study the effect of the utilized different EEG channels on the accuracy of decoding emotion
classes, the selected 11 pairs of EEG channels were organized into four different configurations
to perform the analysis. Specifically, in the first configuration, denoted by C1, we investigate
the effect of utilizing each symmetrical pair of EEG channels independently on the accuracy
of decoding the emotion classes defined in each emotion labeling scheme. In the second
configuration, denoted by C2, we study the effect of utilizing 12 EEG channels that are located
in the frontal and temporal regions of the brain on the accuracy of recognizing the emotion
classes of each emotion labeling scheme. In the third configuration, denoted by C3, we explore
the effect of utilizing eight EEG channels that are located in the parietal and occipital regions of
the brain on the accuracy of recognizing the emotion classes of each emotion labeling scheme.
Finally, in the fourth configuration, denoted by C4, we study the effect of utilizing all the
selected 22 EEG channels on the accuracy of recognizing the emotion classes of each emotion
labeling scheme. Table 5 summarizes the aforementioned four configurations and shows the
EEG channels comprised within each configuration.
To implement this evaluation analysis, for each subject, we built an SVM classifier to
perform the classification analysis associated with each emotion labeling scheme using the
time-frequency features extracted from the EEG channels in each configuration. Specifically,
for each symmetrical pair of EEG channels in C1, we build a SVM model for each emotion
labeling scheme. The dimensionality of the feature vectors extracted from each symmetrical
pair of EEG channels in C1 is equal to 26 (13features × 2 channels). Similarly, for each
group of EEG channels defined in C2, C3 and C4, we built an SVM model for each emotion
labeling scheme. The dimensionality of the feature vectors extracted from the EEG channels
in C2, C3 and C4 is 156 (13 features × 12 channels), 104 (13 features × 8 channels) and 286
(13 features × 22 channels), respectively.

B Feature-based analysis:

In this analysis, we investigate the effect of reducing the dimensionality of the extracted
feature vectors on the accuracy of recognizing the emotion classes defined based on the
four emotion labeling schemes. In particular, we utilize the minimal redundancy maximum
relevance (mRMR) [59] algorithm to reduce the dimensionality of the constructed feature
vectors. The mRMR algorithm utilizes the mutual information to select a subset of features
that has the maximum correlation with a specific emotion class and the minimum correlation
between the selected features [59,60]. The selected subset of features is ranked according to the
minimal-redundancy-maximal-relevance criterion. Previous studies [61,62] indicated that using
the mRMR algorithm to select features for emotion classification applications can outperform
other feature selection algorithms, such as the ReliefFfeature selection algorithm [63]. In this
work, we employ the mRMR algorithm to construct four feature selection scenarios, namely the
top 5%, 25%, 50% and 75% scenarios. In particular, the mRMR algorithm is used to reduce the
size of the extracted feature vectors by selecting the top 5%, 25%, 50% and 75% of the features
that satisfy the minimal-redundancy-maximal-relevance criterion [62]. Then, we study the
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effect of utilizing the features obtained using each of the feature selection scenarios on the
accuracy of recognizing the emotion classes of each emotion labeling scheme. For the purpose
of this evaluation analysis, we utilize the results obtained from the channel-based evaluation
analysis to apply the mRMR feature selection algorithm on the feature vectors extracted
from the EEG channels associated with the EEG channel configuration that achieves the best
classification performance.

C Neutral class exclusion analysis:

In this evaluation analysis, we study the effect of excluding the samples that correspond to
the neutral class, which are defined in the 1D-3CLS and 2D-5CLS, on the accuracy of decoding
the remaining non-neutral emotion classes. According to Russell [23], emotional states are
organized in a circular configuration around the circumference of the 2D arousal-valence plane,
as depicted in Figure 3. This implies that the region corresponding to the neutral class, which is
the area bounded by the interval (3.5–6.5) on the arousal scale and the interval (3.5–6.5) on the
valence scale, does not describe emotional states effectively [4]. Therefore, in this evaluation
analysis, we exclude the feature vectors extracted from the trials that are falling within the
region that represents the neutral class on the 2D arousal-valence plane. To implement this
evaluation analysis, we re-perform the previous two evaluation analyses, namely the channel-
and feature-based analyses, after excluding the feature vectors that belong to the neutral class.

Table 4. The brain regions covered by the selected 11 pairs of EEG channels.

Brain Region Selected Pairs of EEG Channels

Parietal region P3-P4, P7-P8 and CP5-CP6
Frontal region F3-F4, F7-F8, FC1-FC2, FC5-FC6, AF3-AF4 and FP1-FP2
Temporal region T7-T8
Occipital region O1-O2

Table 5. The four configurations of EEG channels considered in this study.

Configuration Description EEG Channels

Configuration 1 (C1) This configuration includes 11
independent pairs of symmetric
EEG channels.

P3-P4, P7-P8, CP5-CP6, F3-F4, F7-F8, FC1-FC2,
FC5-FC6, AF3-AF4, FP1-FP2, T7-T8, and O1-O2

Configuration 2 (C2) This configuration includes 12
EEG channels located in the
frontal and temporal areas of
the brain.

FP1, FP2, F3, F4, F7, F8, FC1, FC2, T7, T8, FC5,
and FC6

Configuration 3 (C3) This configuration includes eight
EEG channels located in the
parietal and occipital areas of
the brain.

P3, P4, CP5, CP6, P7, P8, O1, and O2

Configuration 4 (C4) This configuration includes all the
selected EEG channels.

P3, P4, P7, P8, CP5, CP6, F3, F4, F7, F8, FC1,
FC2, FC5, FC6, AF3, AF4, FP1, FP2, T7, T8, O1,
and O2

In order to quantify the performance of our proposed approach for each of the three
aforementioned evaluation analyses, we have utilized a ten-fold cross-validation (CV) procedure
to train and test the constructed SVM classifiers. In particular, for each subject, 90% of the feature
vectors are used for training, while the remaining 10% are used for testing. This procedure is repeated
10 times to ensure that all the feature vectors are used for testing. Then, for each subject, the average
classification performance is computed over the ten train-test repetitions (i.e., the ten repetitions of the
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ten-fold cross-validation procedure) in terms of two standard evaluation metrics, namely the accuracy
(acc) and F1-measure (F1) [18,64–66]. Finally, we have computed the average values of the accuracies
and F1–measures over the 32 subjects of the DEAP dataset and report these average values in Section 3.
The utilized evaluation metrics can be computed as follows:

acc =
(tp + tn)

(tp + tn + fp + fn)
× 100%, (18)

F1 =
2× tp

2× tp + fp + fn
× 100%, (19)

where tp, tn, f p and f n represent the numbers of true positive cases, true negative cases, false positive
cases and false negative cases, respectively. The F1 is an evaluation metric that can be used to assess
the performance of the classifiers when the number of samples per different classes is imbalanced.
In fact, Table 1 shows that the number of samples for the different classes in the DEAP dataset is
imbalanced. Therefore, using the F1 provides a more accurate assessment of the performance of the
classifiers compared with the standard accuracy rate [24,66].

Figure 3. The circumplex model for emotion description that shows the arrangement of the emotional
states around the circumference of the 2D arousal-valence plane [23].

3. Results

In this section, we present the results obtained for each of the three evaluation analyses, which are
described in Section 2.7, computed using the four emotion labeling schemes, as presented in Section 2.2.

3.1. Results of the Channel-Based Evaluation Analysis

Table 6 presents the average acc and F1 values computed for each combination of emotion labeling
scheme and EEG channel configuration. In particular, using the 1D-2CLS and C1, the highest average
acc and F1 values achieved in discriminating between the HA and LA classes were 75.9% and 66.7%,
respectively, which were obtained using the time-frequency features extracted from the symmetrical
pair of EEG channels O1-O2.Moreover, the highest average acc and F1 values achieved in discriminating
between the HV and LV classes were 73.9% and 69.7%, respectively, which were obtained using the
time-frequency features extracted from the symmetrical pair of EEG channels AF3− AF4. Using the
1D-3CLS and C1, the highest average acc and F1 values achieved in discriminating between the HA,
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neutral and LA classes were 67.0% and 44.9%, respectively, and the highest average acc and F1 values
achieved in discriminating between the HV, neutral and LV classes were 65.6% and 51.6%, respectively.
These results were obtained using the time-frequency features extracted from the symmetrical pair
of EEG channels T7-T8. Using the 2D-4CLS and C1, the highest average acc and F1 values attained in
discriminating between the HVHA, HVLA, LVLA and LVHA emotion classes were 60.5% and 49.4%,
respectively. Furthermore, using the 2D-5CLS and C1, the highest average acc and F1 values attained
in discriminating between the HVHA, HVLA, LVLA, LVHA and neutral emotion classes were 57.9%
and 45.3%, respectively. The best results reported for the 2D-4CLS and 2D-5CLS were obtained using
the time-frequency features extracted from the symmetrical pair of EEG channels T7-T8 in C1. In fact,
the results reported for each emotion labeling scheme based on C1 show that the obtained accuracies
using different symmetrical pairs of EEG channels were relatively close to each other. This can be
attributed to the fact that different regions located in the left and right hemispheres of the brain were
involved during the experience of emotions [4,56].

Table 6. Results of the channel-based evaluation analysis. Bold font is used to indicate the highest acc and
F1 values obtained for each combination of emotion labeling scheme and EEG channel configuration.

Configuration

1D-2CLS 1D-3CLS
2D-4CLS 2D-5CLS

Arousal Valence Arousal Valence

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

C1

AF3-AF4 72.5 62.3 73.9 69.7 65.2 41.2 64.0 49.2 58.4 45.9 56.4 42.0
CP5-CP6 74.4 63.1 71.7 66.6 65.4 41.8 64.0 49.8 58.1 44.5 55.5 40.5

F3-F4 73.7 63.0 71.6 67.0 65.1 39.6 63.0 48.3 57.1 45.4 55.0 41.0
F7-F8 74.3 64.1 72.8 68.4 65.8 41.2 64.3 48.9 58.9 46.8 56.9 42.8

FC1-FC2 73.0 61.7 72.1 66.4 64.6 40.1 62.4 46.9 57.1 44.8 54.9 40.4
FC5-FC6 74.7 65.1 73.5 68.7 66.2 42.0 64.7 51.3 59.5 46.4 57.2 43.1
FP1-FP2 74.3 64.1 71.6 66.7 65.9 42.0 63.1 49.6 58.0 48.1 55.5 41.8
O1-O2 75.9 66.7 72.8 67.4 65.9 42.1 63.2 49.8 58.7 45.9 56.1 40.1
P3-P4 74.7 64.6 72.4 67.3 65.6 41.3 64.1 48.9 58.7 45.5 55.8 41.4
P7-P8 75.2 64.7 72.0 66.6 66.0 43.0 64.4 50.6 58.6 46.9 57.1 41.3
T7-T8 74.5 64.6 73.5 69.0 67.0 44.9 65.6 51.6 60.5 49.4 57.9 45.3

C2 81.0 75.1 79.6 77.3 74.7 60.4 73.4 65.3 70.6 62.5 68.8 56.6

C3 80.1 74.4 77.1 73.9 72.1 55.4 70.2 61.2 66.1 56.9 64.9 51.4

C4 83.1 78.5 80.7 78.5 76.0 62.2 75.6 68.1 72.5 65.0 71.1 59.7

Table 6 also shows that the average acc and F1 values obtained for each emotion labeling
scheme using the time-frequency features extracted from the EEG channels of C2 were higher
than the results obtained using the time-frequency features extracted from the EEG channels of
C1 and C3. In addition, the average acc and F1 values obtained for each emotion labeling scheme
using the time-frequency features extracted from the EEG channels of C4 outperformed the results
obtained using the time-frequency features extracted from the other three EEG channel configurations.
The results obtained based on C2, C3 and C4 complied with the findings reported in several previous
studies [4,54,62], which have shown that the frontal, prefrontal and temporal lobes of the brain play a
major role in affective reactions and emotion regulation [4]. This in turn explains the higher accuracies
achieved based on C2, which covers the frontal and temporal regions of the brain, compared with the
accuracies obtained using C3, which covers the parietal and occipital regions of the brain. The higher
performance achieved using C4, which covers the frontal, temporal, parietal and occipital regions
of the brain, compared with C1, C2 and C3 can be attributed to the volume conductor effect on the
EEG signals [67], which implies that the electrical activities produced within a small region of the
brain are spatially propagated to other regions, and consequently, these activities are captured by the
sparsely-distributed electrodes on the scalp [18,67,68].
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3.2. Results of the Feature-Based Evaluation Analysis

The results presented in Section 3.1 indicate that the time-frequency features extracted from the
EEG channels of C4 achieved the best classification performance for all the emotion labeling schemes.
Therefore, in this subsection, we have selected C4 to conduct the feature-based analysis. Table 7
presents the results of the feature-based evaluation analysis obtained for each labeling scheme using
the time-frequency features extracted from the EEG channels in C4.

Table 7. Results of the feature-based evaluation analysis using the EEG channels of C4. Bold font is
used to indicate the highest acc and F1 values obtained for each EEG channel configuration.

Labeling Scheme
Top 5% Top 25% Top 50% Top 75%

acc F1 acc F1 acc F1 acc F1

1D-2CLS Arousal 80.5 73.6 86.6 83.8 83.7 79.5 83.5 78.7
Valence 78.7 76.1 85.8 82.4 82.1 80.6 81.0 79.3

1D-3CLS Arousal 75.4 58.9 78.8 65.8 78.4 65.5 77.9 65.0
Valence 73.7 66.1 77.8 70.6 76.5 69.4 75.9 68.9

2D-4CLS 69.5 60.9 75.1 68.8 73.9 66.7 73.0 65.5

2D-5CLS 69.9 57.8 73.8 61.9 73.1 61.0 72.0 60.0

The results presented in Table 7 show that, for all the emotion labeling schemes, the best average
acc and F1 values were achieved using the top 25% ranked features. In particular, for the 1D-2CLS,
the top 25% of the features achieved average acc/F1 values of 86.6%/83.8% and 85.8%/82.4% in
discriminating between the HA/LA and HV/LV classes, respectively. For the 1D-3CLS, the top 25%
of the features achieved average acc/F1 values of 78.8%/65.8% and 77.8%/70.6% in discriminating
between the HA/neutral/LA and HV/neutral/LV classes, respectively. Similarly, for the 2D-4CLS and
2D-5CLS, the top 25% of the features achieved average acc/F1 values of 75.1%/68.8% and 73.8%/61.9%
in discriminating between the emotion classes defined based on the 2D-4CLS and 2D-5CLS, respectively.
Table 8 shows the average accuracy and standard deviation values obtained for each subject using
the top 25% of the features extracted from the EEG channels in C4. In particular, for each subject, we
have computed the average accuracy and standard deviation over the ten train-test repetitions of the
employed ten-fold cross-validation procedure. The results presented in Table 8 validate the capability
of our-proposed QTFD-based approach in recognizing different emotion classes for each subject in the
DEAP dataset.

3.3. Results of the Neutral Class Exclusion Analysis

In this section, we present the results obtained for our proposed approach after excluding the
feature vectors that correspond to the neutral class in the 1D-3CLS and 2D-5CLS. In particular, for each
subject, we utilized the feature vector obtained after eliminating the feature vectors that correspond to
the neutral class in the 1D-3CLS to construct two SVM classifiers that discriminate between the HA/LA
classes and the HV/LV classes. Similarly, for each subject, we employed the feature vector obtained
after excluding the feature vectors that correspond to the neutral class in the 2D-5CLS to construct an
SVM classifier that discriminated between the four classes: HAHV, LAHV, LALV and HALV. Table 9
provides the results of applying the channel-based evaluation analysis, described in Section 2.7, for the
1D-3CLS and 2D-5CLS after excluding the feature vectors that correspond to the neutral class.
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Table 8. The accuracy and standard deviation values computed for each subject using the top 25% of
the features extracted form the EEG channels of C4. STD represents the standard deviation.

Subject

1D-2CLS 1D-3CLS
2D-4CLS 2D-5CLS

Arousal Valence Arousal Valence

Acc STD Acc STD Acc STD Acc STD Acc STD Acc STD

S1 84.9 2.4 83.7 2.6 78.4 2.5 77.3 2.5 76.2 3.1 75.7 4.7
S2 82.3 2.2 81.7 2.9 77.6 1.0 75.8 4.4 73.1 3.0 72.5 2.4
S3 87.9 1.5 86.3 3.4 83.4 2.4 81.2 2.1 78.4 3.1 76.4 1.2
S4 85.3 4.2 84.6 1.5 76.0 4.4 77.9 2.0 75.2 3.2 73.8 3.9
S5 90.4 2.2 91.0 3.2 77.6 1.8 78.6 0.4 74.0 3.5 72.9 3.1
S6 82.4 1.7 81.9 1.4 78.0 2.4 77.0 2.1 74.2 4.2 72.8 1.1
S7 87.5 1.4 88.7 2.1 86.6 2.5 86.1 1.2 84.3 1.4 82.3 1.5
S8 88.8 0.8 87.3 2.0 75.0 1.9 73.8 0.9 71.5 4.7 70.7 1.5
S9 85.3 1.0 86.2 2.7 84.0 2.6 83.2 1.6 81.0 2.3 80.9 2.0
S10 88.6 1.6 87.2 2.1 85.6 1.9 83.4 1.5 78.4 3.1 76.6 2.9
S11 86.0 1.8 84.3 2.2 72.3 3.3 71.0 2.3 67.7 2.1 65.7 2.7
S12 84.5 1.8 82.7 2.2 75.4 2.3 73.5 3.0 68.1 2.0 66.8 1.7
S13 92.2 0.9 91.8 2.8 82.4 2.8 81.9 4.3 77.4 2.4 75.8 1.9
S14 86.3 2.7 85.5 1.0 75.5 3.2 74.1 2.5 70.1 2.2 69.7 2.0
S15 84.8 1.7 83.1 1.3 80.9 1.8 81.3 2.0 79.1 2.7 77.9 2.7
S16 92.7 5.0 91.4 2.4 86.6 2.2 84.9 1.8 82.3 3.5 81.7 1.3
S17 86.5 3.1 85.0 3.8 83.5 1.7 82.3 1.8 80.0 1.6 78.0 1.6
S18 84.4 4.3 86.1 2.6 81.6 2.7 83.6 2.8 80.2 1.5 78.4 2.7
S19 82.6 3.2 82.8 2.7 74.6 2.7 74.1 3.7 72.2 2.0 70.9 1.9
S20 85.8 3.2 83.2 3.7 75.9 1.4 73.3 2.8 71.3 1.7 69.1 5.0
S21 86.2 2.7 85.2 4.4 72.4 2.2 71.4 1.5 69.1 2.5 67.9 1.9
S22 85.4 1.2 84.6 2.0 75.1 2.5 73.4 3.5 70.2 6.6 68.9 4.1
S23 91.8 1.5 90.5 2.3 86.2 2.6 87.9 1.0 83.6 3.3 81.6 2.2
S24 87.9 3.5 85.4 3.3 76.4 2.6 75.3 2.7 73.2 1.3 71.8 1.7
S25 84.6 3.1 83.6 2.5 74.3 2.1 72.8 2.7 69.2 3.7 68.3 3.7
S26 87.7 2.4 86.6 2.3 78.8 2.0 73.2 4.1 70.2 2.1 69.2 4.0
S27 83.8 1.3 82.3 1.9 76.6 4.7 72.4 1.9 78.2 3.2 76.3 2.3
S28 92.7 2.9 91.7 3.3 79.9 2.0 79.8 2.1 77.2 2.7 73.9 2.0
S29 84.3 2.7 84.0 2.7 80.1 1.6 78.1 2.8 74.2 1.9 72.8 2.3
S30 86.6 3.2 85.9 2.4 82.7 1.2 81.5 2.7 79.0 2.4 77.6 3.0
S31 84.2 0.8 83.7 3.5 75.1 3.1 73.7 1.1 72.1 2.1 70.9 4.4
S32 88.0 2.2 87.6 1.0 73.3 1.2 75.0 2.4 73.3 4.3 72.0 2.8

Overall average 86.6 2.3 85.8 2.5 78.8 2.4 77.8 2.3 75.1 2.8 73.7 2.6

The results presented in Table 9 show that the average acc and F1 values obtained for the 1D-3CLS
and 2D-5CLS using the time-frequency features extracted from the EEG channels of C4 outperformed
the results obtained using the time-frequency features extracted from the other three EEG channel
configurations. In fact, these results adhere to the findings presented in Section 3.1, which implies that
using the EEG channels of C4 provides the best emotion classification performance. Moreover, the acc
and F1 values reported for the 1D-3CLS and 2D-5CLS using C4, which are reported in Table 9, show a
significant improvement compared with the acc and F1 values presented in Table 6 for the 1D-2CLS,
1D-3CLS, 2D4CLS and 2D-5CLS using C4. This increase in the acc and F1 values can be attributed
to the exclusion of the neutral samples, which reduces the confusion between the different emotion
classes comprised in the four labeling schemes.
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Table 9. The results of the channel-based evaluation analysis computed for the 1D-3CLS and 2D-5CLS
after excluding the feature vectors that correspond to the neutral class. Bold font is used to indicate
the highest acc and F1 values obtained for each combination of emotion labeling scheme and EEG
channel configuration.

Configuration

1D-3CLS 2D-5CLS
Arousal Valence

acc F1 acc F1 acc F1

C1

AF3-AF4 81.5 70.7 79.5 71.5 64.2 49.2
CP5-CP6 79.7 67.5 79.4 70.1 63.8 47.3

F3-F4 79.7 67.6 78.2 68.5 62.3 47.2
F7-F8 80.6 69.9 79.0 70.9 64.4 49.5

FC1-FC2 80.7 68.9 78.5 68.6 63.5 47.2
FC5-FC6 80.4 68.7 79.7 70.7 64.3 50.0
FP1-FP2 81.4 69.9 79.1 70.7 63.2 48.1
O1-O2 80.1 68.2 79.2 71.1 63.7 46.6
P3-P4 81.3 69.4 78.8 70.0 63.9 47.8
P7-P8 80.4 69.6 79.4 69.1 64.4 49.1
T7-T8 82.2 71.4 80.1 72.2 65.4 50.1

C2 87.4 78.6 85.6 79.8 74.0 60.3

C3 85.2 76.1 83.5 76.5 70.5 56.8

C4 88.4 80.2 87.0 81.9 77.0 63.8

Table 10 shows the results of the feature-based evaluation analysis, described in Section 2.7,
computed for the 1D-3CLS and 2D-5CLS after excluding the feature vectors that correspond to the
neutral class. The feature vectors employed in this analysis were extracted from the EEG channels in
C4, which obtained the best classification performance as indicated in Table 9. The results presented
in Table 10 show that the best average acc and F1 values computed for the 1D-3CLS and 2D-5CLS
labeling schemes were achieved using the top 25% ranked features. These results, which were obtained
after excluding the neutral samples, agree with the results presented in Section 3.2, in which the best
classification performance was obtained using the top 25% of the time-frequency features extracted
from the EEG channels of C4.

Table 10. The results of the feature-based evaluation analysis computed for the 1D-3CLS and 2D-5CLS
after excluding the feature vectors that correspond to the neutral class. Bold font is used to indicate the
highest acc and F1 values obtained for each EEG channel configuration.

Labeling Scheme
Top 5% Top 25% Top 50% Top 75%

acc F1 acc F1 acc F1 acc F1

1D-3CLS Arousal 84.6 78.4 89.8 81.8 88.6 80.8 88.5 80.5
Valence 85.9 80.1 88.9 83.1 87.7 82.4 87.0 81.9

2D-5CLS 74.2 60.4 79.3 66.7 78.9 66.3 77.9 65.1

4. Discussion

In this section, we provide a detailed discussion of the results presented in Section 3. Moreover,
we compare the performance of our proposed approach with other existing EEG-based emotion
recognition approaches that utilize the DEAP dataset.
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4.1. Channel-Based Evaluation Analysis

The results in Table 6 indicate that the values of the accuracy and F1-measure obtained for the
1D-3CLS and 2D-5CLS have been generally decreased compared with the accuracy and F1-measure
values obtained for the 1D-2CLS and 2D-4CLS, respectively. Such a reduction in the classification
accuracy can be attributed to the following two factors. (1) The number of emotion classes considered
in the 1D-3CLS and 2D-5CLS is larger than the number of emotion classes considered in the 1D-2CLS
and 2D-4CLS, respectively. Hence, it is expected to have a reduction in the classification accuracy as
the number of classes is increased. (2) The presence of the neutral class, which corresponds to EEG
samples that have arousal and valence values within the interval (3.5–6.5), as a separate class in the
1D-3CLS and 2D-5CLS can be easily confused with the EEG samples that belong to the other classes
and have arousal/valence values close to the interval (3.5–6.5) [69]. In fact, Zhuang et al. [62] have
shown that the topographic maps of the brain activities associated with the neutral class have lower
values compared with the other emotion classes. This in turn increases the difficulty to discriminate
between the EEG samples corresponding to the neutral class and the EEG samples of the other classes
that have arousal/valence values that are relatively close to the neutral class. The aforementioned
factors explain the decrease in the classification accuracies obtained for the emotion labeling schemes
that include the neutral class.

In general, Table 6 shows that the results obtained using each combination of emotion labeling
scheme and EEG channel configuration are well above the average random classification accuracy,
which is defined as the reciprocal of the number of emotion classes. Specifically, the random
classification accuracies for 1D-2CLS, 1D-3CLS, 2D-4CLS and 2D-5CLS are 50%, 33.3%, 25% and 20%,
respectively.

4.2. Feature-Based Evaluation Analysis

One can observe that the results presented in Table 7 that were obtained for each emotion labeling
scheme using the top 25% features outperform the results of C4 presented in Table 6, which were
obtained using all features. This implies that a subset of the features extracted from the EEG channels
of C4 provides salient information that can enhance the classification accuracy. To further investigate
the importance of each of the thirteen time-frequency features, for each subject, we computed the ratio
between the number of times each time-frequency feature is selected to the total number of selected
features in each of the four feature selection scenarios, namely the top 5%, top 25%, top 50% and top
75% scenarios. Then, for each feature selection scenario, we compute the average ratio of each of the
thirteen time-frequency features over all 32 subjects. The computed ratios of the thirteen time-frequency
features for the 1D-2CLS, 1D-3CLS, 2D-4CLS and 2D-5CLS are shown in Figures 4–6, respectively.

The results presented in Figures 4–6 indicate that none of the thirteen time-frequency features
was completely excluded from the selected subset of features associated with each of the four feature
selection scenarios. This can be observed by noticing that the ratio of each of the thirteen time-frequency
features computed for each feature selection scenario is strictly larger than zero. This implies that,
for each emotion labeling scheme and feature selection scenario, each of the thirteen time-frequency
features computed for the EEG channels in C4 was included in the selected features for at least one
EEG channel. These results suggest that different time-frequency features, which are extracted from
different EEG channels, can capture various emotion-related information.
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Figure 4. The ratio between the number of times each time-frequency feature is selected to the total
number of selected features computed for each of the four feature selection scenarios. (A) presents
the computed percentages for the 1D-2CLS using the arousal scale, and (B) presents the computed
percentages for the 1D-2CLS using the valence scale.

Figure 5. The ratio between the number of times each time-frequency feature is selected to the total
number of selected features computed for each of the four feature selection scenarios. (A) presents
the computed percentages for the 1D-3CLS using the arousal scale, and (B) shows the computed
percentages for the 1D-3CLS using the valence scale.
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Figure 6. The ratio between the number of times each time-frequency feature is selected to the total
number of selected features computed for each of the four feature selection scenarios. (A) presents the
computed percentages for the 2D-4CLS, and (B) shows the computed percentages for the 2D-5CLS.

Moreover, for the top 25% feature selection scenario, the ratios computed for each labeling scheme,
which are presented in Figures 4–6, show that the SLA, FLS, NRE and EC features have the highest
selection ratios compared to the other time-frequency features. This can be attributed to the essence of
information captured by these features. In particular, the SLA feature is a spectral moment-related
feature of the bispectrum of the EEG signals, which captures the nonlinearity of the energy distribution
in the constructed CWD-based TFPs of the EEG signals [18,70]. In addition, the FLS feature quantifies
the uniformity of the energy distribution of the EEG signals in the constructed CWD-based TFPs [18,71].
Furthermore, the NRE and EC features quantify the regularity and spread, respectively, of the energy
distribution in the constructed CWD-based TFPs [18,36,72–74].

Its worth noting that the aforementioned four features have performed well compared with the
other time-frequency features when used to analyze EEG signals for decoding different motor imagery
tasks within the same hand, as indicated in our previous study [18]. This implies that these features are
capable of capturing the nonstationary and nonlinear characteristics of the EEG signals, which suggests
the feasibility of using the time-frequency features to develop classifiers that target various EEG-based
classification problems.

4.3. Neutral Class Exclusion Analysis

The average acc and F1 values reported in Tables 9 and 10, which were obtained after excluding
the neutral class, are higher than the average acc and F1 values reported in Tables 6 and 7,
which were achieved without excluding the neutral class. This finding indicates that the neutral
class, which represents the no-emotion class, introduces a large confusion that can significantly reduce
the ability to achieve accurate discrimination between the different emotion classes. This can be
attributed to the fact that a slight increase or decrease in the emotion rating values provided by
the participant can change the class of the emotional state from LA/LV to HA/HV and vice versa,
respectively.

In order to investigate the importance of each of the thirteen time-frequency features, we have
computed the ratio between the number of times each time-frequency feature is selected to the total
number of selected features for each of the four feature selection scenarios, namely the top 5%, top 25%,
top 50% and top 75% scenarios. Figure 7 shows the ratios of the thirteen time-frequency features
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computed for the 1D-3CLS and 2D-5CLS after excluding the feature vectors that correspond to the
neutral class. The results reported in Figure 7 represent the average ration of each of the thirteen
time-frequency feature computed over all EEG channels of C4 and all 32 participants.

Figure 7. The ratio between the number of times each time-frequency feature is selected to the total
number of selected features for each of the four feature selection scenarios after excluding the feature
vectors associated with the neutral class. (A) presents the computed percentages for the 1D-3CLS
using the arousal scale; (B) presents the computed percentages for the 1D-3CLS using the valence scale;
and (C) presents the computed percentages for the 2D-5CLS using the valence scale.

The results presented in Figure 7 indicate that, for the top 25% feature selection scenario, the SLA,
FLS, NRE and EC features have the highest selection percentages. These results agree with the
evaluations reported in Section 3.2, which implies the importance of the aforementioned time-frequency
features in decoding different emotional states. In fact, the results of the feature-based evaluation
analysis presented in this subsection, as well as the results presented in Section 3.2 indicate that
utilizing all the time-frequency features that are extracted from the 22 EEG channels in C4 can degrade
the classification performance. This can be attributed to the fact that several features that are extracted
from the various EEG channels include redundant and unrelated information. This redundant and
unrelated information can produce confusion in the generated feature vectors for different emotion
classes, which can reduce the classification performance.

4.4. Comparison with Other Studies

Different EEG-based emotion recognition studies have been reported in the literature, where these
studies involve various numbers of emotion classes, experimental paradigms and conditions
and evaluation procedures and metrics. These variations in the previous studies complicate the
task of comparing the performance of our proposed approach with the performance of previous
EEG-based emotion recognition approaches. Nonetheless, in this section, we attempt to provide a
comparison between the performance of our proposed approach and other existing approaches that
utilize the DEAP dataset based on the classification accuracy values reported in previous studies.
Moreover, we provide a brief description for some of the existing state-of-the-art EEG-based emotion
recognition approaches that utilize the DEAP dataset.



Sensors 2018, 18, 2739 24 of 32

Over the past decade, various approaches have been proposed for emotion recognition based on
EEG signals analysis. These approaches can be generally grouped into three categories depending on
the number of emotion classes considered in the classification process. In particular, the first category,
which represents the vast majority of the existing approaches, utilizes the 1D-2CLS to define two
emotion classes for each of the arousal and valence scales, as depicted in Section 2.2. In this vein,
Koelstra et al. [24] developed the DEAP dataset, described in Section 2.1, to support emotion analyses
using physiological signals. In their study, two emotion classes were defined for each of the arousal
and valence scales, namely the HA/LA and HV/LV classes, respectively. In order to discriminate
between the emotion classes associated with the arousal and valence scales, two Gaussian naive Bayes
classifiers were constructed for each participant to classify the EEG signals into HA/LA and HV/LV,
respectively. The classifiers were trained using power spectral features that were extracted from the
32 EEG channels provided as part of the DEAP dataset. The average classification accuracies computed
over all the participants in the DEAP dataset were 62% and 57.6% for the arousal and valence scales,
respectively. In addition, Rozgic et al. [27] utilized the DEAP dataset to develop an approach for
classifying EEG signals into HA/LA and HV/LV classes. In particular, EEG signals were divided into
overlapped segments. Then, each EEG segment was analyzed to extract features that are computed
using the power spectral density of the different frequency bands comprised within the EEG signals
and the difference in the spectral power between 14 symmetrical EEG channels. These features were
used to construct three types of classifiers, including the nearest neighbor (NN) voting, naive Bayes
NN (NB-NN) and SVM classifiers. The experimental results reported in [27] indicate that the best
performance was achieved using the SVM classifier with an average classification accuracies of 69.1%
and 76.9% for the arousal and valence scales, respectively. Liu et al. [26] presented an approach for
emotion classification in which the EEG signals were represented using deep belief networks (DBNs).
The experimental results reported in [26], which were obtained using the DEAP dataset, showed
that the average classification accuracies attained in discriminating between the HA/LA and HV/LV
classes were 80.5% and 85.2%, respectively. In another study, Li et al. [52] proposed an approach for
emotion classification by using weighted fusion SVM classifiers. Specifically, the DEAP dataset was
employed to perform the analysis, such that eight EEG channels were utilized to extract time-domain,
frequency-domain and nonlinear dynamic domain features. The extracted features were used to
train and evaluate the performance of the weighted fusion SVM classifiers. The average classification
accuracies achieved in discriminating between the HA/LA and HV/LV classes were 83.7% and 80.7%,
respectively. Moreover, Zhuang et al. [25] proposed an approach for emotion recognition based on
the empirical mode decomposition (EMD) method. In particular, eight EEG channels out of the 32
EEG channels provided in the DEAP dataset were decomposed into intrinsic mode functions (IMFs)
using the EMD method. Then, a set of features was extracted from the computed IMFs, including
the first difference of time series, the first difference of phase and the normalized energy features.
The extracted features were used to train a set of SVM classifiers to discriminate between the HA/LA
and HV/LV classes. The average classification accuracies computed over all the participants in the
DEAP dataset were 71.9% and 69.1% for the arousal and valence scales, respectively. Yin et al. [17]
proposed an approach for emotion recognition using a multiple-fusion layer-based ensemble classifier
of stacked autoencoder (MESAE). Specifically, a set of 425 features was extracted from the philological
signals provided in the DEAP dataset. These features were used to construct a set of MESAE classifiers
that classify the EEG signals into HA/LA and HV/LV classes. The achieved classification accuracies
for the arousal and valence scales were 77.19% and 76.17%, respectively.

In comparison with the results reported in [17,24–27,52], Table 7 shows that the average acc/F1

values of our proposed approach in discriminating between the HA/LA and HV/LV classes were
86.6%/83.8% and 85.8%/82.4%, respectively, using the top 25% feature selection scenario. In fact, these
results indicate that the results achieved by our proposed approach outperformed the results reported
in [17,24–27,52].
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The second category of previous studies includes emotion classification approaches that utilize
the 1D-3CLS to define three emotion classes for each of the arousal and valence scales, namely the
HA/neutral/LA and HV/neutral/LV classes. In this category, Chung and Yoon [28] employed the
DEAP dataset to construct a set of subject-dependent Bayes classifiers that discriminate between
emotion classes defined using the 1D-2CLS and 1D-3CLS. In particular, the Bayes classifiers were
trained using spectral power features that were computed for 93 EEG channels, including the 32 EEG
channels provided in the DEAP dataset and 61-virtual channels constructed using bipolar montage.
The dimensionality of each feature vector was equal to 392 features. The average classification
accuracies obtained for the 1D-2CLS based on the arousal and valence scales were 66.4% and 66.6%,
and the accuracies achieved for the 1D-3CLS based on the arousal and valence scales were 51.0%
and 53.4%, respectively. Similarly, Tripathi et al. [29] employed neural networks to classify the EEG
signals provided in the DEAP dataset into two classes using the 1D-2CLS and three classes using
the 1D-3CLS. Specifically, statistical time-domain features were extracted from the 32 EEG channels
(the dimensionality of each feature vector was 101 features × 32 EEG channels = 3232 features) and
used to construct two types of neural networks, namely the simple deep neural network (DNN) and
convolutional neural network (CNN). The experimental results reported in [29] showed that the best
performance was achieved using the CNN. In particular, for the 1D-2CLS, the average classification
accuracies computed over all participants in the DEAP dataset were 73.3% and 81.4% for the arousal
and valence scales, respectively. For the 1D-3CLS, the average classification accuracies computed
over all participants in the DEAP dataset were 57.5% and 66.7% for the arousal and valence scales,
respectively. Atkinson and Campos [31] developed an approach that combines the mRMR feature
selection algorithm and SVM classifier for emotion recognition. In particular, a set of features, including
statistical features, band power for different frequency bands, Hjorth parameters and fractal dimension,
was extracted from 14 EEG channel in the DEAP dataset. The mRMR algorithm was employed to
select a subset of the extracted features that achieved the maximum correlation with a specific class
and the minimum correlation between the selected features. The dimensionality of each feature vector
after applying the mRMR feature selection algorithm was 173 features. The selected subset of features
was used to train a set of SVM classifiers to classify the EEG signals into HA/LA and HV/LV classes
defined based on the 1D-2CLS or HA/neutral/LA and HV/neutral/LV classes defined based on the
1D-3CLS. For the 1D-2CLS, the average classification accuracies computed for the arousal and valence
scales were 73.0% and 73.1%, respectively. Moreover, the average classification accuracies computed
for the arousal and valence scales based on the 1D-3CLS were 60.7% and 62.3%, respectively. In another
study, Jirayucharoensak et al. [30] proposed an approach for emotion recognition that utilizes a deep
learning network (DLN) to study the correlation between the EEG signals. The DLN was trained
using spectral-based feature vectors, where the dimensionality of each feature vector was 230 features.
The proposed approach was evaluated using the DEAP dataset and achieved average classification
accuracies of 49.5% and 46.0% in discriminating between the HA/neutral/LA and HV/neutral/LV
classes, respectively. Menezes et al. [4] investigated the use of different combinations of features,
including statistical, power spectral density (PSD) and higher order crossings (HOC) features per EEG
channel, as well as different classifiers, including the SVM and random forest classifiers, to analyze EEG
signals for emotion recognition. The results indicated that the best classification accuracies achieved
for the arousal and valence scales based on the 1D-2CLS were 74.0% and 88.4%, respectively. In fact,
these accuracies were obtained by combining the statistical features and the SVM classifier. Moreover,
for the 1D-3CLS, the best classification accuracies were 63.1% and 58.8% for the arousal and valence
scales, respectively, which were obtained by combining the statistical features (the dimensionality of
each feature vector was 28 features × 4 EEG channels = 112 features) and the random forest classifier.
In comparison with the results presented in the studies [4,28–31], Table 7 shows that the average
acc/F1 values achieved by our proposed approach in discriminating between the HA/neutral/LA
and HV/neutral/LV classes were 78.8%/65.8% and 77.8%/70.6%, respectively, using the top 25%
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feature selection scenario. In fact, these results indicate that the performance of our proposed approach
outperformed the results reported in [4,28–31].

The last category of previous studies includes emotion recognition approaches that utilize the
2D-4CLS to define four emotion classes, namely the HAHV, LAHV, LALV and HALV emotion classes.
One example of this category is the study by Zheng et al. [32], in which intensive performance
evaluation analyses were conducted using different methods for emotion recognition using the EEG
signals of the DEAP dataset that integrated various feature extraction, feature selection and pattern
classification approaches. The best average classification accuracy achieved in discriminating between
the HAHV, LAHV, LALV and HALV emotion classes was 69.6%, which was obtained using the
differential entropy features (the dimensionality of each feature vector was 160 features) and the graph
regularized extreme learning machine (GELM) classifier. In another study, Zubair and Yoon [33]
proposed an EEG-based emotion recognition approach using the discrete wavelet transform (DWT).
In particular, a set of features was extracted from the DWT coefficients computed for the EEG signals
in the DEAP dataset. Then, the mRMR algorithm was employed to select the most significant subset
of features from the extracted DWT-based features. The dimensionality of each feature vector after
applying the mRMR feature selection algorithm was 288 features. Using the selected subset of features,
a multi-class SVM classifier was constructed for each participant to discriminate between the HAHV,
LAHV, LALV and HALV emotion classes. The overall average classification accuracy was 49.7%.
Compared with the results presented in the studies [32,33], Table 7 shows that our proposed approach
achieved average acc/F1 values of 75.1%/68.8% in discriminating between the HAHV, LAHV, LALV
and HALV emotion classes using the top 25% feature selection scenario. These results indicate that the
performance of our proposed approach outperformed the results reported in [32,33].

To the best of our knowledge, a limited number of studies have investigated the effect of excluding
the neutral class on the accuracy of emotion classification. For example, Menezes et al. [4] studied the
effect of the neutral class by excluding the neutral samples defined based on the 1D-3CLS. The reported
average accuracy in discriminating between the HA/LA and HV/LV classes were 74% and 88.4%,
respectively. Compared with the results presented in [4], which were obtained after excluding the
neutral samples in the 1D-3CLS, our approach achieved average acc values of 89.8% and 88.9% in
discriminating between the HA/LA and HV/LV classes, respectively. These results indicate that our
approach is an improvement over the work presented in [4]. In addition to the conventional evaluations
of our proposed approach that we have performed based on the 1D-2CLS, 1D-3CLS and 2D-4CLS,
the present study took a further step by evaluating the performance of our proposed approach
in classifying the five emotion classes defined using the 2D-5CLS. To the best of our knowledge,
the 2D-5CLS has not been included in the performance evaluations reported in the previous literature.
Table 7 shows that, based on the 2D-5CLS labeling scheme, our proposed approach achieved average
acc/F1 values of 73.8%/61.9% in discriminating between the HAHV, LAHV, LALV, HALV and neutral
emotion classes using the top 25% feature selection scenario. In addition, the effect of excluding the
neutral samples in the 2D-5CLS was also investigated. The results presented in Table 10 indicate that
our proposed QTFD-based approach achieved average acc/F1 values of 79.3%/66.7% in discriminating
between the HAHV, LAHV, LALV and HALV emotion classes, which were obtained after excluding
the neutral samples, by employing the top 25% feature selection scenario. In fact, the results reported
in the current study suggest that the proposed approach provides a promising direction for decoding
different emotional states based on analyzing EEG signals using QTFDs. Table 11 provides a summary
of the classification accuracies obtained for the aforementioned emotion recognition approaches along
with the results obtained using our proposed QTFD-based approach.
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Table 11. Comparison of classification accuracies obtained for various previous approaches. EMD,
empirical mode decomposition; QTFD, quadratic time-frequency distribution; HOC, higher order
crossings.

Method Features and Classifier Number of Labeling Scheme Accuracy (%)

EEG Channels Arousal Valence

Koelstra et al. [24], 2012 Power spectral features, Gaussian naive
Bayes classifier

32 1D-2CLS 62.0 57.6

Chung and Yoon [28], 2012 Power spectral features, Bayes classifier 32 1D-2CLS 66.4 66.6

Rozgic et al. [27], 2013 Power spectral features, SVM 32 1D-2CLS 69.1 76.9

Liu et al. [26], 2016 Deep belief network-based features, SVM 32 1D-2CLS 80.5 85.2

Atkinson and Campos [31], 2016 Statistical, fractal dimension and band
power features, SVM

14 1D-2CLS 73.0 73.1

Tripathi et al. [29], 2017 Statistical time-domain features, neural
networks

32 1D-2CLS 73.3 81.4

Zhuang et al. [25], 2017 EMD-based features, SVM 8 1D-2CLS 71.9 69.1

Li et al. [52], 2017 Time, frequency and nonlinear dynamic
features, SVM

8 1D-2CLS 83.7 80.7

Yin et al. [17], 2017 Statistical and power spectral features,
neural networks

32 1D-2CLS 77.1 76.1

Our approach QTFD-based features, SVM 22 1D-2CLS 86.6 85.8

Menezes et al. [4], 2017 Statistical, Power spectral and HOC
features, SVM

4 1D-3CLS after excluding
the neutral samples

74 88.4

Our approach QTFD-based features, SVM 22 1D-3CLS after excluding
the neutral samples

89.8 88.9

Chung and Yoon [28], 2012 Power spectral, Bayes classifier 32 1D-3CLS 51.0 53.4

Jirayucharoensak et al. [30], 2014 Principle component analysis, deep
leaning network

32 1D-3CLS 52.0 53.4

Atkinson and Campos [31], 2016 Statistical, fractal dimension and band
power features, SVM

14 1D-3CLS 60.7 62.3

Menezes et al. [4], 2017 Statistical, power spectral and HOC
features, SVM

4 1D-3CLS 63.1 58.8

Tripathi et al. [29], 2017 Statistical time-domain features, neural
networks

32 1D-3CLS 57.5 66.7

Our approach QTFD-based features, SVM 22 1D-3CLS 78.8 77.8

Zheng et al. [32], 2017 STFT-based features, SVM 32 2D-4CLS 69.6

Zubair and Yoon [33], 2018 Statistical and wavelet-based features,
SVM

32 2D-4CLS 49.7

Our approach QTFD-based features, SVM 22 2D-4CLS 75.1

Our approach QTFD-based features, SVM 22 2D-5CLS after excluding
the neutral samples

79.3

Our approach QTFD-based features, SVM 22 2D-5CLS 73.8

4.5. Limitations and Future Work

Despite the promising results obtained using our proposed QTFD-based approach in recognizing
various emotion classes, there are several future research directions that we are planning to investigate
with the goal of improving the robustness, accuracy and applicability of our proposed emotion
recognition approach. In particular, we are planning to investigate the following five future
research directions:

• Firstly, in this study, we have utilized SVM classifiers to decode various emotion classes.
In fact, the selection of the SVM classifier was based on the fact that SVM classifiers have
been employed in the vast majority of the existing EEG-based emotion recognition studies,
which in turn simplifies the comparison between the performance of our proposed approach
and previous approaches. In addition, the SVM classifier has been reported in many previous
studies to achieve good classification performance compared with other classifiers. Nonetheless,
motivated by the recent promising results attained in analyzing physiological signals using deep
learning approaches [75], we are planning to investigate the use of deep learning approaches,
such as convolutional neural network (CNN), to extract time-frequency features from the
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constructed QTFD-based representation. Moreover, we intend to utilize the learned CNN-based
time-frequency features with other types of classifiers, such as long short-term memory (LSTM)
networks, which may provide a better description of how emotional states evolve over time.
In addition, the promising results reported in [12] that were obtained by analyzing multi-modality
emotion-related acquisition signals, such as visual, speech and text signals, using a deep learning
technique, such as CNN, suggest that utilizing different emotion-related input modalities might
improve the emotion classification performance. Therefore, in the future, we intend to employ
deep learning techniques to enhance the performance of our approach by analyzing different
emotion-related signals acquired using different modalities, including EEG signals, speech
and visual cues.

• Secondly, the nonstationary nature of the EEG signals and the inter- and inter-personal variations
in emotion responses impose the need to construct a large-scale and well-balanced dataset to
avoid classification bias and overfitting problems. Moreover, the recorded physiological responses
to stimuli in real-world applications may differ from the responses recorded in a well-controlled
environment. This implies that the results presented in this study may overestimate the
performance in real-world applications. Therefore, in the near future, we plan to acquire a
large-scale EEG dataset under realistic recording conditions to evaluate the effectiveness of our
proposed QTFD-based emotion recognition approach in real-world applications.

• Thirdly, our proposed approach, including the computation of the QTFD and the extraction of
the thirteen time-frequency features, was implemented using MATLAB (The MathWorks Inc.,
Natick, MA, USA). The QTFD and the feature extraction routines were executed on a computer
workstation with a 3.5-GHz Intel Xeon Processor (Intel Corporation, Santa Clara, CA, USA)
and 8 GB memory. The average ± standard deviation time required to compute the QTFD
for an EEG segment of length 512 samples is 9.1 ms ± 3.2 ms, and the average ± standard
deviation time required to extract the thirteen time-frequency features from the computed QTFD
is 34.2 ms ± 4.52 ms. Therefore, the average time required to compute the QTFD for the 22 EEG
channels in C4 is approximately 200.2 ms, while the average time required to compute the thirteen
time-frequency features for the 22 EEG channels in C4 is approximately 752.4 ms. Thus, the total
time required to compute the QTFD and extract the thirteen time-frequency features for the
22 EEG channels is approximately 952.6 ms, which is less than the duration of the utilized sliding
window (i.e., 4 s). This implies that our proposed approach can be used in real-world applications.
Nonetheless, we believe that there is still a room to improve the run-time of the proposed approach
using parallel computing technology, which allows the utilization of our approach in various
clinical applications.

• Fourthly, we are also planning to customize our proposed approach to target specific clinical
applications, such as pain detection. In particular, rather than classifying the emotion classes into
high versus low arousal/valence levels, which is the main goal of the current study, we plan in
the near future to extend our work by utilizing the extracted time-frequency features to estimate
the values of the arousal and valence scales associated with various emotional states. Such an
extension can be of great benefit for estimating the level of pain a patient is feeling, especially for
patients who are unable to verbally communicate their feelings.

• Finally, we plan to extend the analyses conducted in the current study from subject-dependent
analyses to subject-independent analyses. Such an extension can provide insight regarding the
ability of the proposed QTFD-based approach to recognize emotion classes for new subjects that
were not part of the training set, which can be of great benefit for several real-world applications.

5. Conclusions

Emotion recognition is an essential task to improve the performance of many human-machine
interaction procedures. This study introduces a new EEG-based emotion recognition approach that
employs a QTFD, namely the CWD, to construct a TFR of the EEG signals. In order to reduce the
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dimensionality of the constructed CWD-based TFR, a set of time-frequency features is extracted from
the CWD representation of each EEG segment. These features are used to classify different emotion
classes, which are defined based on four emotion labeling schemes, using subject-dependent SVM
classifiers. A publicly available EEG dataset has been employed to validate the performance of the
proposed approach using three different performance evaluation analyses. Moreover, the performance
of the proposed approach was compared with the performance reported in several state-of-the-art
EEG-based emotion recognition approaches. The results reported in the current study demonstrate
the feasibility of our proposed approach to enable accurate emotion recognition based on EEG
signal analysis.
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72. Stanković, L. A measure of some time-frequency distributions concentration. Signal Process. 2001, 81, 621–631.
[CrossRef]

73. Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Bhat, S.; Koh, J.E. Application of entropies for automated
diagnosis of epilepsy using EEG signals: A review. Knowl. Based Syst. 2015, 88, 85–96. [CrossRef]

74. Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Adam, M.; Koh, J.E.; Tan, J.H.; Ghista, D.N.; Martis, R.J.;
Chua, C.K.; et al. Automated detection and localization of myocardial infarction using electrocardiogram:
A comparative study of different leads. Knowl. Based Syst. 2016, 99, 146–156. [CrossRef]

75. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based
on physiological signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00521-015-2149-8
http://dx.doi.org/10.1142/S0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500
http://dx.doi.org/10.1186/s12859-016-1423-9
http://www.ncbi.nlm.nih.gov/pubmed/28049413
http://dx.doi.org/10.1109/TAFFC.2014.2339834
http://dx.doi.org/10.3390/s18030841
http://www.ncbi.nlm.nih.gov/pubmed/29534515
http://dx.doi.org/10.3390/s16101558
http://www.ncbi.nlm.nih.gov/pubmed/27669247
http://dx.doi.org/10.3390/app7040316
http://dx.doi.org/10.1007/s00521-017-3263-6
http://dx.doi.org/10.1016/j.compbiomed.2013.10.017
http://www.ncbi.nlm.nih.gov/pubmed/24290940
http://dx.doi.org/10.1016/S0013-4694(97)00147-8
http://dx.doi.org/10.1371/journal.pone.0085192
http://www.ncbi.nlm.nih.gov/pubmed/24416360
http://dx.doi.org/10.1007/s11042-015-3119-y
http://dx.doi.org/10.1016/j.ins.2007.11.012
http://dx.doi.org/10.1016/j.patcog.2014.08.016
http://dx.doi.org/10.1016/S0165-1684(00)00236-X
http://dx.doi.org/10.1016/j.knosys.2015.08.004
http://dx.doi.org/10.1016/j.knosys.2016.01.040
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29852952
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The DEAP Dataset
	Emotion Labeling Schemes
	EEG Signals Acquisition and Preprocessing
	Time-Frequency Analysis of EEG Signals
	CWD-Based Time-Frequency Features
	Emotion Classification
	Evaluation Analyses and Metrics

	Results
	Results of the Channel-Based Evaluation Analysis
	Results of the Feature-Based Evaluation Analysis
	Results of the Neutral Class Exclusion Analysis

	Discussion
	Channel-Based Evaluation Analysis
	Feature-Based Evaluation Analysis
	Neutral Class Exclusion Analysis
	Comparison with Other Studies
	Limitations and Future Work

	Conclusions
	References

