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Abstract: An energy-based model is presented to establish the bending deformation of
microcantilever beams induced by single-stranded DNA (ssDNA) adsorption. The total free energy
of the DNA-microcantilever sensor was obtained by considering the excluded-volume energy and
the polymer stretching energy of DNA chains from mean-field theory, and the mechanical energy of
three non-biological layers. The radius of curvature and deflection of the cantilever were determined
through the minimum principle of energy. The efficiency of the present model was confirmed through
comparison with experimental data. The effects of length, grafting density, salt concentration,
thickness, and elastic modulus of substrate on tip deflections are also discussed in this paper.
These factors can significantly affect the deflections of the biosensor. This work demonstrates that it
is useful to develop a theoretical model for the label-free nanomechanical detection technique.
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1. Introduction

Microcantilever-based biosensors have attracted a great deal of attention due to their small
size, fast response, high sensitivity, low cost, and suitability for parallelization into arrays [1–3].
The label-free microcantilever-based biosensors have been used in the detection of small molecules [4],
microcystin–leucine–arginine [5], DNA hybridization [6], proteins–nucleic acids binding [7],
BRAF mutation in RNA from melanoma cells [8], water–DNA interactions [9,10], and human papilloma
virus infections [11].

When single-stranded DNA (ssDNA) adsorption occurs on one side of a cantilever in a solution,
a mechanical bending of the cantilever occurs due to the change in surface stresses, thereby translating
biochemical interactions into a nanomechanical response. Microcantilever-based biosensors have two
operation modes: static bending mode and dynamic frequency mode. Compared to static detection,
real-time dynamic detection is more challenging because the sensors are usually immersed in a liquid
environment. Recently, curvature measurements have been one of the most common techniques
for measuring stresses in film determined by DNA adsorption [12]. Many experiments have shown
that the deflections of a DNA-microcantilever sensor can be induced by three main types of factors:
(1) properties of the DNA chain, such as length, sequence, and grafting density [13]; (2) properties of
substrate, such as geometry, material, and shape [14,15]; (3) environmental changes, such as moisture
concentration [9], buffer salt solution concentration [16], and temperature [17]. However, the molecular
mechanism involved in adsorption-induced stress is not completely understood [12,18].
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The challenge in theoretically modeling such a complex system and developing the design
rules is that the DNA-microcantilever sensor is essentially a kind of biochemical-mechanical
coupling system [19]. The stress in the DNA film causes the bending of the cantilever. In return,
DNA interactions are modified by the bending cantilever. Recently, some methods were established
to understand this mechanical behavior. Based on a classical macroscopic piezoelectric theory,
Zhang et al. [20] developed a phenomenological model to interpret the bending of the cantilever.
According to Daoud and Cotton’s blob model for cylindrical polymer brushes; Hagan et al. [21]
presented a simplified two-layered model to study the influence of conformational entropy on such
motion. Subsequently, Tan and Zhang expanded upon this method by considering the effects of
coating thin layers on the mechanical energy of biosensors [22]. Utz and Begley [23] established a
relationship between molecular properties and adsorption-induced stresses in polymer brushes using
the thermal blob. However, the deflections from most of the abovementioned theories appear to be
smaller than the related experimental data. In this paper, we will present an alternative model for the
nanomechanics of microcantilevers induced by ssDNA adsorption.

This paper develops an energy-based method for the nanomechanics of ssDNA adsorption on
microcantilever sensors. The free energy of ssDNA film was obtained through mean-field theory.
The mechanical energy of three non-biological layers was considered. The radius of curvature and
deflection of the DNA-microcantilever sensor were obtained through the principle of minimum energy.
The deflections predicted by the present model were compared with experimental data. The effects of
DNA film properties (including chain length, grafting density, and salt concentration) and substrate
properties (including thickness, length, and elastic modulus) on deflections are also discussed.

2. Theory and Modeling

The DNA-microcantilever sensor is a multilayer structure, and is shown in Figure 1, which consists
of two parts: DNA film and non-biological layers. The non-biological layers include three layers [24].
Each of these non-biological layers has its own function. The silicon is used as the substrate structural
material of the cantilever. A thin gold film is deposited and patterned on one side of the cantilevers to
allow immobilization of biomolecules through gold-thiol (Au-S) bonds. For good adhesion between
gold and silicon, a thin chrome film is deposited on the silicon cantilever before the deposition of gold.
For simplicity, the non-biological layers are perfectly elastic and homogeneous. Assuming that the
interface bonding between different layers is perfect, the strain on the surface of two adjacent layers
must be equal during the bending of the cantilever. In addition, the ordered conformation of thiolated
ssDNA molecules on gold surfaces is assumed. The centroidal axis of the cantilever is taken as the
coordinate axis x; its vertical direction along the cantilever thickness is consistent with that of the
coordinate axis y. Here, l, b and h are the length, width and thickness, respectively; hAu, hCr, and hSi

represent the respective thicknesses, and h = hAu + hCr + hSi; EAu, ECr, and ESi are the respective
elastic moduli.
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Figure 1. Schematic showing a DNA-microcantilever sensor and its coordinate system: (a) before 

deformation; (b) after deformation. 

Figure 1. Schematic showing a DNA-microcantilever sensor and its coordinate system: (a) before
deformation; (b) after deformation.
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The total free energy of the DNA-microcantilever sensor can be written as:

Utot = Ue + Us + Um (1)

where Ue, Us, and Um are the excluded-volume energy, the polymer stretching energy, and the
mechanical energy of non-biological layers, respectively. Ue + Us represents the contribution from the
conformational entropy of the ssDNA chain.

According to a Flory-type mean-field argument for the excluded-volume energy per DNA
chain [25]:

Ue =
kBTvN2

d2hDNA

[
1 + hDNA

2(R+h/2)

] (2)

where R is the radius of curvature of the shape adopted by the cantilever; hDNA is the thickness of
the DNA film; N is the number of nucleotides per DNA chain; d ≈ 1/

√
η is the grafting distance of

the DNA chain, where η is the grafting density of the DNA chain; kB is the Boltzmann constant; T is
the absolute temperature; v = l2

s κ−1 is the excluded-volume parameter of a Kuhn segment, where
the unit of the equivalent freely-jointed chain is called a Kuhn segment; κ−1 is the local Debye length
(≈0.3 nm/

√
I), where I denotes the local salt concentration; ls (=1.5 nm) is the statistical segment

length [21].
Because the max deflections of the biosensor due to DNA adsorption are less than 10% of the

beam length, small deflections of cantilever beams are considered. For a small deflection, the radius of
curvature of the beam is much larger than the thickness in this model, that is, R >> h, from Equation (2).
An approximate expression of the excluded-volume energy per DNA chain can be written as:

Ue =
kBTvN2

d2hDNA

(
1 + hDNA

2R

) (3)

The polymer stretching energy of a Gaussian chain is written as [25]:

Us =
3kBTh2

DNA
2a2N

(4)

where a is the length of a Kuhn segment.
Because the beam deflection readout of each cantilever has an accuracy of 0.1 nm [26], the influence

of coating thin layers on the deflection cannot be neglected [27]. Therefore, in order to describe the
deformation more accurately, according to the linear elastic theory, the mechanical energy of three
non-biological layers (Si–Cr–Au) can be obtained as:

Um =
(EI)tot

2

(
d
R

)2
(5)

where (EI)tot is the total bending stiffness for multilayer beams, and it can be used as a substitute for
the bending stiffness of layers as follows [28]:

(EI)tot = 2n1 −
n2

2
2n3

(6)

In which n1 = b
24 [EAuhAu(3h2 − 6hhAu + 4h2

Au) + ESihSi(3h2 − 6hhSi + 4h2
Si) + ECr(h3 − 3h2hAu

+6hh2
Au − 4h3

Au − 3h2hSi + 6hh2
Si − 4h3

Si)], n2 = b
2 [EAuhAu(h− hAu) +ESihSi(hSi − h) + ECrhCr(hSi −

hAu)], n3 = b
2 (EAuhAu + ECrhCr + ESihSi)
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The dimensionless scaling variable α and dimensionless grafting density β is introduced
as follows:

α =
hDNA

2R
, β =

(
d

aNµ

)−2
(7)

where µ (=0.6) is the Flory exponent [22,23].
Substituting Equations (3)–(5) into Equation (1) and using the dimensionless variables α and β,

the total free energy of the DNA-microcantilever sensor can be written as:

Utot =
vβN4/5kBT

a2hDNA(1 + α)
+

3h2
DNAkBT
2a2N

+
2(EI)tot(aN3/5α)

2

βh2
DNA

(8)

By minimizing the total free energy with respect to α and hDNA, ∂Utot/∂α = 0 and
∂Utot/∂hDNA = 0, we can yield the following equations:

vβN4/5kBT

a2hDNA(1 + α)2 −
4(EI)tot(aN3/5)

2
α

βh2
DNA

= 0 (9)

vβN4/5.kBT
a2h2

DNA(1 + α)
− 3hDNAkBT

a2N
+

4(EI)tot(aN3/5α)
2

βh3
DNA

= 0 (10)

Solving Equation (9), the thickness of the DNA film can be obtained as:

hDNA =
4(EI)tota

4N2/5

kBTvβ2 α(α + 1)2 (11)

By combination of Equations (10) and (11), the radius of curvature of the DNA-microcantilever
sensor satisfies the following equation:

(1 + α)8α3 − γ3(2α + 1) = 0 (12)

where γ = kBT
4 3√3(EI)tot

(
v1/3

a

)4
N1/5β7/3.

Solving Equation (12) and substituting it into Equation (7) yields the radius of curvature. Using the
Euler–Bernoulli beam theory for a small deflection, the deflection of the cantilever is predicted by [27]

w(x) =
x2

2R
. (13)

Let x = l; then, the deflection of the free end of the cantilever δ can be easily obtained. According to
Equation (13), it can be found that δ ∝ l2, which indicates that the deflection of the free end of the
cantilever is proportional to the square of the beam length.

3. Results and Discussion

In computation, the geometrical parameters of the microcantilever are taken as: l = 800 µm,
b = 100 µm, hSi = 0.9 µm, hCr = 2.5 nm, hAu = 25 nm [24]; the material parameters are taken as:
ESi = 169 GPa [9], ECr = 279 GPa, EAu = 78 GPa; the other parameters: a = 0.22 nm [22],
kB = 1.38 × 10−23 J K−1, T = 298 K.

3.1. Comparison between Predicted and Experimental Radius of Curvatures

In order to illustrate the efficiency of the above method, a comparison between the predicted and
experimental radius of curvature is discussed. Strictly speaking, the chemical reaction is a long-term
process; it is a time-varying parametric process for real-time detections. Because DNA adsorption on
one surface of the cantilever is much slower than elastic deformation, the chemical reaction is a slow,
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time-varying dynamical process. Therefore, the deformation of the DNA-microcantilever biosensor
is treated as a static equilibrium problem. Based on the Langmuir isothermal adsorption theorem,
the adsorption between analytes and the surface cantilever can be depicted [26,29,30]. The surface
grafting density can be written as: η = η0(1−e−kt), where η0 is the grafting density of the DNA chain at
steady state, t is the adsorption time, and k is the rate constant. Figure 2 shows the radius of curvature
of a microcantilever-based DNA sensor as a function of adsorption time from the present model and
Jeon’s experimental data [24] when N = 20 nt, η0 = 0.05 chain nm−2, I = 1 M, and k = 0.8 × 10−3 s−1.
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Figure 2. Radius of curvature of a DNA-microcantilever sensor as a function of adsorption time.

Our analytical predictions generally agreed with Jeon’s experimental data. The radius of curvature
decreased with the enhancement of adsorption time. The reason is that the number of adsorbed DNA
chains increased with the increase of adsorption time, which enhanced the contribution from the
conformational entropy of DNA film. Thus, the bending cantilever became larger. However, at
the early stages of adsorption experiments (i.e., <1000 s), it was not really in agreement with the
experimental data. During the initial adsorption period, the adsorption of DNA molecules on gold
surfaces was random, and the conformation of DNA molecules was a disordered monolayer with the
nucleotide chain. Therefore, in such conditions, the ordered conformation assumption was no longer
suitable, which resulted in the difference between the radius of curvature from theoretical predictions
and experimental results in the early stages of the adsorption process.

3.2. Effect of Position on Deflections

To further validate this model, the steady deflection of the DNA-microcantilever sensor was
predicted. For the steady deflection, no further deflection occurred, suggesting that the adsorption
of thiolated DNA chains had reached an equilibrium coverage. The related parameters are the same
as those in Figure 2. The predicted steady deflection of the cantilever at each position when η = η0

is illustrated in Figure 3. For comparison purposes, the experimental data by Jeon et al. [24] are also
shown in Figure 3. Due to the lack of error bars of steady deflections in Jeon’s experiment, however,
there are no error bars in Figure 3. It can be seen that the analytical prediction is consistent with the
experimental results. The bending profile of the cantilever with a thiolated DNA chain closely follows
a circular trajectory. Because the contribution of interchain interactions of the DNA chain to motion is
relatively small, the Euler–Bernoulli beam theory can describe the nanomechanics of microcantilevers
induced by DNA adsorption.
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3.3. Effect of Chain Length of DNA Chain on Tip Deflections

In the microcantilever-based system, the steady deflection of the free end of the cantilever
(i.e., steady tip deflection) was detected to analyze the corresponding surface loadings (i.e., surface
stress) [13,16]. Experiments have shown that the steady tip deflection of a DNA-microcantilever sensor
can be induced by many factors. Here, Figure 4 shows the changes in steady tip deflections with
a nucleotide number at given salt concentrations (η = 0.05 chain nm−2). The steady tip deflections
are a strong function of the nucleotide number, and scale with N2. This result is in quantitative
agreement with that from the Monte Carlo (MC) simulations [21]. In addition, with the increase of
salt concentration, the steady tip deflection decreases. This reduces the relative contribution of the
excluded-volume energy of DNA film to nanomechanical motion.
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3.4. Effect of Thickness of Substrate on Tip Deflections

For improving the sensitivity and reliability of the microcantilever-based system, an approach of
changing the substrate properties has been developed [14,15]. The effect of the thickness of Si substrate
on deflection is discussed. Figure 5 shows the steady tip deflection of a microcantilever-based DNA
sensor as a function of the thickness of Si substrate under different grafting densities (N = 20 nt, I = 1 M).
The steady tip deflection decreases with the increase of Si thickness due to high bending stiffness
values. Therefore, in order to enhance the deflection signal, it is desirable to make the cantilever as
thin as possible. Additionally, the steady tip deflection increases as the grafting density increases.
The reason is that the contribution of conformational free energy of DNA film enhances, which causes
the increase of the steady tip deflection.
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under different grafting densities.

3.5. Effect of Elastic Modulus of Substrate on Tip Deflections

In addition to the effect of the thickness of substrate on tip deflections, the elastic modulus of
substrate also affects deflections. Figure 6 shows the steady tip deflection of a microcantilever-based
DNA sensor as a function of the elastic modulus of substrate Es under different nucleotide numbers
(η = 0.05 chain nm−2, I = 1 M). From the figure, the steady tip deflection decreases with the increase
of the elastic modulus of substrate at a given nucleotide number. As the elastic modulus of substrate
increases, the total bending stiffness for multilayer beams enhances, which decreases the steady tip
deflection. It can be inferred that a cantilever with a lower elastic modulus will produce a greater
deflection signal, such as polydimethylsiloxane (PDMS) [31,32]. Additionally, the steady tip deflection
increases as the nucleotide number increases.
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4. Conclusions

An energy-based model is presented to understand the bending deformation of microcantilevers
induced by ssDNA adsorption. The radius of curvature and deflection of the cantilever were
determined by minimizing the total free energy of the DNA-microcantilever sensor, which included the
excluded-volume energy and the polymer stretching energy of DNA film, and the mechanical energy
of three non-biological layers. The efficiency of the present model was confirmed through comparison
with Jeon’s experimental data. The predicted results showed that DNA adsorption can significantly
induce deflections of the cantilever, which depends not only on the length and grafting density of
DNA chain, but also on the salt solution concentration. It was also revealed that the thickness and
elastic modulus of substrate have significant effects on the deflections. This study will help to create
an optimal design of microcantilever-based biosensors. It should be noted that the assumption of
the ordered conformation of DNA adsorptions is unsuitable during the initial adsorption period.
In addition, some physical properties (pH, temperature, etc.) of the medium can affect the deflections
of the biosensors. The studies of the effects of the random adsorption and other physical properties of
the medium on deflections are worth investigating in the future.
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