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Abstract: Herein, we describe the fabrication of NiO decorated single wall carbon nanotubes
(NiO-SWCNTs) nanocomposites using the precipitation method. The synthesized NiO-SWCNTs
nanocomposites were characterized by X-ray diffraction (XRD) and Transmission electron microscopy
(TEM). Remarkably, NiO-SWCNTs and 1-butylpyridinium hexafluorophosphate modified carbon
paste electrode (CPE/NiO-SWCNTs/BPrPF6) were employed for the electrochemical detection of
vanillin. The vanillin sensor showed an ultra-high sensitivity of 0.3594 µA/µM and a low detection
limit of 0.007 µM. In the final step, the NiO-SWCNTs/BPrPF6 was used as the suitable tool for
food analysis.
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1. Introduction

The food analysis is an important strategy for the investigation of food quality [1]. The forbidden
additives must be checked by an analytical sensor before consuming by customer [2]. Ensuring the
safety of food can be checked by the analysis of food compounds. Although numerous analytical
methods are available to analyze foods—including gas chromatography [3], capillary electrophoresis [4],
spectrophotometry [5], resonance Raman spectroscopy [6], high-performance liquid chromatography [7],
and electrochemical sensors [8–13]. However, electrochemical sensors are better suited for this goal due
to portable ability, fast response, easy operation, and low cost [14–20]. Recently, chemically modified
sensors improved on the ability of electrochemical methods for analysis of trace amounts of food
or other electro-active materials [21–31]. With the growth of new nanomaterials and their unique
properties [32–34], the electrochemical sensors showed better ability for determination of electroactive
compounds, and especially, food products [35–40]. In addition, the coupling of nanomaterials
with other conductive mediators showed a powerful ability for trace level analysis of electroactive
materials [41–45].

Vanillin is a natural phenolic product with a great smell that is extensively used in food and
pharmaceutical products. This phenolic product can be synthesized by chemical methods. The high
level of vanillin in food or pharmaceutical products can cause an increased risk of allergic reactions
and so the control of its level is very important in food and pharmaceutical samples [46].
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In this research, a CPE/NiO-SWCNTs and 1-butylpyridinium hexafluorophosphate modified
carbon paste electrode (CPE/NiO-SWCNTs/BPrPF6) is employed for the electrochemical detection
of vanillin in food samples. The analytical ability of CPE/NiO-SWCNTs/BPrPF6 to determine the
quantity of vanillin is compared to that of recently developed technologies which use electrochemical
sensors (see Table 1). In addition, the proposed sensor showed other advantages compared to previous
suggested sensors such as easy preparation, low cost, and high sensitivity.

Table 1. The analytical data obtained by some previous voltammetric sensors for vanillin determination.

Electrode Mediator pH LDR (µM) LOD (µM) Ref.

carbon paste CdO/SWCNTs and ionic liquid 6.0 0.03–1200 0.009 [47]
carbon paste CuFe2O4 nanoparticles and ionic liquid 7.0 0.1–700 0.07 [48]
glassy carbon AuPd nanoparticles–graphene 0.1 M H2SO4 0.1–40 0.02 [49]

boron-doped diamond anodically pre-treated 2.5 3.3–9.8 0.167 [50]
acetylene black paste graphene–polyvinylpyrrolidone 0.1 M H3PO4 0.02–400 0.01 [51]

carbon paste NiO-SWCNTs and ionic liquid 6.0 0.01–350 0.007 This work

2. Materials and Methods

Vanillin, mineral oil, nickel nitrate hexahydrate, graphite powder, sodium hydroxide, single
wall carbon nanotubes-COOH, phosphoric acid, diethyl ether, and sulfuric acid were obtained from
Sigma-Aldrich. For experimental investigation, a stock standard solution of vanillin (10 mM) was
prepared daily by dissolving 0.038 g vanillin in 25 mL water solution.

The electrochemical study was performed using the PGSTAT 302 N system. TEM (Philips CM30,
300 kV) and X-ray powder diffraction instruments were used for the investigation of NiO-SWCNTs
structure and morphology.

The NiO-SWCNTs were synthesized according to our previous recommended procedure—the
chemical precipitation method with SWCNTs-COOH, nickel nitrate hexahydrate, and sodium
hydroxide as precursors [52].

2.1. Preparation of CPE/NiO-SWCNTs/BPrPF6

CPE/NiO-SWCNTs/BPrPF6 were prepared by mixing 0.95 g of graphite powder and 0.05 g
of NiO-SWCNTs in the presence of an appropriate amount of mineral oil and 1-butylpyridinium
hexafluorophosphate until a uniformly wetted paste was obtained. The paste was input into the end
of a glass tube in the presence of copper wire as a conductive binder.

2.2. Preparation of Real Sample

Coffee, milk, biscuit, and chocolate, were purchased and used for checking the ability of
NiO-SWCNTs/BPrPF6 to perform vanillin analysis in real samples. Ten real samples were obtained
from the local market and were ground using a mortar and pestle. Half a gram of powder or 0.5 mL
coffee was transferred in 5 mL ethanol solution and then sonicated for 1.0 h. The obtained samples,
including the vanillin extract, were centrifuged (3000× g rpm) for 50 min and directly used for
determination of vanillin by standard addition method.

3. Results

3.1. NiO-SWCNTs Morphological and Structure Investigation

The XRD pattern of NiO-SWCNTs are presented in Figure 1 and the results confirmed the FCC
structure for the NiO nanoparticle with a spherical shape and also the presence of a layer with miller
index (002) at 2◦~26◦ confirmed the presence of single wall carbon nanotubes. The TEM image of
NiO-SWCNTs matches the XRD results. The NiO nanoparticle decorated the surface of single wall of
carbon nanotubes (Figure 1 insert).
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Figure 1. The XRD image of NiO-SWCNTs. insert TEM image of NiO-SWCNTs. 

3.2. Electrochemical Behavior of Vanillin at the Surface of the Proposed Sensor 

The electrochemical behavior of vanillin at different pH values was investigated by the linear 

sweep voltammetric method (Figure 2 insert). The oxidation potential shifted to a negative value 

with increasing pH and the plot of E vs. pH showed a linear relation with the equation of E = −0.0639 

pH + 1.1064. As can be seen, the slope of E vs. pH is near to the Nernst equation for equal value of 

electron and proton (see the Scheme 1). 

 

Figure 2. The Ep. vs. pH curve for electro-oxidation of 350 μM vanillin. Insert the linear sweep 

voltammograms of 700 μM vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6 at 4.0 < pH < 8.0. 

Figure 1. The XRD image of NiO-SWCNTs. insert TEM image of NiO-SWCNTs.

3.2. Electrochemical Behavior of Vanillin at the Surface of the Proposed Sensor

The electrochemical behavior of vanillin at different pH values was investigated by the linear
sweep voltammetric method (Figure 2 insert). The oxidation potential shifted to a negative value
with increasing pH and the plot of E vs. pH showed a linear relation with the equation of
E = −0.0639 pH + 1.1064. As can be seen, the slope of E vs. pH is near to the Nernst equation
for equal value of electron and proton (see the Scheme 1).

Sensors 2018, 18, x FOR PEER REVIEW  3 of 9 

 

 

Figure 1. The XRD image of NiO-SWCNTs. insert TEM image of NiO-SWCNTs. 

3.2. Electrochemical Behavior of Vanillin at the Surface of the Proposed Sensor 

The electrochemical behavior of vanillin at different pH values was investigated by the linear 

sweep voltammetric method (Figure 2 insert). The oxidation potential shifted to a negative value 

with increasing pH and the plot of E vs. pH showed a linear relation with the equation of E = −0.0639 

pH + 1.1064. As can be seen, the slope of E vs. pH is near to the Nernst equation for equal value of 

electron and proton (see the Scheme 1). 

 

Figure 2. The Ep. vs. pH curve for electro-oxidation of 350 μM vanillin. Insert the linear sweep 

voltammograms of 700 μM vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6 at 4.0 < pH < 8.0. 

Figure 2. The Ep. vs. pH curve for electro-oxidation of 350 µM vanillin. Insert the linear sweep
voltammograms of 700 µM vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6 at 4.0 < pH < 8.0.



Sensors 2018, 18, 2817 4 of 9
Sensors 2018, 18, x FOR PEER REVIEW  4 of 9 

 

 

Scheme 1. The electro-oxidation mechanism of vanillin. 

The maximum value of current for electro-oxidation of vanillin occurred at pH = 6.0 and this 

condition was selected for the next steps. 

The linear sweep voltammograms of vanillin at the surface of the CPE/NiO-SWCNTs/BPrPF6 

(curve a), CPE/BPrPF6 (curve b), NiO-SWCNTs (curve c), and CPE (curve d) was recorded (Figure 3). 

With moving of CPE to NiO-SWCNTs/BPrPF6, the oxidation signal of vanillin increased and the 

oxidation potential of vanillin decreased. This phenomenon can be attributed to the presence of 

NiO-SWCNTs and CPE/BPrPF6 at a surface of the carbon paste electrode. The NiO-SWCNTs and 

CPE/BPrPF6 improved the oxidation current of vanillin ~11.9 times and decreased the oxidation 

overpotential of vanillin by approximately 50 mV. 

 

Figure 3. Linear sweep voltammograms of 800 μM vanillin at a surface of (a) 

CPE/NiO-SWCNTs/BPrPF6; (b) CPE/BPrPF6, (c) CPE/NiO-SWCNTs; and (d) CPE. 

The linear relation between oxidation current of vanillin and ν1/2 (Figure 4) confirm the 

diffusion process for electro-oxidation of vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6. The 

oxidation potential of vanillin shifted to a positive value with increasing in-scan rates that confirm 

an irreversible process for electro-oxidation of vanillin (Figure 4 inert). 

Scheme 1. The electro-oxidation mechanism of vanillin.

The maximum value of current for electro-oxidation of vanillin occurred at pH = 6.0 and this
condition was selected for the next steps.

The linear sweep voltammograms of vanillin at the surface of the CPE/NiO-SWCNTs/BPrPF6

(curve a), CPE/BPrPF6 (curve b), NiO-SWCNTs (curve c), and CPE (curve d) was recorded (Figure 3).
With moving of CPE to NiO-SWCNTs/BPrPF6, the oxidation signal of vanillin increased and the
oxidation potential of vanillin decreased. This phenomenon can be attributed to the presence of
NiO-SWCNTs and CPE/BPrPF6 at a surface of the carbon paste electrode. The NiO-SWCNTs and
CPE/BPrPF6 improved the oxidation current of vanillin ~11.9 times and decreased the oxidation
overpotential of vanillin by approximately 50 mV.
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Figure 3. Linear sweep voltammograms of 800 µM vanillin at a surface of (a)
CPE/NiO-SWCNTs/BPrPF6; (b) CPE/BPrPF6, (c) CPE/NiO-SWCNTs; and (d) CPE.

The linear relation between oxidation current of vanillin and ν1/2 (Figure 4) confirm the diffusion
process for electro-oxidation of vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6. The oxidation
potential of vanillin shifted to a positive value with increasing in-scan rates that confirm an irreversible
process for electro-oxidation of vanillin (Figure 4 inert).
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Figure 4. The plot of current vs. ν1/2 for electro-oxidation of vanillin at a surface of
CPE/NiO-SWCNTs/BPrPF6. Insert the linear sweep voltammograms of vanillin at a surface of
CPE/NiO-SWCNTs/BPrPF6 at scan rates of (a) 10.0; (b) 20.0; (c) 30.0; (d) 60.0; and (e) 100 mV/s.

The value of diffusion coefficient (D) was determined by obtained data from chronoamperometric
investigation (Figure 5A).
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Figure 5. The chronoamperograms of CPE/NiO-SWCNTs/BPrPF6 in the presence of (a) 100 and
(b) 200 µM vanillin. (B) Cottrell’s plot for the data from the chronoamperograms.

Using the slopes from Figure 5B and Cottrell equation (Equation (1)), we determined the value of
D ~3.57 × 10−6 cm2 s−1.

I = nFAD1/2 C π1/2 t1/2 (1)

The square wave voltammetric method was used for investigation of the linear dynamic range and
limit of detection of vanillin at a surface of CPE/NiO-SWCNTs/BPrPF6 (Figure 6 inset). We detected a
linear dynamic range 0.01–350 µM with a detection limit of 0.007 µM (LOD = 3SB/m) for vanillin at a
surface of CPE/NiO-SWCNTs/BPrPF6 (Figure 6).
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Figure 6. The current-concentration curve for electro-oxidation of vanillin in the range of 0.01–350.0 µM.
Insert the square wave voltammograms of vanillin at surface of CPE/NiO-SWCNTs/BPrPF6 in the
concentration range of 0.01–350.0 µM.

The selectivity of CPE/NiO-SWCNTs/BPrPF6 for determination of vanillin was checked by an
acceptable error of 5% in current (the obtained currents were compared before and after the addition of
interference). The 1000-fold of K+, Na+, Cl−, glucose, and 300-fold of folic acid, vitamin B6, vitamin B1,
and tartrazine had no influence on the determination of vanillin.

The ability of CPE/NiO-SWCNTs/BPrPF6 was checked for determination of vanillin in coffee
milk, biscuit, and chocolate samples. The results are presented in Table 2. According to the results in
Table 1, the CPE/NiO-SWCNTs/BPrPF6 was suggested as a powerful sensor for vanillin analysis in
food samples.

Table 2. Determination of vanillin in real samples (n = 4).

Sample Added (µM) Expected (µM) Founded (µM) Recovery %

Coffee milk
— — 4.12 ± 0.44 —

10.00 14.12 14.43 ± 0.65 102.19

Chocolate
— — 1.95 ± 0.24 —

10.00 11.95 11.75 ± 0.59 98.32

Biscuit
— — 4.56 ± 0.67 —

10.00 14.56 14.98 ± 0.87 102.88

4. Conclusions

This work described fabrication of a highly sensitive and new sensor for determination of vanillin
in food samples. The presence of NiO-SWCNTs and BPrPF6 at a surface of a carbon paste electrode
improved the ability of the sensor for analysis of vanillin at the nanomolar level. The NiO-SWCNTs
and CPE/BPrPF6 improved the oxidation current of vanillin ~11.9 times and decreased the oxidation
overpotential of vanillin by ~50 mV. The CPE/NiO-SWCNTs/BPrPF6 showed a powerful ability for
determination of vanillin in food samples such as coffee milk, biscuit, and chocolate.
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