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Abstract: TVs and monitors are among the most widely used displays in various environments.
However, they have limitations in their physical display conditions, such as a fixed size/position
and a rigid/flat space. In this paper, we suggest a new “Display in the Wild” (DIW) concept to
overcome the aforementioned problems. Our proposed DIW system allows us to display a flexibly
large screen on dynamic non-planar surfaces at an arbitrary display position. To implement our DIW
concept practically, we choose a projector as the hardware configuration in order to generate a screen
anywhere with different sizes. However, distortion occurs when the projector displays content on a
surface that is dynamic and/or non-planar. Therefore, we propose a distortion correction method for
DIW to overcome the aforementioned surface constraints. Since projectors are not capture devices,
we propose using a depth camera to determine the distortions on the surfaces quickly. We also
propose DIW-specific calibration and fast/precise correction methods. Our calibration method is
constructed to detect the projection surface easily and quickly, and also allows our proposed system to
accommodate the intrinsic parameters such as a display resolution and field of view. We accomplish a
fast undistortion process of the projector by considering only surface boundary pixels, which enables
our method to run in real time. In our comprehensive experiments, the proposed DIW system
generates undistorted screens such as TVs and monitors on dynamic non-planar surfaces at an
arbitrary display position with Unmanned Aerial Vehicles (UAVs) in a fast and accurate manner,
demonstrating its usefulness in practical DIW scenarios.

Keywords: TV; monitor; projector distortion; distortion correction; calibration; depth camera;
Unmanned Aerial Vehicles; UAVs; display

1. Introduction

TVs and monitors are among the most widely used display devices in the industry and at
home. These display devices have evolved to larger screens and thinner thicknesses [1], but are still
fundamentally built-in displays with rectangular screen shapes. Such conventional display devices
have various fundamental constraints. First, they require as much flat space as the device size. Second,
the space in which the display is located should be invariant. Third, the screen size is limited by the
size of the device, resulting in less flexibility. Fourth, they work only in the installed space [2].

If there is a new display that can produce a TV or monitor screen on a dynamic non-flat surface
that is flexible in terms of both screen location and size, it can overcome the aforementioned constraints
of conventional display devices. We describe such a new device as “Display in the Wild” (DIW),
and this device will be applicable and valuable in various industries. For example, to display a large
screen at outdoor performances or events, we typically need to install a large flat screen or connect
numerous smaller TVs. With DIW, on the other hand, we can use Unmanned Aerial Vehicles (UAVs)
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and a lightweight canvas to quickly configure a large screen at a low cost and display a TV-like screen
on a dynamic non-planar surface. DIW can also create a TV-like screen on curtains that are not flat
while being easily found at home, as well as on tents that are commonly used in outdoor camping.

In this paper, we propose both hardware and software configurations to implement DIW. For the
hardware, we choose a projector as a suitable display device to overcome the limitations of fixed
positions and sizes, as projectors can generate a variable-sized screen anywhere. However, geometric
distortions can occur when the projector displays on a surface that is dynamic and non-planar. To solve
this problem, a geometric distortion correction method is required to display an undistorted screen
(e.g., the rectangular screen on a TV). Here, a capture device that can predict the distortion is needed
since the projector itself cannot sense the screen geometry. Given that a depth camera can quickly
capture 3D surfaces in real time, we decide to use one as a capture device to predict the distortion on
dynamic non-plane surfaces. In summary, we utilize a projector and a depth camera for our hardware
configuration to implement DIW.

In order to complete the DIW system with the proposed hardware configuration, we developed
essential software configurations for DIW: (i) a quick prediction method for geometric distortion
on dynamic non-planar surfaces, and (ii) a fast correction method for geometric distortions.
Although there are many distortion-correction methods for projection, the existing methods hardly
correct the distortions present in dynamic non-planar surfaces. In fact, they mainly project
the structure patterns on surfaces to extract and match features using RGB cameras and find
distortions in a reconstructed 3D space [3–9]. However, it is difficult to cope with dynamic
distortion because the projector may generate patterns that interfere with viewing of the screen
contents. Some methods [10–13] can deal with dynamic distortion by projecting non-visible patterns.
However, such methods also have drawbacks, in that they often unreliably extract and match
features in certain lighting environments, thus failing to correct the distortions. Moreover, the
existing feature extraction and matching processes usually require heavy computation, which makes
them inappropriate for predicting dynamic distortions at high speed. In addition, to fill in missing
information on the surface, they fit 3D mesh shapes to the distorted surface in the correction step [7,9],
which also results in a high computation complexity. Therefore, the conventional projector correction
methods are hardly applicable to DIW systems, which require fast and reliable correction methods on
dynamic non-planar surfaces.

Additionally, most correction-methods perform calibrations between the projector and capture
device. Some existing manual and/or automatic calibration methods have shown good results
with RGB or depth cameras [14–22]. However, existing calibration methods are not suitable for
DIW, since they focus only on the accuracy of calibration between the projector and capture device,
rather than fast detection of the geometric distortion of the projection. Furthermore, some calibration
methods may need to re-calibrate when intrinsic parameters change (e.g., display resolutions) in the
projector, as the method involve intrinsic parameters in the calibration process.

Therefore, to overcome the aforementioned problems of the existing methods and complete the
DIW system with the proposed hardware, we propose: (i) a quick estimation method for geometric
distortions from the projection; (ii) a fast distortion correction method; and (iii) a DIW-specific
calibration between the projector and depth camera. Using the depth camera, our method can quickly
predict/correct distortions on the projection surface. This is because we specialize our calibration
method for fast detection of the projection surface in the depth image. To efficiently find the correction
area of the user’s viewpoint, only the boundary pixels on the detected projection surface in the depth
image are used. When determining warping and correction, the proposed method can quickly recover
the high-resolution depth map of the projection surface by adopting a Gaussian weighted interpolation
process that fills out the missing information in the original depth map for a very low computation
cost. This method can provide an alternative to the traditional mesh fitting methods that result in
high computation costs. In addition, the proposed calibration method focuses on extrinsic parameters
(i.e., the transformation matrix for positional relationships between the projector and depth camera),
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making it easy to respond to display resolution changes. Figure 1 illustrates the overall process of our
proposed DIW system. The main contributions of our work are summarized as follows:

• We first devise the concept of “Display in the Wild” as a new display device that overcomes the
limitations of fixedness for both display position and surface condition that are present in existing
display devices.

• We propose a new hardware configuration specialized for DIW that couples a projector with a
depth camera for fast and reliable corrections to the distortions that can occur due to dynamic
non-planar surfaces.

• To complete this DIW system, we also propose software configurations that allow the DIW display
to be deployed in real time applications. Our software configurations include a fast geometric
distortion estimation, correction, and DIW-specific calibration. These allow us to perform robust
projector correction without using markers.

• We prove the usefulness of our DIW system by performing comprehensive quantitative and
qualitative tests under dynamic non-planar surface conditions.
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Figure 1. A practical example of our DIW system. We made a screen in the wild having dynamic
and non-planar characteristics, using UAVs and a lightweight canvas. Our system can quickly
predict/correct the geometric distortions of the projector.

This paper is organized as follows: In Section 2 we discuss the existing methods for distortion
correction of the projector and for calibrations. Then, in Section 3 we describe our fast correction
and calibration methods for the DIW system. We thoroughly conducted quantitative and qualitative
experiments to demonstrate the performance of the proposed method, as described in Section 4. Lastly,
we discuss limitations and conclusions for our proposed methods in Sections 5 and 6, respectively.

2. Related Work

2.1. Correction of Projection Distortion

The projector can provide a large display screen at a relatively low cost but has a fatal disadvantage
in that projection distortions can easily occur depending on the surface geometry and projection angle.
When an image is projected on a flat surface without appropriate projection angles, a trapezoid-like
distortion is caused, which is called the keystone effect. This problem can be corrected by adjusting
the projector’s position manually or performing 2D projective transformations on an image. In this
regard, many correction methods have been proposed to eliminate keystone distortions [23–26].
These methods slightly differ in the details, but mainly calculate the homography between the projected
and original images using RGB cameras.

Besides this, when using the projector irregular distortions can occur when projecting an image
on a non-planar surface. Such distortions cannot be corrected by a homography transformation as in
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the keystone case. Instead, predicting the irregular geometry of the surface is essential for correction.
To correct distortion produced by specific non-planar surfaces, [27–31] proposed parametric surface
models, such as cylindrical, conic, dome, and intersecting planar models. These methods can correct
distortion on a non-planar surface from specific shapes, but it is difficult to apply them to non-planar
surface shapes outside typical parametric surface models.

It is worth noting that our DIW system aims at automatic projector correction on a non-planar
surface, which is different from projector deformation methods [32–35]. The main difference is that the
projector deformation methods aim at texture mapping to deformable objects for Augmented Reality,
involving some computer vision algorithms such as object segmentation/detection and template-based
3D shape mapping [32,35]. To overcome inaccurate behaviors of these computer vision algorithms,
many recent projector deformation methods rely on adopting markers to easily find target objects and
warping points [33,34].

On the other hand, our method belongs to the automatic projector correction methods where
neither markers nor sophisticated computer vision algorithms are needed. The proposed methods aim
to minimize distortions in a display caused by non-planarity of a target surface and projector geometry.

To correct geometric distortions on arbitrary surfaces, approaches based on structured light
patterns have been proposed [3–9]. These methods project structured light pattern images on
non-planar surfaces and captured the projected patterns by using RGB cameras. With these structured
light patterns, 3D points on the projection surface can be calculated, and the correction can be
performed according to the 3D shapes on the surface. However, when the shape of the projection
surface changes, the shape information for the projection surface needs to be updated. For this,
the projector needs to continually project the structured patterns onto the screen, which creates
discontinuity in the displayed contents that the users are watching. This limitation makes it difficult to
correct distortions that occur due dynamic non-planar surfaces, which can be solved via DIW systems.

To solve the updating problem of dynamic non-planar surfaces, imperceptible pattern-based
correction methods have been proposed [10–12]. They calculate the 3D points of the distortion surface
by inserting imperceptible patterns onto the projection image, which are unnoticeable to the users
watching the display. However, they require a high computation power for estimating the model
parameters of the dynamic non-planar surfaces, which often change in real time. On the other hand,
Setkov et al. corrected the image geometry by using color invariant features [36]. This method can
correct the dynamic distortion without beaming structured light patterns. However, it is difficult to
apply this method to irregular surfaces since it adopts a global homography that limits reflections
of the geometry for non-planar surfaces. Ito et al. proposed a stereo vision-based correction method
to capture the geometry of a surface without disturbance for the structured light patterns on the
screen [13]. This method estimates a perspective projection matrix using SIFT (Scale-Invariant
Feature Transform) [37] and obtains the 3D shape of a non-planar surface using POC (Phase-Only
Correlation) [38–41]. Therefore, Ito’s method is able to continuously predict and correct the distortion
resulting from dynamic projection surfaces. As described above, many methods have been proposed
for correcting the distortion, but only some of them can be applied to dynamic non-planar surfaces,
which is thus a desirable functionality for our DIW system.

Although most of the existing methods use RGB cameras to calculate the 3D shape of the surface,
they have intrinsic drawbacks when applied in our DIW scenario. First, to correct the distortion for a
rapidly varying non-planar surface, it is essential to develop a fast 3D shape acquisition method for the
real-time DIW system. However, to calculate the 3D shape of the surface, RGB camera-based correction
methods inevitably perform feature-detection/matching processes. In this case, when the image
resolutions are sufficiently high, such as HD (720× 480) and FullHD (1920× 1080), the traditional
feature-detection/matching processes fail to run in real time [42]. Second, the projection area may not
have sufficient contrast to detect the feature point, as projectors are mostly used in dark environments
that make the captured images in the projection area relatively brighter and saturated. These two
problems cannot be solved using the traditional correction methods with RGB-cameras. Instead



Sensors 2018, 18, 3063 5 of 20

of using an RGB camera, we incorporate a depth camera into the projection-based DIW system to
correct distortions on the dynamic non-planar surfaces under real-time and practical dark ambient
illumination conditions.

2.2. Camera to Projector Calibration

Calibrating the positional relationship between the camera and projector is an essential part of
predicting the projection area in 3D coordinates. RGB cameras are unable to capture 3D geometry
information directly, so, existing calibration methods use to beam specific patterns on a surface that
the RGB camera can capture, thus estimating the 3D geometry. To obtain a higher accuracy, multiple
sets of features are often extracted from the calibration patterns at different orientations. Then, the
world coordinates of the features are estimated with respect to minimizing the reprojection errors.
Most calibration methods between RGB cameras and projectors [14–17,43] perform in a similar manner
to that described above.

On the other hand, some calibration methods utilize a depth camera since 3D points can directly
and easily be calculated via depth images [20–22]. However, existing calibration methods with a depth
camera are not specialized for a fast prediction on the projection surface, but rather accuracy of the
calibration parameters. Furthermore, some of these methods require re-calibration when the resolution
(i.e., the intrinsic parameters of the projector) changes, which often occurs in display devices. Therefore,
we propose a simple calibration process to adapt a depth camera as our hardware configuration for
DIW, which will be fully described in Section 3.2.

3. Proposed Method

In this study, we developed our DIW system based on the assumptions that: (i) the projector and
depth camera are attached and fixed together; (ii) that the target surface projected by the projector
is non-planar and dynamic; and (iii) that the depth camera is placed parallel to the longitudinal
axis. Our proposed DIW system calculates the relationship between the projector and depth camera
(the extrinsic parameters) at first using our proposed calibration method. After that, the projector
distortion is corrected in real time through the following iterative process:

1. A target surface area that is projected by the projector is predicted quickly via the depth image
with the estimated calibration parameters.

2. The most effective correction area (i.e., the maximum rectangular region inside the projection
surface) is calculated for the undistortion processing on the display.

3. Finally, the original projection image is warped into the effective correction area, and the projector
outputs the warped image in order to remove the geometric distortion on the target surface.

3.1. Hardware Configuration for the DIW System

We use a projector and depth camera as the hardware configuration to implement our DIW system.
In this paper, we choose Kinect v2 and a portable laser projector (Model: Celluon PicoBit B06X93WFBP)
where Kinect v2 captures depth images with 30 frames per second (fps) and the projector displays
a screen with 60 Hz refresh rates. In choosing hardware configurations, we consider the following
important conditions.

First, Kinect v2 has already demonstrated its performance in sensing precise depth images in
many fields and has easy development. Even though it has a somewhat larger size than the recent Intel
RealSense Depth Camera D435, we determined that the size of Kinect v2 is not big enough to interfere
with the mobility, and further Kinect v2 offers fast implementation and testing advantages. Second,
we use a laser projector instead of any existing LCD (Liquid-Crystal Display) or DLP (Digital Light
Processing) projectors. These conventional projectors have a disadvantage in that one must adjust
the focus according to the projection distance from lens. Because a DIW system should be able to
generate the screen on a dynamic non-planar surface, adjusting the focus can be a complex problem
for correcting the distortion in a DIW display. Moreover, in general LCD or DLP projectors have
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a large size. This creates a problem in mobility for easily creating a screen at a desired position.
Unlike conventional projectors, the laser projector does not use a lens, so we do not need to adjust the
focus. Furthermore, the laser projector is very small, so we decided it was suitable for the DIW system.

It is worth noting that, the physical allowable rotation angle and distance between the projector
and the screen are limited in hardware configurations. Physically, the allowable rotation angle is
dependent on the vertical/horizontal FOV(field of View)s of the projector. For example, when the
vertical/horizontal FOVs are Fovy and Fovx, the allowable angular range for vertical direction is± Fovy

2
and for horizontal ± Fovx

2 . Also, the allowable distance of the DIW system can be determined by the
projection limit of the projector and sensing limit of the depth camera. Usually Kinect v2 has an
allowable distance of eight meters, and the projector has a longer allowable distance, so eight meters
can be judged as the allowable distance of our DIW system.

3.2. Projector to Depth Camera Calibration

We first calibrate the projector and depth camera in closed form. For this, we denote the 3D
depth camera coordinates centered at the depth-camera position with points Pd = (xd, yd, zd, 1)T ∈ R3,
and the 3D projector coordinates centered at the projector position with points Pp = (xp, yp, zp, 1)T ∈ R3,
as shown in Figure 2. The affine transform matrix Mdp that transforms the Pd into Pp is defined as

Pp = MdpPd, Mdp =

(
Rdp Tdp

0 1

)
, (1)

where Rdp ∈ R3×3 and Tdp ∈ R3 represent the rotation (consisting of r11, r12, · · · , r33) and translation
(consisting of t1, t2, t3) matrices in the affine transform Mdp, respectively.

X

Y

Z

Depth camera coordinate

X

Y

Z

Projector coordinate

Affine transformation 𝐻𝑑𝑝

Figure 2. An example of the relation between the depth camera and projector coordinates, where
the affine transform matrix Mdp transforms the depth camera coordinates (Pd) into the projector
coordinates (Pp).

We can easily obtain Pd using the depth image and its intrinsic parameters. On the other hand,
if Pp is not directly available, the projector does not capture any geometric information. Instead of Pp,
we use 2D projection image coordinates for the images projected onto the target surface. We denote
the 2D projection image coordinates as Pi = (xi, yi), which corresponds to Pp. The mathematical
representation for the mapping of Pp to Pi is represented as:

xi = fpxxpz−1
p

yi = fpyypz−1
p ,

(2)

where fpx and fpy are the width and height focal lengths of the projector, respectively. The above
transformation Pp = MdpPd can be expressed using the 2D projection image coordinate Pi as:
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xi
fpx

=
r11xd + r12yd + r13zd + t1

r31xd + r32yd + r33zd + t3

xi
fpx

=
r21xd + r22yd + r23zd + t2

r31xd + r32yd + r33zd + t3
.

(3)

To calculate elements of the transformation Mdp in Equation (3) for more than one pair of Pi and
Pd, we form a linear system Ax = b, the details of which will be described in Appendix A. Then,
by gathering the pairs, we solve the linear system using an SVD solver via our calibration process. It is
worth noting that the SVD solver is known to yield a stable solution for a linear equation Ax = b.

The proposed DIW system projects a chessboard pattern onto a surface using the projector and
captures the projected chessboard pattern using the RGB camera embedded in the depth-camera
to gather the pairs. Note that most depth-cameras contain built-in RGB cameras for sensing color
information. Then, our system detects the corners of the projected chessboard pattern using the
captured image by implementing a corner detection method in the OpenCV library [44]. We map
the chess board corners that are detected via the RGB camera to the corresponding positions in the
depth image using the calibration values of the depth camera, which are provided by the manufacturer.
Figure 3 shows the overall process of gathering 3D points at the depth camera coordinates and the
corresponding 2D coordinates at the projector image.

transformation

RGB image
coordinate

Depth image
coordinate

Depth camera
coordinate

Projector image
coordinate

transformation calibration

Figure 3. An example of the sampling procedure for calibration between the projector image
coordinates and the depth camera coordinates.

To collect a large number of sample points, our method generates a chessboard pattern with 25
different positions, moving the chessboard pattern 5 times by 20 pixels in both the horizontal and
vertical directions. The chessboard that we used in this study has 54 corners (9× 6) which can be
obtained per each chessboard image. Therefore, the total 1350 corners can be gathered with 25 different
images as shown in Figure 4. This calibration with a large number of sample points yields an accurate
performances, which is given in Section 4.

The proposed calibration method can be used directly to detect the projection surface of the
projector since it calculates the relationship between Pd and Pi via Equation (3). In addition, since the
intrinsic parameters of both the depth camera and the projector are not included as unknown
parameters in our calibration, it is possible to easily cope with a change in the projector resolution.
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Figure 4. An example of generating chessboard patterns with 25 different positions. Our calibration
system projects the chessboard pattern by moving 5 times by 20 pixels in both the horizontal and
vertical directions so that a total of 1350 samples can be gathered in this process.

3.3. Projection Surface Prediction

Once we obtain the transformation matrix Mdp through the proposed calibration, we can calculate
the Pi corresponding to Pd.

We convert the depth image Id(x, y), where (x, y) represents the pixel position, into 3D point
clouds Pd(x, y) at the 3D depth camera coordinates using the predefined intrinsic parameters.
Substituting each 3D point of Pd(x, y) into Equation (3), we can calculate the corresponding 2D
projection image coordinates Pi(x, y). We then propose using the projection surface masks Ms(x, y) for
the depth image by using the simple and cost-effective equations as follows:

Ms(x, y) =

{
255 if 0 ≤ xi < w and 0 ≤ yi < h, xi, yi ∈ Pi(x, y)

0 otherwise,
(4)

where w and h are the width and height of the 2D projection image, respectively, and xi and yi are
the pixel positions at Pi(x, y). If the projection surface masks Ms(x, y) is 255, the pixel of the depth
image at (x, y) belongs to the projection surface as shown in Figure 5. In this way, we can simply detect
projection regions based on the depth image in real time.
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Figure 5. An example of the projection surface masks Ms(x, y) obtained by Equation (4). The left
image is a captured image with the projection and its background. The red region of the center image
represents the projection surface masks. The right image shows the projection surface masks (colored
regions) in 3D projector coordinates with five projection rays (white lines) at the boundaries and center.

3.4. User Position

In this paper, we correct the distortion of the projection based on the assumptions that: (i) the
user looks at the center of the screen (projection surface); and (ii) the user’s position is already known.
In order to consider the user’s viewpoint in the correction process, we define 3D user coordinates
with the user’s center as the origin, viewing this direction as the z-axis, left-to-right as the x-axis,
and bottom-to-top as the y-axis. The user coordinates are defined relative to those of the projector
one for easy adaptation of warping-based correction, which is fully described in Section 3.6. We also
denote a point in the user coordinates as Pu = (xu, yu, zu, 1)T ∈ R3. Finally, the affine transform Mpu

that transforms Pp into Pu is defined as

Pu = MpuPp = MpuMdpPd, Mpu =

(
Rpu tpu

0 1

)
, (5)

where Rpu ∈ R3×3 and tpu ∈ R3 represent the rotation (consisting of r11, r12, · · · , r33) and translation
(consisting of t1, t2, t3) matrices in the affine transform Mpu, respectively.

From our experiments, we determined that the slight variations in the user position and viewpoint
produce perceptually unnoticeable geometric distortions on the screen. This is because of the
auto-compensation mechanism of the human visual system (HVS) [45], that is, the distortions produced
by viewpoints are not noticeable even if the position of the user system is roughly approximated.

Note that this paper focuses on flexible and fast corrections with a projector and a depth-camera
for the DIW system. Estimating a user’s position with a variety of poses and occlusions requires
advanced user-detection algorithms with very high computation costs [46,47]. Most methods detect
the user’s position in standing conditions, but, this is outside the scope of our paper. Therefore,
we manually set the user’s position so that our DIW system runs in real time.

3.5. Correction Area Calculation

To correct the geometric distortion on the projection surface, it is necessary to determine the
correction area that shows the maximal rectangular image region to the user. In this study, we argue
that it is inefficient to calculate the correction area using all of the 3D points that belong to the
projection area. Instead, we propose calculating the correction area using only the boundary pixels at
the projection area, which is simple and efficient, as shown in Figure 6.
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(a) (b)

(c) (d)

Figure 6. An example of maximum rectangular region detection for the correction area: (a) the
detected boundary on the projection surface masks depth image Ms(x, y); (b) 3D points of the detected
boundary at the 3D user coordinates; (c) the rasterized image of the projection area; (d) the final
maximum rectangular region calculated from the correction area.

First, we find the boundary pixels of the projection area on the projection surface masks Ms(x, y)
using the fast contour detection method [48]. When several contours are detected due to discontinuities
of the projection surface, we choose the largest contour as the boundary to find the correction area.
Figure 6a shows an example of detecting the boundary of the projection surface masks Ms(x, y). Second,
we create a distortion shape image at the user’s viewpoint in order to calculate the correction area
from the detected boundary pixels efficiently. To do this, we perform a process similar to a computer
graphics pipeline. The boundary pixels on the depth image are transformed into 3D points in the 3D
user coordinates according to Equation (5), as shown in Figure 6b. These 3D points are projected onto
a plane on the viewing volume of the user’s perspective. Then, we rasterize the projected points into a
512 × 424 image, as shown in Figure 6c. In the rasterization step, a polygon filled with the white color
is drawn by using the projected 2D points with orders provided by the contour detection method [48].
Finally, the largest rectangle inside the filled regions with the white color of the rasterized image is
calculated by Vandevoorde’s method [49].

After the largest rectangle (the correction area) is found on the 2D distortion shape image, as shown
in Figure 6, we now define it using the 3D user coordinates for use in the correction process. Therefore,
we define the largest rectangle as the correction area using the fields of view and transformations
parametrically as

Txc = −(
xc

rx
−

Wp

2
) +

wc

2
, Tyc = −(

yc

ry
−

Hp

2
) +

hc

2
,

f ovxc = 2 tan−1 wc

2rxZplane
, f ovyc = 2 tan−1 hc

2ryZplane
,

rx = Wr/Wp, ry = Hr/Hp,

(6)

where f ovxc , f ovyc , Txc , and Tyc are the fields of view and transformations for defining the largest
rectangle as the correction area in the 3D user coordinates, (xc, yc, wc, hc) represents the largest rectangle
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on the 2D distortion shape image relative to the starting point, width and height, respectively. Wp and
Hp in Equation 6 are the width and height sizes of projection plane, respectively, and Wr and Hr are
the width and height sizes of the rasterized image, respectively. In this way, we can parametrically
define the rectangular correction area using the 3D user coordinates as FOVs ( f ovxc and f ovyc ) and
transformations (Txc and Tyc ).

3.6. Warping and Correction

In our calibration, we can transform the 3D depth image coordinates into the 2D projection image
coordinates by using Equation (3), but it is impossible to convert them in the opposite direction, as it
is an ill-posed problem. However, the depth information (3D information) of the projection image
is essential for our undistortion process. Fortunately, we can somewhat calculate the depth of the
projection image using sparse 3D information via our calibration and the depth image. Therefore,
we must estimate unknown parts of the depth information in the projection image.

Existing correction methods [7,9] re-construct 3D parametric or meshed surfaces by fitting known
3D points to estimate the unknown information. However, these approaches have high computation
costs, resulting in the slow correction of the geometric distortion of the projection. Instead, we generate
a sparse projection depth image from known depth information in the projection image. Then, we
quickly convert a sparse projection depth image into a dense projection depth image using Gaussian
weight interpolation with 5 × 5 masks. Figure 7 shows the whole process of generating the dense
projection depth image.

Projection Image

Projection 
Projection Area detection

Sparse Projection Depth Image

Filling known depth info to pixels

Recursive Gaussian Weight Interpolation

Dense Projection Depth Image

Figure 7. An example of generation of the dense projection depth image by recursive Gaussian weight
interpolation.

For generating a warping table to correct the projection distortion, we transform the dense
projection depth image into 3D point clouds as Pu(x, y) = {xu(x, y), yu(x, y), zu(x, y)} ∈ R3 in
the user coordinates via intrinsic parameters of the projector and Mpu. We calculate the angles
in the correction area, showing that each 3D point of Pu(x, y) is included in the correction area
parametrically as:

θx(x, y) = 2 tan−1

(
xu(x, y)− Txc zu(x, y)Z−1

plane

zu(x, y)

)
,

θy(x, y) = 2 tan−1

(
yu(x, y)− Tyc zu(x, y)Z−1

plane

zu(x, y)

)
,

(7)

where Zplane is the z-axis value for the perspective projection of distortion at the user’s viewpoint,
θx(x, y) is the angle relative to the x-axis, and θy(x, y) is the angle relative to the y-axis. Then we check
if these angles are inside the correction area as
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θx(x, y) ≤ f ovxc ,

θy(x, y) ≤ f ovyc ,
(8)

When Equation (8) is satisfied, Pu(x, y) is inside the correction area (the largest rectangle). Using
the fields of view and transformations that define the correction area, we calculate the image positions
to be displayed for correction by

xc =
w · θx(x, y)

2 · f ovxc

+
w
2

,

yc =
h · θy(x, y)
2 · f ovyc

+
h
2

,
(9)

where w and h represent the width and height of the projection image, respectively, and (xc, yc) is the
position of the pixel to be displayed at (x, y). Finally, we make a warped projection image to correct
the distortion given by

g(x, y) = f (xc, yc), (10)

where g is the warped image and f represents the original projection image. This process can warp the
projection image through backward mapping, thus constructing the corrected image quickly.

4. Result and Analysis

To investigate the effectiveness of the proposed calibration and correction methods on our
DIW system, we conducted both quantitative and qualitative experiments under various conditions.
The depth and RGB cameras are built in Kinect v2 with 512 × 424 and 1920 × 1080 resolutions,
respectively. For testing, the projector and Kinect v2 were connected to a laptop (MacBook Pro
2015 early with i5 2.7 GHz and 8 GB RAM) on which we ran our DIW system with the proposed
calibration and correction methods. Since the depth image produced by Kinect v2 has lens distortion,
we preprocessed correction of the lens distortion using Brown’s distortion model [50] with 5 correction
parameters, K1, K2, K3, P1, and P2, which are supplied by the manufacturer, as shown in Table 1. As our
laser projector does not use a lens for projection [51], we did not consider lens distortion in our tests.
For user position, we set up Hpu by assuming the user is located one meter behind the projector for
all experiments.

Table 1. Correction parameters of the lens distortion for Brown’s distortion model on Kinect v2
provided by the manufacture.

Correction Parameters Value
K1 0.09558
K2 −0.26799
K3 0.08755
P1 0.00000
P2 0.00000

4.1. Quantitative Evaluations

We first performed a comparative evaluation with the methods in [14,21] to determine the
reprojection accuracy of the proposed calibration method. We also tested the correction accuracy as
we projected and corrected horizontal/vertical line images in Figure 8 and measured the straightness
of the lines on the corrected image. Finally, to verify the speed of the distortion correction method,
which is essential to our DIW system, we performed a comparison evaluation for the correction time
of each image with the methods in [7,9].
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(a) (b)

Figure 8. Test results of the light straight ratio errors, which are captured using the camera at the user
position. (a) The distorted screen. (b) The undistorted screen.

4.1.1. Reprojection Errors of Calibration

Our calibration method has the advantages that it can be applied directly to detect the projection
surface and cope with variable intrinsic parameters such as screen resolutions in the projector. Thus,
we tested the calibration accuracy of our method while it keeps these advantages. We calculated
the reprojection errors of our method. Then, we compared our calibration method with the existing
calibration methods in [14,21], which use an RGB camera and depth camera for calibration, respectively.
For comparison, all methods being tested for calibration accuracy use the same number of samples,
which are obtained by projecting a 9× 6 chessboard to 25 different surfaces (i.e., a total of 1350 samples
under test).

Table 2 shows the calibration results of our proposed method and the existing ones. In addition,
we calculated the reprojection errors of the three methods, as shown in Figure 9. These results show that
all three methods have similar results. However, our calibration is specialized to detect the projection
surface directly and quickly for DIW, and it can easily cope with projector resolution changes.

Table 2. Calibration results of the proposed method and existing methods.

Method Rdp Tdp

The proposed method
0.8856 −0.0116 −0.0109
0.0102 0.8583 0.0072
0.0091 −0.0142 0.9998

16.7414
17.2027

−278.4640

The method [14]
0.8801 −0.0123 −0.0138
0.0135 0.8553 0.0076
0.0059 −0.0101 0.9967

16.7350
17.1968

−278.4688

The method [21]
0.8871 −0.0083 −0.0070
0.0151 0.8595 0.0174
0.0152 −0.0088 1.0050

16.7446
17.2056

−278.4625
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Figure 9. 2D histograms of the re-projection errors, which are calculated with respect to the projector
image coordinates: (a) the RGB camera based method (std = 0.027), (b) the depth camera based method
(std = 0.029), (c) the proposed method (std = 0.022).
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4.1.2. Line Straightness Error Ratio Test

In order to test precision of the proposed correction method quantitatively, we calculated the
straightness of vertical and horizontal line images, which are captured at the user position using a
camera. To calculate the simple gradients of lines on the line images, we propose using the Line
Straightness Error Ratio (LSER) given by:

LSERv = 1− | tan(90°− k)
tan(Te)

|, LSERh = 1− | tan(k)
tan(Te)

|, (11)

where LSERv is the line straightness error ratio for vertical straight lines, LSERh is the line straightness
error ratio for the horizontal lines, k is the angle with respect to the image x-axis of the image, and Te is
the tolerance degree allowed by the error ratio. In this study, we set Te as 10°, which means that LSER
is 1 with no distortion (k = 0) and LSER is 0 with k = 10°. If the angle k is larger than the tolerance
degree Te, it has a negative value. To measure LSER, the line pattern images shown in Figure 10 are
projected and corrected by the proposed method. Then, we captured them using the camera, and k is
calculated with two edge points at the end of each line. We repeated the LSER experiments five times
in horizontal and vertical images, respectively, for the accuracy. Table 3 and Figure 8 show our LSER
experimental results. Based on these results, our correction method has a good LSER performance over
0.99 at Me = 10°. This means that our correction results have a less than 0.1° difference in the straight
lines, indicating that the proposed method can accurately correct distortion on non-planar surfaces.

(a) (b)

Figure 10. The line images for the line straightness error ratio test. (a) The lines image with seven
horizontal lines. (b) The lines image with fifteen vertical lines.

Table 3. Line Straightness Error Ratio results of the proposed correction method.

Test Number Vertical Lines Horizontal Lines

1 0.99210 1.00000
2 0.99209 0.99111
3 0.99605 0.99111
4 0.99210 0.99115
5 0.98157 1.00000

Average 0.99078 0.99467

4.1.3. Performance Test for Running Speed

In the proposed DIW, fast correction is considered an important requirement since the distortion of
a dynamic non-planar surface need to be estimated and corrected in real time. Therefore, we compared
the correction speed of the proposed method with the conventional RGB camera-based methods.
To test the performance of the correction speed, we measured the time needed to correct an image
with a 1920 × 720 resolution, which is the maximum resolution of our projector. Table 4 shows the
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correction times of the proposed and existing methods, indicating that the proposed method can correct
the distortion of the image very quickly compared to the conventional methods. The main reason
for the fast correction of our method is that we use the depth camera to predict the distorted surface
directly, followed by filling in the missing information using simple interpolation. This experiment
shows that the fast correction of our method is appropriate for dynamic surfaces, which is essential
for DIW.

Table 4. The correction time (seconds) results of the proposed method and existing methods.

Method Projection Surface Prediction Correction Total

The proposed method 0.012 0.091 0.103
The method in [7] 4.324 5.421 9.745
The method in [9] 3.875 4.273 8.148

4.2. Qualitative Evaluations

In this paper, we carried out not only quantitative evaluation, but also qualitative evaluation
for the proposed DIW. For the qualitative test, we setup two scenarios in which our DIW system can
be used in practice: (i) we built a large screen using UAVs and a lightweight canvas to evaluate the
practical use of our DIW system in space-constrained environments such as celebrations; and (ii) we
manually made dynamic non-planar surface to evaluate extreme environments.

Figures 11 and 12 show the qualitative results of our method, where the left column in each figure
depicts the result obtained with the proposed method and the right column shows the output of a
conventional projector. Our results show that the proposed DIW system effectively corrects distortion,
resulting in a TV-like rectangular screen. Furthermore, our method shows good undistortion results on
the dynamic non-planar surfaces made from UAVs and lightweight canvas. These results demonstrate
that our correction method and DIW system can be useful in real and extreme environments.

Figure 11. DIW results from dynamic non-planar surfaces generated from UAVs and a lightweight
canvas. The left column depicts the result obtained with the proposed method and the right column
shows the output of a conventional projector.
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To show the effectiveness of our DIW system, we uploaded a video clip (Video 1) at “https:
//youtu.be/RIpj0pED6NA”. The first part of Video 1 demonstrates the performance of our DIW
system that consists of UAVs and a lightweight canvas. The second part of Video 1 shows the
performance of our DIW system in an extreme case where screen geometries severely change in time.
In Video 1, the left part of the screen shows projection images generated by our DIW system, and the
right part of the screen shows projection images displayed by a projector only.

As shown in Video 1, screens with UAVs and canvas have irregular local and global movements
due to wind of UAVs. In this case, our DIW system stably produces undistorted square screens in real
time. On the other hand, the projection-only system yields clearly noticeable distortion. Regarding
the second scenario, the projector-only system causes significant geometric distortions on extremely
varying screen surfaces, while the proposed DIW system consistently provides rectangular-shaped
images on that surface.

Figure 12. DIW results from dynamic non-planar surfaces manually generated by a human. The left and
right columns depict the result obtained with the proposed method and the output of a conventional
projector, respectively.

5. Limitations

Our DIW system uses a projector, which is fundamentally difficult to use in bright environments,
especially during the daytime under outdoor conditions. This problem is a fundamental limitation
of our DIW system. In recent years, off-axis projectors have been introduced that generate projection
screens in a slightly upward direction to create large screens at a short distance. Regarding off-axis
projectors, our DIW system cannot be applied to them, as off-axis projectors require different calibration
and correction formulations than the proposed methods. Finally, in our method, the user position is
manually set for use in the user-perspective distortion correction. This means that if the user’s position
changes continually, our DIW system cannot track the user’s position and thus does not generate
perceptually correct screens. This problem remains for future work.

6. Conclusions

In this paper, we propose a new display system, namely “Display in the Wild”, to overcome
limitations of the conventional displays. To implement DIW, we suggest both hardware and software

https://youtu.be/RIpj0pED6NA
https://youtu.be/RIpj0pED6NA


Sensors 2018, 18, 3063 17 of 20

configurations. For the hardware of DIW, we select the projector and depth camera in order to generate
screen anywhere with different sizes and to correct the geometric distortion occurring on dynamic
non-planar surfaces in real time. For the software configuration, we propose a DIW-specific calibration
between the projector and depth camera. In addition, we also propose a fast correction method that
correct the geometric distortions on dynamic and non-planar surfaces. Our experimental results prove
that the proposed DIW system generates the rarely distorted screen on a dynamic non-planar surface
in real time, thus showing usefulness in practical scenarios (e.g., lightweight screen using UAVs) and
under extremely varying surface conditions. Since the proposed method can be divided into per-pixel
processing, we consider extending our DIW system to ultra-high definition (UHD)-based projector
applications via implementing parallel processing with GPUs for future work.
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Appendix A

Dividing the numerator and denominator of the right-hand side of Equation (3) by r33 and
replacing r11/r33, r12/r33, · · · , t3/r33 with l1, l2, · · · , l11, respectively, yield:

m1zd =l1xd+ l2yd+ l3zd+ l4−m1l9xd−m1l10yd−m1l11,

m2zd =l5xd+ l6yd+ l7zd+ l8−m2l9xd−m2l10yd−m2l11,
(A1)

where m1 = xif−1
px , m2 = yif−1

py . To solve Equation (A1), we set l1 ∼ l11 as the unknown calibration
parameters and produce a system of linear equations Ax = b as follows:



xdi
0 · · · xdN

0

ydi
0 · · · ydN

0

zdi
0 · · · zdN

0

1 0 · · · 1 0
0 xdi

· · · 0 xdN
0 ydi

· · · 0 ydN
0 zdi

· · · 0 zdN
0 1 · · · 0 1

−m1i
xdi

−m2i
xdi

· · · −m1N
xdN

−m2N
xdN

−m1i
ydi

−m2i
ydi

· · · −m1N
ydN

−m2N
ydN

−m1i
−m2i

· · · −m1N
−m2N



T 

l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11



=



m1i
zdi

m2i
zdi

.

.

.
m1N

zdN
m2N

zdN


, (A2)

where N is the number of points in our linear system, (xdi
, ydi

, zdi
) is i-th 3D point in the depth camera

coordinate, and (m1i , m2i ) is the respective inverse product of the i-th 2D image point and the focal
length of the projector. We can solve Equation (5) if we know at least eleven pairs of 3D points in the
depth camera coordinates with the corresponding 2D points in the image coordinates.

We divide the all elements in the numerator and denominator of the right-hand side in
Equation (A1) by r33. In order to avoid a homogeneous system of linear equation with b = 0. Note that
we specifically choose r33 as the divisor since r33(= cos(θx) cos(θy), where 0 ≤ θx, θy � π

2 ) is often
greater than zero, thus avoiding unstable results when the denominator is close to zero. Another
advantage of choosing r33 as the divisor is that we can easily recover r33 and Hdp from the calibration
parameters. Using l10, we calculate θx as follows:

l10 =
r32

r33
=
− sin(θx) cos(θy)

cos(θx) cos(θy)
= − tan(θx) (A3)
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Using l9 and θx, we calculate θy as follows:

l9 =
r31

r33
=

− sin(θy)

cos(θx) cos(θy)
= −

tan(θy)

cos(θx)
, (A4)

Then, we calculate r33 by using θx and θy, which allows us to recover the transformation matrix
Hdp from l1 ∼ l11.
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