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Abstract: The mechanical properties of parallel bamboo strand lumber beams could be improved
by aramid fiber reinforced polymer (AFRP). So far, no investigation has been conducted on
the strengthening of engineering bamboo beams using AFRP. In order to study the efficiency of
AFRP reinforcement on parallel bamboo strand lumber beams, 13 beams had been tested and
analyzed. Strain gauges and Laser Displacement Sensors were used for the tests. By sensing the
strain and deformation data for the specimens under the applied loads, the results showed that
AFRP can effectively improve the flexural mechanical properties of parallel bamboo strand lumber
beams. However, this reinforcement cannot increase the deflection of bamboo beams indefinitely.
When the cloth ratio was 0.48, the deflection of the specimens reached its maximum. With the increase
of cloth ratio, the stiffness of parallel bamboo strand lumber beams was increasing. When the cloth
ratio reached 0.72%, compared with the un-reinforced specimen, the stiffness increased by 15%.
Therefore, it can be inferred that bonding AFRP on the considered specimens can increase the stiffness
of parallel bamboo strand lumber beams. The ductility of the specimen can be effectively enhanced by
adopting the AFRP provision.

Keywords: AFRP; strain measuring; laser displacement sensors; damage identification; parallel bamboo
strand lumber beams; composite structures

1. Introduction

Due to its high strength, light-weight, renewable, and environment-friendly characteristics,
bamboo has attracted the attention of many scholars [1–22]. Bamboo culm can be disassembled into
long bamboo strands [23–28]. After some treating processes, all strands can be put into molds and
pressed into parallel bamboo strand lumber (PBSL) [23–36]. Due to its high strength, uniform material,
and good processing performance, more and more experts and scholars [23–36] have carried out
experimental research on it.

The mechanical properties for PBSL have been studied by many scientists [23–36]. Wang et al. [23]
have researched the control system of automatic bamboo scrimber cold pressing units. Yu et al. [24]
have studied the fabrication, material properties, and application of PBSL. Gong et al. [25] investigated
the tensile and compressive strength of PBSL. Shangguan et al. [26] proposed strength models for
PBSL under compression and they also studied the effects of heat treatment on the properties of
PBSL [27]. Kumar et al. [28] investigated the influence of density on the mechanical and water

Sensors 2018, 18, 2854; doi:10.3390/s18092854 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18092854
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/9/2854?type=check_update&version=2


Sensors 2018, 18, 2854 2 of 15

absorption properties. Xu et al. [29] studied the compressive and tensile properties of a bamboo
scrimber at elevated temperatures. Yu et al. [30] studied the preparation, physical, mechanical, and
interfacial morphological properties of PBSL. Sharma et al. [31] investigated the basic mechanical
properties of PBSL. Zhong et al. [32] examined the design value of the compressive strength for bamboo
fiber-reinforced composite based on reliability analysis. The effect of eccentricity ratio properties of
50 (PBSL) column specimens of parallel bamboo strand lumber columns under eccentric compression
was measured by Li et al. [33]. Zhong et al. [34] investigated the bending properties of newly
designed reinforced bamboo scrimber composite beams. The results show that eccentricity ratio
is the most important factor affecting the bearing capacity of columns. Su et al. [35] investigated the
mechanical properties and ductility failure of parallel bamboo strand lumber columns under axial
compression. Zhong et al. [36] studied the compressive strength of bamboo reconstituted wood at
different temperatures and provided the basis for fire prevention of bamboo materials.

In recent years, FRP has been widely used in the field of civil engineering [37–40] because of
its advantages of high strength, corrosion resistance, light-weight, simple construction, and so on.
Many experts began to use FRP to strengthen many kinds of materials [39–45]. Wang [41] tried to
strengthen double-edged cracked steel plates by FRP. Liu [42] presented a crack monitoring method
for an FRP-strengthened steel structure deploying a microstrip antenna sensor. Tang [43] developed
a new type of self-sensing fiber reinforced polymer (FRP) bar. In order to make better use of FRP,
many new methods are provided for monitoring of FRP Structures [42–47]. Many experts and scholars
also began to use FRP cloth to strengthen the mechanical properties of bamboo reconstituted wood.
Using different FRP types, the mechanical buckling properties of glued wood columns with different
slenderness ratios were tested and studied by Taheri [47]. Based on Euler's formula, the formula for
calculating yield load of FRP confined glued wood columns was inferred. Research results showed that
the compressive strength and stiffness of glued wood columns could be improved by FRP fiber cloth.
Awaludin et al. [48] chose FRP fiber cloth and natural fiber to strengthen bamboo joints. Considering
the effect of different loading directions, the mechanical properties of the joints have been examined
through experimental study. Qin [49] studied the bending behavior of BFRP composite bamboo beams.
Zhang [50] investigated the mechanical behavior of wood beams strengthened with carbon fiber sheets.

Up to now, although more and more experts are paying attention to FRP PBSL beams, their study
is still limited, particularly for AFRP reinforced beams. Considering the cloth ratio, this paper aims to
investigate how AFRP influences the mechanical properties of PBSL beams.

2. Materials and Methods

2.1. The Specimens

With the size of 80 mm × 100 mm × 1860 mm, 13 beam specimens were designed considering
AFRP cloth ratios. Detailed information can be seen from Table 1. The cross section for the beam can
be seen from Figure 1a. PBSL was made from Jiangxi Feiyu Bamboo Group Co. Ltd. (Fengxin, China).
With a thickness of 0.193 mm, AFRP were bought from Carbon Composites Materials Co. Ltd. from
Tianjin, China. The test tensile strength and elastic modulus of AFRP were 1893 MPa and 2023 GPa,
respectively. The specimens are divided into four groups according to the layer of AFRP. No AFRP cloth
was pasted for Group NAP. As for LAP1, LAP2, and LAP3, 1 layer, 2 layers, and 3 layers were pasted on
the bottom of each group, respectively. AFRP covered the whole bottom surface as show in Figure 1b.
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Table 1. Main parameters of specimen.

Group l/mm FRP n Number b/mm h/mm λ

NAP 1860 — — 4 80 100 5.8
LAP1 1860 AFRP 1 3 80 100 5.8
LAP2 1860 AFRP 2 3 80 100 5.8
LAP3 1860 AFRP 3 3 80 100 5.8

Note: l is the length of the specimens; n is the Number of sticker layers; b is the width of the specimens; λ is the shear
span ratio.

Figure 1. Parallel bamboo beam specimens. (a) is the cross section; (b) is the bottom of specimen
with AFRP.

2.2. Test Design

The test setup is shown in Figure 2. The loading system was designed according to
the GB/T50329-2012 Standard for test methods of wood structure. A 100 kN electro-hydraulic servo
testing machine produced by Hangzhou Bangwei Electromechanical Control Engineering Co. Ltd.
(Hangzhou, China) was adopted for the testing. Data acquisition was carried out by TDS-530 static
data acquisition instrument with acquisition precision of 0.1 µε. The static monotonic loading method
was chosen, which combines load control with displacement control. The load was controlled by
the load before 80% of the ultimate load, then the displacement control started until the end of the
loading. The loading speed did not exceed the calculated value from formula (1) [51].

v = 5 × 10 −5 × a
3h

(3l − 4a) (1)

Among them: a is the distance between the beam support point and the nearest loading point, h is
the height of the specimen, and l is the calculation length of the beam specimen.
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Figure 2. Test setup.

The arrangement of the strain gauges is shown in Figure 2. Seven strain gauges (numbered from
top to bottom) were installed along the height of the cross section in the middle span of the specimens.
Three laser displacement sensors (LDS) were used to measure the displacement of the two beam
supports and the middle deflection. The applied load is measured by a load sensor which is connect to
the actuator.

3. Test Results and Analysis

3.1. Damage Patterns and Analysis

3.1.1. PBSL Beams

Failure photos on the side surfaces and bottom surfaces are shown in Figure 3. All specimens
experienced elastic stage, elastic-plastic stage, and failure stage. Typical bending failure happened for
all four beams. The first crack always appeared on the bottom surfaces in the pure bending area for
the beams. Natural bamboo joints are the main reason for the first cracks.

Figure 3. Cont.
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Figure 3. This is the failure photos for parallel bamboo strand lumber (PBSL) beams: (a) is the side
surfaces; (b) is the bottom surface.

3.1.2. AFRP Strengthened PBSL Beams

Three typical failure modes were classified for AFRP strengthened PBSL beams. Figure 4
shows typical failure photos for mode I. Both the AFRP and bamboo fibers broke at the bottom of
the beam. Taking LAP1-3 as an example, there was no evident phenomenon at the initial loading stage.
With the increase of load, a slight noise appeared when the load value was 51.2 kN and the deformation
was evident for the beam. After a short while, the first crack for AFRP appeared in the middle pure
bending area. As the loading value became bigger and bigger, more and more cracks appeared in the pure
bending part. AFRP cloth was pulled off little by little. The loading value decreased quickly after the peak
load value of 57.5 kN with displacement of 55.6 mm and was finally crushed. There was no evident crack
on the compression surface during the whole loading process. This failure mode was due to the fact that
the ultimate tensile strain of bamboo fiber was smaller than the ultimate tensile strain of AFRP cloth
in general. A sudden breaking of bamboo fibers caused a certain retraction, which made the stress of
AFRP cloth suddenly increase and reached the ultimate tensile strain. Thus, the damage was produced.
This failure mode also happened to AP2-2.

Figure 4. This is the typical failure photos for mode I (LAP1-3): (a) side surface; (b) bottom surface.

Typical failure photos for side surface and bottom surface for mode II are shown in Figure 5.
Only one specimen (LAP1-2) belongs to this failure mode. At the beginning of the test, there was no
evident phenomenon in the specimen. As the load increased, the first noise appeared with the load
value of 44 kN. The first crack appeared in the inner part of PBSL beam but not the AFRP sheet.
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With the increase of load, more and more cracks happened in the inner part of the beam. The AFRP
sheet split longitudinally along the beam length in the middle span when the load value was close
to the ultimate load. After achieving the ultimate load 45.4 kN with the displacement of 48.5 mm,
the specimen was crushed suddenly with rapid decreasing of the load. There was no evident crack on
the compression surface.

Figure 5. This is the typical failure photos for mode II (LAP1-2): (a) side surface; (b) bottom surface.

Figure 6 shows typical failure photos for mode III. LAP3-3 was chosen as an example to illustrate the
failure process. Similar to the other specimens, no evident failure phenomenon except the deformation
could be seen during the elastic stage. A slight noise could be heard with the loading value of 46.7 kN.
Cracks appeared firstly in the inner part of PBSL but no clear failure phenomenon could be seen for AFRP
sheet. After the peak load value of 67.6 kN with the displacement of 70.8 mm, the beam was crushed
suddenly. After finishing the loading, no cracks can be seen for AFRP cloth but the glue between AFRP
and bamboo doesn’t work in the middle one third part of the beam. The 5 other specimens failed similarly
as LAP3-3 which are LAP1-1, LAP2-1, LAP2-3, LAP3-2, and LAP3-3. While for LAP3-1, the failing process
is similar as mentioned above and the only difference is that most part of AFRP sheet is separated from
the beam as shown in Figure 7.

Figure 6. This is the typical failure photos for mode III (LAP3-3): (a) side surface; (b) bottom surface.
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Figure 7. Failure photos for LAP3-1.

As discussed above, it was noticed that the specimens with three layers of AFRP began to break
when the loading value was about 90–99% of the ultimate load, and the specimens with two layers of
AFRP began to break at 86–98% of the ultimate load. While the specimens with one layer of AFRP
started to fail when the load was about 71–91% of the ultimate load. However, cracks appeared
firstly when the load value was about 64–91% of the ultimate load for the specimens without AFRP.
AFRP cloth could effectively improve the mechanical performance of PBSL beams, and the initial
failure load increases with the increase of cloth ratio.

3.2. Results of the Test

The AFRP cloth ratio for the beams could be calculated as the following [51].

ρ =
AS

bh
(2)

AS is the cross-sectional area of the AFRP cloth, b and h are the width and height for the beam
cross-section, respectively.

The strength of the beams could be calculated by the following formula [51].

fm =
aFu

2W
(3)

a is the distance from the loading point to the nearest beam support (the values for all specimens are
580 mm), Fu is the ultimate load for the specimen (N), and W is the section modulus of the specimen (mm3).

The flexural rigidity EI for the specimens could be calculated by the following equation [51].

EI =
a∆F
48∆ω

(3L2 − 4a2) (4)

E is the experimental modulus of elasticity before the proportional ultimate load, I is the cross
section moment of inertia of the specimen (mm4), ∆F is the load increment of elastic stage (N),
∆ω is the deflection increment in span corresponding to load increment in elastic stage (mm), and L is
specimen span (mm).

Based on the designed parameters for the beam specimens, a = L/3, formula 4 could be simplified
as the following.

EI =
23PL3

1296ω
(5)

P is the proportional limit load (N), ω is the displacement in the middle span corresponding to
the proportional ultimate load of the specimen (mm).

The ductility coefficient µ∆ could be calculated according to Formula (6) [51].

µ∆ =
w0.85

wu
(6)

w0.85 is the mid-span displacement when the load value falls to 85% of the ultimate bearing capacity,
wuis the mid-span displacement of specimens for the ultimate bearing capacity.

The test data were summarized and sorted, and the results are shown in Table 2.
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Table 2. Test results.

Group ρ Fu/kN wu/mm α EI/kN·m2 µ∆

NAP-1 — 50.8 41.56 — 166.3 0.82
NAP-2 — 56.8 54.42 — 167.6 0.93
NAP-3 — 56.1 48.43 — 175.8 1.22
NAP-4 — 51.0 47.72 — 164.9 1.21

Average — 53.7 48.03 — 168.6 1.04

LAP1-1 0.24% 56.0 54..89 4.2% 209.3 1.14
LAP1-2 0.24% 48.3 48.46 −10.0% 137.9 1.07
LAP1-3 0.24% 57.8 55.56 7.6% 174.1 1.15
Average — 54.0 52.97 0.6% 173.8 1.12

LAP2-1 0.48% 61.6 72.73 14.6% 163.1 1.26
LAP2-2 0.48% 59.7 64.72 11% 160.6 1.12
LAP2-3 0.48% 53.3 61.98 −0.69% 187.5 1.00
Average — 59.5 66.48 10.8% 170.4 1.13

LAP3-1 0.72% 78.9 65.10 46.9% 220.8 1.18
LAP3-2 0.72% 70.2 58.12 30.8% 184.9 1.21
LAP3-3 0.72% 67.5 70.77 25.7% 177.2 1.25
Average — 72.2 64.66 34.5% 194.3 1.22

Note: wu is the displacement in the middle span corresponding to the ultimate load; α = (Fu − 53.7)/53.7, is
the percentage increase for ultimate bearing capacity.

It can be seen from Table 2 and Figures 8 and 9 that AFRP cloth can effectively increase the bending
properties of parallel bamboo strand lumber beams. With the increase of the cloth ratio, the ultimate
flexural capacity is also increased. The average ultimate load of the unreinforced parallel bamboo
strand lumber beams is 53.7 kN. The ultimate bearing capacity of the composite beams with three
layers of cloth is larger than that of the beams with two layers of cloth and the beams with one layer of
cloth, which are larger than those with a non-adhesive cloth. When the cloth ratio is 0.24%, the bearing
capacity is increased by 0.6%, and when the cloth ratio is 0.48%, the bearing capacity is increased
by 10.8%. When the cloth ratio is 0.72%, the bearing capacity is increased by 34.5%. It can also be
observed from the data that the ultimate bearing capacity of LAP1-2 is extremely low, which is due to
the inherent damage in the beam.

As can be seen from Figure 10, the ultimate deflection increases obviously with the increase of
cloth ratio when the cloth ratio is less than 0.48%. The deflection of the specimens with a cloth ratio of
0.48% and a cloth ratio of 0.72% is similar. It is proved that AFRP cannot increase the deflection of the
beam indefinitely.

Figure 11 shows the variation trend for the flexural rigidity values with the increase of cloth ratios.
Overall, the flexural rigidity increases when the cloth ratio increases. Group LAP1 has the largest
discreteness among the four groups. When the cloth ratio reaches 0.72%, the mean flexural rigidity
value of the specimen increases by 15% compared with the beams without AFRP cloth. It is concluded
that bonding AFRP could improve the stiffness of the beam. Based on the test results, the following
formula can be used to express the relationship between flexural rigidity and AFRP cloth ratio.

EI = 794793ρ2 − 2602ρ + 170, (0 ≤ ρ ≤ 0.0072), (R2 = 0.2071) (7)

E is the elastic modulus, I is the moment of inertia of the cross section of the specimen (mm4), ρ is the
cloth ratio for AFRP.

Figure 12 plots how the values of ductility change with the increase of cloth ratios. It can be seen
that the ductility values become bigger and bigger with the increase of cloth ratios. AFRP cloth can
enhance the ductility of the beams. The relationship between the ductility coefficient and the cloth
ratio could be expressed as follows.
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µ∆ = 21.471ρ + 1.0486, (0 ≤ ρ ≤ 0.0072), (R2 = 0.2153) (8)

µ∆ is the ductility coefficient, ρ is AFRP cloth ratio.

Figure 8. Load–deflection curve.

Figure 9. Ultimate load–cloth ratios trend curve.

Figure 10. Ultimate deflection–cloth ratios trend curve.

Figure 11. Stiffness–cloth ratios trend curve.
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Figure 12. Ductility factor–cloth ratios trend curve.

Table 3 shows the mid-span displacement comparison under different load values for all four
groups. As it can be noticed from Table 3, under the same load, the mid-span displacement of
the AFRP PBSL beams is smaller than that for PBSL beams, which indicates that AFRP plays a certain
role in strengthening the stiffness of the specimen. Especially for group LAP3, the average mid-span
displacement of the specimens is obviously smaller than that of other specimens.

Table 3. Mid-span displacement comparison under various loads.

F/kN w0/mm w1/mm w2/mm w3/mm α1 α2 α3

10 6.28 5.51 5.24 5.28 12.1% 16.4% 15.8%
20 12.02 11.18 11.17 10.21 7.0% 7.1% 15.0%
30 18.21 17.51 17.77 15.52 3.8% 2.4% 14.8%
40 26.29 25.99 26.21 21.60 1.1% 0.68% 17.8%
50 36.50 36.31 39.2 29.46 0.53% −0.073% 19.3%

Note: w0, w1, w2, and w3 are the average mid-span displacement of beam for group NAP, LAP1, LAP2, and LAP3
respectively; α1 = (w0 − w1)/w0; α2 = (w0 − w2)/w0; α3 = (w0 − w3)/w0.

3.3. Load-Strain Curves Comparison

Typical load–strain curves for each group are shown in Figure 13. The load–strain curves both
for the tensile and compression side of the beam are basically linearly changed during the elastic
stage. As the load values become bigger and bigger, the curves belong to the compression side reaches
the elastic stage limit earlier compared with the tensile side. As loading continues, the strain curves
under compression enter the elastic-plastic stage, and line 4 for the strain values in the central line
starts to curve as the middle strain gauge in the side surface begins to undertake compression strain.
This means that the neutral axis begins to move downward.

Figure 13. Cont.
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Figure 13. Typical load–strain curves for four groups: (a) load–strain curves for specimen NAP-2;
(b) load–strain curves for specimen LAP1-3; (c) load–strain curves for specimen LAP2-2; (d) load–strain
curves for specimen LAP3-2.

3.4. Plane Cross Section Strain

Figure 14 shows how the strain values change along the cross-sectional height with the increase
of load. It can be observed that the cross section strain for the beams shows an approximately linear
distribution along the height direction, meaning the specimen basically accords with the assumption
of the plane section.

Figure 14. Strain of cross section of typical specimens: (a) strain of cross section of NAP-3; (b) strain of
cross section of LAP1-2; (c) strain of cross section of LAP2-2; (d) strain of cross section of LAP3-3.

The neutral axis position for all specimens is shown in Table 4, and Figure 15 plots how the neutral
axis changes with increasing cloth ratio. It can be noticed that when the specimen reaches the ultimate
load, all the neutral axis height values are less than 50 mm (half of the beam height), which means
that the neutral axis moves downward. The neutral axis of the specimen with AFRP cloth moves
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down more than the specimens without AFRP cloth, and as the number of layer increases, the neutral
axis decreases. This phenomenon shows that the AFRP cloth plays a certain role in the pulling force.
The more the neutral axis goes down, the bigger the pulling force AFRP cloth will bear.

Table 4. The neutral axis position for the ultimate load.

Group ρ hn/mm β

NAP1 — 43.49 0.43
NAP2 — 45.64 0.46
NAP3 — 48.47 0.48
NAP4 — 42.56 0.43

Average — 45.04 0.45

LAP1-1 0.24% 42.5 0.43
LAP1-2 0.24% 43.51 0.44
LAP1-3 0.24% 40.62 0.41
Average — 42.21 0.42

LAP2-1 0.48% 41.06 0.41
LAP2-2 0.48% 43.32 0.43
LAP2-3 0.48% 42.32 0.42
Average — 42.23 0.42

LAP3-1 0.72% 36.2 0.36
LAP3-2 0.72% 38.6 0.39
LAP3-3 0.72% 38.32 0.38
Average — 37.71 0.38

Note: hn is the neutral axis height of specimens; β = hn/h is the neutral axis relative height of specimens.

Figure 15. The relationship between the neutral axis height and cloth ratio.

On the basis of the test results, the following expression can be used to describe the relationship
between neutral axis height and cloth ratio.

hn = −69573ρ2 − 426.49ρ + 44.759, (0 ≤ ρ ≤ 0.0072), (R2 = 0.6817) (9)

hn is the neutral axis height, ρ is the cloth ratio.
The equations presented above show how the factors considered were found to influence

the properties of PBSL beams in the particular series of the tests, and could be used as reference
for further study.
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4. Conclusions

This paper conducted both experimental and analytical studies on 13 beam specimens to study
AFRP reinforcement on parallel bamboo strand lumber beams. Strain gauges and Laser Displacement
Sensors were used for the tests. The following conclusions can be drawn:

1. Typical bending failure happened for all four PBSL beam specimens without AFRP. The first crack
always appeared on the bottom surfaces in the pure bending area for the beams. Natural bamboo
joints are the main reason for the first cracks.

2. There are three typical failure modes for AFRP parallel bamboo strand lumber beams. The first
failure mode is that both the bamboo fiber and AFRP cloth were pulled off at the bottom of
the bamboo beam. As for the failure mode II, besides the split of bamboo fiber, cracks appeared
longitudinally along the length of AFRP cloth without pulling off. But, for failure mode III,
bamboo fibers split firstly and then the glue between the beam and AFRP lose effectiveness but
AFRP cloth didn’t damage.

3. AFRP can improve the flexural properties of parallel bamboo strand lumber beams effectively.
With the increase of the cloth ratio, the ultimate bearing capacity, the stiffness, and the ductility
for AFRP PBSL beams increased. When the cloth ratio reaches 0.72%, the stiffness of the beam
can be increased by 15%.

4. It can be observed that the uniform strain values for the middle cross section conform to
the assumption of the plane section. With the increase of load, the neutral axis for the AFRP PBSL
beam moved downwards compared with the PBSL beams. AFRP plays a certain role in bearing
tensile force for the beam.
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