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Abstract: The phase quadrature measurement method is capable of measuring nonlinearity in
heterodyne laser interferometers with picometer accuracy whereas it cannot be applied in the new kind
of heterodyne interferometers with bidirectional Doppler frequency shift especially in the condition of
non-uniform motion of the target. To solve this problem, a novel measurement method of nonlinearity
is proposed in this paper. By employing double-channel quadrature demodulation and substituting
the external reference signal with internal ones, this method is free from the type of heterodyne laser
interferometer and the motion state of the target. For phase demodulation, the phase differential
algorithm is utilized to improve the computing efficiency. Experimental verification is carried out and
the results indicate that the proposed measurement method achieves accuracy better than 2 pm.

Keywords: laser interferometry; heterodyne laser interferometer; nonlinearity measurement;
double-channel quadrature demodulation

1. Introduction

Heterodyne laser interferometers are widely applied in precision metrology, nanotechnology,
and lithography due to their high accuracy and robustness [1–3]. With the development of science
and technology, it is badly in need of laser interferometers with picometer accuracy [4] such as
the next-generation laser interferometers. However, the improvement of the measurement accuracy
of heterodyne laser interferometers is seriously restricted by the nonlinearity [5–7], i.e., the periodic
nonlinear error. The measurement method of nonlinearity as an indispensable auxiliary tool plays
an essential role in developing the next-generation laser interferometers.

Several methods for measuring the nonlinearity of heterodyne laser interferometers have been
developed [8–10]. The most widely used method is the frequency domain method [8]. This method
is simple and convenient to operate, but it is only applicable to the cases with constant velocity.
Moreover, limited by the background noise of the spectrometer, picometer accuracy is not available for
this method. Another method is the displacement comparison method [9] when compared to an identical
displacement. By subtracting the result of an X-ray interferometer from that of a laser interferometer,
the nonlinearity can be obtained. Picometer accuracy is easily achieved by this method while the X-ray
interferometer is difficult to be replicated due to technique and cost issues and the measurement
process is complex because of the special property of X-rays. Benefited from lock-in amplification,
the phase quadrature measurement method [10] is promising in a nonlinearity measurement up to
picometer accuracy. In this method, the reference signal of the interferometer serves as the external
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reference signal of a lock-in amplifier in which there is a phase-locked loop that tracks the frequency of
the external reference signal. Then a pair of quadrature signals with the same frequency are generated
internally for the phase demodulation. The frequency of the external reference signal is expected to
keep constant or to vary slowly. Otherwise, the phase-locked loop might work in the tracing state
rather than the locked state [11], which will cause an error for phase demodulation. For the traditional
heterodyne laser interferometers, the frequency of the reference signal is of constant frequency, i.e.,
the split frequency of the laser source, so there is no such problem. For the next generation heterodyne
laser interferometers [12,13], most of them adopt an optical configuration with bidirectional Doppler
frequency shift (DFS), i.e., the measurement and reference signals have equal DFS but come with
an opposite sign. When the target is in fast and non-uniform motion, the frequency of the reference signal
will change rapidly. In this case, the existing phase quadrature measurement method is not applicable.

This paper presents a novel measurement method for nonlinearity in heterodyne laser
interferometers, which adopts the architecture of double-channel quadrature demodulation with
internal references and, thereby, is able to break through the limits in type of heterodyne laser
interferometers and in motion state of the target. In addition, the phase differential algorithm is
utilized to improve the computing efficiency. Experiments are carried out to verify the performance of
the proposed method.

2. Measurement Method for Nonlinearity Based on Double-Channel Quadrature Demodulation

The nonlinearity in heterodyne laser interferometers originates from the frequency mixing in
the reference and measurement arms [14–16]. In recent years, to avoid the nonlinearity, heterodyne
interferometers with spatially separated optical paths have been developed [12,13]. In this kind of
interferometers, the reference and measurement beams with slightly different frequencies are separated
spatially before interference. In theory, there is no frequency mixing and, thereby, the nonlinearity
can be completely avoided. However, an experimental study reveals that there is still nonlinearity
in this kind of interferometer and its source is ascribed to the multi-order DFS induced by ghost
reflection [17,18], i.e., the laser beams are repeatedly reflected between the beam splitter and the target.
To improve the resolution by a factor of two, this kind of heterodyne laser interferometer usually adopts
an optical layout with bidirectional DFS. Figure 1 shows the schematic of the formation mechanism of
the reference and measurement signals in this type of interferometer. Considering the multi-order DFS,
the reference and measurement signals can be expressed by the equation below.

Ir = A cos(∆ωt− ∆ϕ ) + α1 cos(∆ωt− 2∆ϕ) + α2 cos(∆ωt− 3∆ϕ) + . . .
= A cos(∆ωt− ∆ϕ) + ∑

m
αm cos(∆ωt + θm)

Im = B cos(∆ωt + ∆ϕ) + β1 cos(∆ωt + 2∆ϕ) + β2 cos(∆ωt + 3∆ϕ) + . . .
= B cos(∆ωt + ∆ϕ) + ∑

n
βn cos(∆ωt + δn),

(1)

where A and B are the amplitudes of the intended reference and measurement signals,
respectively. αm (m = 1, 2, 3, . . .) and βn (n = 1, 2, 3, . . .) are the amplitudes of the mth and
nth order nonlinear harmonics in the reference and measurement signals, respectively, generally
αm (m = 1, 2, 3, . . .) � A and βn (n = 1, 2, 3, . . .) � B. ∆ω = 2π∆ f = 2π( f 1 − f 2)

is the beat frequency, f1 and f2 are the optical frequencies of the dual-frequency laser source.
θm = −(m + 1)∆ϕ and δn = (n + 1)∆ϕ. ∆ϕ is the measured phase and can be calculated by using
Equation (2).

∆ϕ = 2π
w

fd dt, (2)

where fd is the DFS.
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Figure 1. Schematic of formation mechanism of the reference and measurement signals in heterodyne 
laser interferometers with spatially separated optical paths and bidirectional DFS. BS: beam splitter, 
MA: measurement arm, RA: reference arm, DFS: Doppler frequency shift, INF: interference. 

As indicated by Equation (1), the reference and measurement signals for the new type 
interferometer have equal DFS but come with an opposite sign. Therefore, the frequency of the 
reference signal is also determined by the motion state of the target. When the target is in non-uniform 
motion, the frequency of the reference signal is not constant. As mentioned above, in this case, the 
existing phase quadrature measurement method is not applicable. To solve this problem, a novel 
measurement method of nonlinearity based on a double-channel quadrature demodulation is 
presented, which is illustrated in Figure 2. This is realized in the field programmable gate array 
(FPGA). Compared with the traditional phase quadrature measurement method, there are two key 
distinctions. The first distinction is that the traditional method is based on a single lock-in amplifier 
while the new method adopted two lock-in amplifiers (a lock-in amplifier mainly consists of two 
mixers and two low pass filters). The second distinction is that, in the traditional method, the 
reference signal of the interferometer serves as the external reference of the lock-in amplifier while, 
in the new method, the external reference signal is abandoned. Instead, a pair of quadrature signals 
generated inside the FPGA are used as the reference signals of the lock-in amplifiers and both the 
reference and measurement signals of the interferometer serve as the measurement signals of the two 
amplifiers.  
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Figure 2. Schematic of the measurement method for nonlinearity in heterodyne laser interferometers 
based on a double-channel quadrature demodulation. 

Figure 1. Schematic of formation mechanism of the reference and measurement signals in heterodyne
laser interferometers with spatially separated optical paths and bidirectional DFS. BS: beam splitter,
MA: measurement arm, RA: reference arm, DFS: Doppler frequency shift, INF: interference.

As indicated by Equation (1), the reference and measurement signals for the new type
interferometer have equal DFS but come with an opposite sign. Therefore, the frequency of the reference
signal is also determined by the motion state of the target. When the target is in non-uniform motion,
the frequency of the reference signal is not constant. As mentioned above, in this case, the existing
phase quadrature measurement method is not applicable. To solve this problem, a novel measurement
method of nonlinearity based on a double-channel quadrature demodulation is presented, which is
illustrated in Figure 2. This is realized in the field programmable gate array (FPGA). Compared with
the traditional phase quadrature measurement method, there are two key distinctions. The first
distinction is that the traditional method is based on a single lock-in amplifier while the new
method adopted two lock-in amplifiers (a lock-in amplifier mainly consists of two mixers and two
low pass filters). The second distinction is that, in the traditional method, the reference signal of
the interferometer serves as the external reference of the lock-in amplifier while, in the new method,
the external reference signal is abandoned. Instead, a pair of quadrature signals generated inside
the FPGA are used as the reference signals of the lock-in amplifiers and both the reference and
measurement signals of the interferometer serve as the measurement signals of the two amplifiers.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 9 

 

MA1

RA1

RA2

MA2

f1+fd

f2+fd

f1

f2

Measurement 
signal

Reference
signal

BS

DFS

BS

INF

DFS
...

INF

f2+nfd

...

...

...

...

...

...

...
f1+mfd

...

f1+2fdf1

f2

f2+2fd

Δf-fd

...
Δf-mfd

Δf-2fd

Δf+fd

...
Δf+nfd

Δf+2fd

 
Figure 1. Schematic of formation mechanism of the reference and measurement signals in heterodyne 
laser interferometers with spatially separated optical paths and bidirectional DFS. BS: beam splitter, 
MA: measurement arm, RA: reference arm, DFS: Doppler frequency shift, INF: interference. 

As indicated by Equation (1), the reference and measurement signals for the new type 
interferometer have equal DFS but come with an opposite sign. Therefore, the frequency of the 
reference signal is also determined by the motion state of the target. When the target is in non-uniform 
motion, the frequency of the reference signal is not constant. As mentioned above, in this case, the 
existing phase quadrature measurement method is not applicable. To solve this problem, a novel 
measurement method of nonlinearity based on a double-channel quadrature demodulation is 
presented, which is illustrated in Figure 2. This is realized in the field programmable gate array 
(FPGA). Compared with the traditional phase quadrature measurement method, there are two key 
distinctions. The first distinction is that the traditional method is based on a single lock-in amplifier 
while the new method adopted two lock-in amplifiers (a lock-in amplifier mainly consists of two 
mixers and two low pass filters). The second distinction is that, in the traditional method, the 
reference signal of the interferometer serves as the external reference of the lock-in amplifier while, 
in the new method, the external reference signal is abandoned. Instead, a pair of quadrature signals 
generated inside the FPGA are used as the reference signals of the lock-in amplifiers and both the 
reference and measurement signals of the interferometer serve as the measurement signals of the two 
amplifiers.  

Icos
Φ=0°

Isin
Φ=90°

sinH

cosH

sinQ

cosQ

sinQsinH

cosQcosH

cosQsinH

sinQcosH

C

S

 ( )tδϕ

Low Pass
FilterOrthogonal mixing Phase differencing

Im

Ir

 
Figure 2. Schematic of the measurement method for nonlinearity in heterodyne laser interferometers 
based on a double-channel quadrature demodulation. 
Figure 2. Schematic of the measurement method for nonlinearity in heterodyne laser interferometers
based on a double-channel quadrature demodulation.
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The two quadrature signals generated inside the FPGA can be expressed as Icos = cosω0t and
Isin = sinω0t where ω0 is the angular frequency. As shown in Figure 2, in the first step, the internally
generated quadrature signals are mixed with reference and measurement signals of the heterodyne
interferometer, respectively. This operation is performed by four mixers. After low pass filtering,
the output of the mixers can be expressed by the equation below.

sin Q = − A
2 sin(∆ωt− ∆ϕ−ω0t) −

∑
m

αm

2 sin(∆ωt + θm −ω0t)

cos Q = A
2 cos(∆ωt− ∆ϕ− ω0t) +

∑
m

αm

2 cos(∆ωt + θm −ω0t)

sin H = − B
2 sin(∆ωt + ∆ϕ−ω0t)−

∑
n

βn

2 sin(∆ωt + δn −ω0t)

cos H = B
2 cos(∆ωt + ∆ϕ−ω0t) +

∑
n

βn

2 cos(∆ωt + δn − ω0t).

(3)

Based on Equation (3), the cosine component C(t) and sine component S(t) can be calculated using
the formula below. 

C(t) = sin Q sin H + cos Q cos H
= 1

4 AB cos(2∆ϕ) + 1
4 A∑

n
βn cos(∆ϕ + δn)

+ 1
4 B∑

m
αm cos(∆ϕ − θn) + 1

4 ∑
m

αm∑
n

βn cos(δn − θm)

S(t) = cos H sin Q − sin H cos Q
= 1

4 AB sin(2∆ϕ) + 1
4 A∑

n
βn sin(∆ϕ + δn)

+ 1
4 B∑

m
αm sin(∆ϕ − θm) + 1

4 ∑
m

αm∑
n

βn sin(δn − θm),

(4)

then the amplitude and phase can be calculated using Equations (5) and (6).

R(t) =
√

C(t) 2 + S(t)2

= 1
4{[AB cos(2∆ϕ) + A∑

n
βn cos(∆ϕ + δn)

+B∑
m

αm cos(∆ϕ − θm) + ∑
m

αm∑
n

βn cos(δn − θm)]2

+[AB sin(2∆ϕ) + A∑
n

βn sin(∆ϕ + δn)

+ B∑
m

αm sin(∆ϕ − θm) + ∑
m

αm∑
n

βn sin(δn − θm)]2}
1
2 ,

(5)

and
Φ(t) = arctan

[
S(t)
C(t)

]
= arctan

AB sin(2∆ϕ)+A∑
n

βn sin(∆ϕ+δn)+B∑
m

αm sin(∆ϕ−θm)+∑
m

αm∑
n

βn sin(δn−θm)

AB cos(2∆ϕ)+A∑
n

βn cos(∆ϕ+δn)+B∑
m

αm cos(∆ϕ−θm)+∑
m

αm∑
n

βn cos(δn−θm)
.

(6)

As the reference and measurement signals, Im and Ir have equal but opposite DFS. The theoretical
phase difference between them is 2∆ϕ. Therefore, the measurement error of phase is shown below.

δϕ(t) = Φ(t)− 2∆ϕ. (7)

By using the first order approximation of the Taylor expansion for Equation (6), Equation (7) is
expressed by the formula below.

δϕ(t) ≈ 1
A∑

m
αm sin(−θm − ∆ϕ) +

1
B∑

n
βn sin(δn − ∆ϕ). (8)
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Similarly, δR(t)/R(t) can be expressed by the equation below.

δR(t)
R(t)

=
R(t)− R0

R(t)
≈ 1

A∑
m

αm cos(−θm − ∆ϕ) +
1
B∑

n
βn cos(δn − ∆ϕ), (9)

where R0 is the amplitude when αm= βn = 0 (m, n = 1, 2, 3, . . .). Equations (8) and (9) are similar
in mathematical expressions except for a 90◦ phase delay. Thus, in real applications, to evaluate
the nonlinearity, we can calculate δR(t)/R(t) rather than δϕ(t) since the calculation of δR(t)/R(t) are
much easier to realize in practical applications. As shown by Equation (7), to calculate the phase error
δϕ(t), it is necessary to know the real phase 2∆ϕ. However, this is not easy to realize in practical
applications because it is extremely difficult to provide a controlled displacement at nanometer or
sub-nanometer level. Actually, in most of the practical applications, the real phase is an unknown value.
However, for calculating δR(t)/R(t), it is not necessary to know the real phase. To evaluate the system
nonlinearity, the phase delay is a negligible factor. Therefore, the nonlinearity can be calculated by the
equation below.

δLnonlin =
1
M

λ

2π
δϕ(t) =

1
M

λ

2π
δR(t)
R(t)

, (10)

where M is the optical fold factor and λ is the laser wavelength for the heterodyne laser interferometers
with bidirectional DFS, M = 4. For digital signals, δR(t)/R(t) can be calculated by the formula below.

δR(t)
R(t)

=
R(n)− R

R
, (11)

where

R =
1
N

N

∑
n=1

R(n). (12)

The above analysis shows the overall procedure of the proposed method for measuring the
nonlinearity in heterodyne laser interferometers. By adopting internal references for the lock-in
amplifiers, this method avoids the problems induced by frequency variation of external references,
which means it is no longer limited by the motion state of the target. By utilizing double-channel
quadrature demodulation, the method can be applied extensively to the new type heterodyne laser
interferometers with bidirectional DFS. In addition, for phase demodulation, it is not a simple
subtraction of the measured phases of the two lock-in amplifiers. Instead, the phase differential
algorithm is employed to improve computing efficiency.

3. Experiment Validation

To verify the proposed method, an experimental setup was established, which is shown in
Figure 3, where the waveform generator (Tektronix, AWG5012C, Beaverton, OR, USA) is used
to generate two signals that simulate the reference and measurement signals of the heterodyne
laser interferometers. The measurement of the nonlinearity is performed by the measuring circuit
in which the two signals from the waveform generator are first converted into digital signals by
the analog-to-digital converters (ADC) (AD9446, Analog Devices, Norwood, MA, USA) and then are
processed in the FPGA (EP3C120F780C8, Altera Corporation, Santa Clara, CA, USA). The method
described in Section 2 is realized in the FPGA and the results are sent to the personal computer through
a Universal Serial Bus (USB).
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Figure 3. Experimental setup for validating the proposed measurement method of nonlinearity in
heterodyne laser interferometers. ADC, analog-to-digital converter, FPGA, Field-Programmable Gate
Array, USB, Universal Serial Bus.

3.1. System Performance in Condition of Uniform Motion

To study the performance of the measurement system when the target is in uniform motion,
the waveform generator produced two simulated signals, which are shown below.

Ir = A cos(2π∆ f t− ∆ϕ )︸ ︷︷ ︸
MRS

+ α1 cos(2π∆ f − 2∆ϕ)︸ ︷︷ ︸
PRS1

+ α2 cos(2π∆ f t− 3∆ϕ)︸ ︷︷ ︸
PRS2

Im = B cos(2π∆ f + ∆ϕ)︸ ︷︷ ︸
MMS

+ β1 cos(2π∆ f + 2∆ϕ)︸ ︷︷ ︸
PMS1

+ β2 cos(2π∆ f + 3∆ϕ)︸ ︷︷ ︸
PMS2

. (13)

In Equation (13), only the first-order and second-order nonlinear harmonics are retained because
the higher order nonlinear harmonics are relatively quite small [12]. When the target moves at
a constant velocity υ, the measured phase ∆ϕ is calculated by the equation below.

∆ϕ = 2π
w

fd dt = 2π
w 2υ

λ
dt =

4πυt
λ

, (14)

where λ = 632.8 nm.
In Equation (13), the reference signal Ir consists of the main reference signal (MRS) and

the parasitic reference signals (PRS1–2) and the frequency of MRS, PRS1, and PRS2 are ∆ f − fd,
∆ f − 2 fd, and ∆ f − 3 fd, respectively. Similarly, the measurement signal Im consists of the main
measurement signal (MMS) and the parasitic measurement signals (PMS1–2) and the frequency of
MMS, PMS1, and PMS2 are ∆ f + f d, ∆ f + 2 f d, and ∆ f + 3 f d, respectively. In this experiment, the
beat frequency ∆ f and the DFS fd are set as 5 MHz and 0.5 MHz, respectively. The equivalent
velocity of the target is 0.1582 m/s. The ratio between the amplitudes of MRS, PRS1, and PRS2 is
set as 10,000:6:2. For MMS, PMS1, and PMS2, the ratio of the amplitudes is also set as 10,000:6:2. By
substituting these values into Equations (9) and (10), the theoretical magnitudes for the first-order
and second-order nonlinearities are calculated as 30.2 pm and 10 pm, respectively. Figure 4a,b
show the corresponding experimental results in time domain and frequency domain, respectively.
The overall nonlinearity shown in Figure 4a is the superposition of the first-order and second-order
periodic errors. By employing the Fast Fourier Transform (FFT) to the data in Figure 4a, the frequencies and
amplitudes for the first-order and second-order nonlinearities can be determined. As shown in Figure 4b,
the frequency and amplitude for the first-order nonlinearity are 0.5 MHz and 28.42 pm, respectively.
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For the second-order nonlinearity, the frequency and amplitude are 1.0 MHz and 8.42 pm, respectively.
Therefore, in this case, the measurement errors for the first-order and second-order nonlinearities are
1.78 pm and 1.58 pm, respectively.
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nonlinearity decreases, which indicates an accelerated motion of the target. Since the time length in 
Figure 5b–d is very short, the target velocity in each panel can be considered constant. By applying 
the FFT to the data in Figure 5b–d, the first-order and second-order nonlinearities can obtained, which 
are presented in Figure 5e–g, respectively. The frequencies of the first-order nonlinearity in Figure 5e–g 
are 0.035 MHz, 0.170 MHz, and 0.305 MHz, respectively, and the corresponding amplitudes are 28.50 pm, 
28.61 pm, and 28.57 pm, respectively. Similarly, the frequencies of the second-order nonlinearity in 
Figure 5e–g are 0.070 MHz, 0.340 MHz, and 0.610 MHz, respectively, and the corresponding amplitudes 
are 11.61 pm, 8.35 pm, and 8.39 pm, respectively. Both the first-order and second-order nonlinearities 
calculated from the above-mentioned three parts are close to the theoretical values and the max 
measurement error is about 1.7 pm, which indicates a good reliability of the proposed method. 
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Figure 4. Experimental results of nonlinearities in condition of uniform motion with
∆ f = 5 MHz, f d = 0.5MHz, A : α1: α2 = B : β1: β2 = 10, 000 : 6 : 2. (a) ime domain and;
(b) frequency domain.

3.2. System Performance in Condition of Non-Uniform Motion

To study the performance of the measurement system when the target is in non-uniform
motion, the waveform generator produced two simulated signals identical to that in Equation (13).
When the target moves with a constant acceleration a, the measured phase ∆ϕ is calculated by
the equation below.

∆ϕ = 2π
w

fd dt = 2π
w 2at

λ
dt =

2πat2

λ
. (15)

In this experiment, the beat frequency ∆ f is set as 5 MHz and the target acceleration is set as 5 m/s2.
In the reference signal Ir, the ratio between the amplitudes of MRS, PRS1, and PRS2 is set as 10,000:6:2.
In the measurement signal Im, the ratio between the amplitudes of MMS, PMS1, and PMS2 is also set
as 10,000:6:2. With these given values, the theoretical magnitudes of the first-order and second-order
nonlinearities can be calculated as 30.2 pm and 10 pm, respectively. Figure 5a shows the measured
nonlinearities in the time domain with the sampling times of 9.8 ms. Figure 5b–d is the partial enlarged
drawings of the beginning, middle, and end parts of Figure 5a. The time length of each part is 0.08 ms.
It can be seen that, with the increase of time, the period of the measured nonlinearity decreases,
which indicates an accelerated motion of the target. Since the time length in Figure 5b–d is very
short, the target velocity in each panel can be considered constant. By applying the FFT to the data
in Figure 5b–d, the first-order and second-order nonlinearities can obtained, which are presented in
Figure 5e–g, respectively. The frequencies of the first-order nonlinearity in Figure 5e–g are 0.035 MHz,
0.170 MHz, and 0.305 MHz, respectively, and the corresponding amplitudes are 28.50 pm, 28.61 pm,
and 28.57 pm, respectively. Similarly, the frequencies of the second-order nonlinearity in Figure 5e–g
are 0.070 MHz, 0.340 MHz, and 0.610 MHz, respectively, and the corresponding amplitudes are
11.61 pm, 8.35 pm, and 8.39 pm, respectively. Both the first-order and second-order nonlinearities
calculated from the above-mentioned three parts are close to the theoretical values and the max
measurement error is about 1.7 pm, which indicates a good reliability of the proposed method.
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enlarged drawings for the beginning, middle, and end parts of (a) with time length of 0.08 ms; (e–g)
spectrums of (b–d), respectively.

4. Conclusions

Measurement method of nonlinearity plays an essential role in the development of the heterodyne
laser interferometers with ultra-high accuracy. The application of the existing methods is restricted
by the type of interferometers and the motion state of the target. To break through these limits,
a novel measurement method is proposed in this study. By employing the double-channel quadrature
demodulation together with internal reference signals, this method is free from the heterodyne laser
interferometer and the motion state of the target. Additionally, for phase demodulation, the phase
differential algorithm is utilized to improve the computing efficiency. The experimental results show
that the proposed measurement method achieves accuracy better than 2 pm. This method is expected
to benefit the development of the next-generation laser interferometers.
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