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Abstract: As a large amount of stream data are generated through sensors over the Internet of
Things environment, studies on complex event processing have been conducted to detect information
required by users or specific applications in real time. A complex event is made by combining
primitive events through a number of operators. However, the existing complex event-processing
methods take a long time because they do not consider similarity and redundancy of operators.
In this paper, we propose a new complex event-processing method considering similar and redundant
operations for stream data from sensors in real time. In the proposed method, a similar operation in
common events is converted into a virtual operator, and redundant operations on the same events are
converted into a single operator. The event query tree for complex event detection is reconstructed
using the converted operators. Through this method, the cost of comparison and inspection of similar
and redundant operations is reduced, thereby decreasing the overall processing cost. To prove the
superior performance of the proposed method, its performance is evaluated in comparison with
existing methods.
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1. Introduction

Due to the trend of miniaturization and price drop of communication modules, communication
among objects in daily life is now possible. Along with this trend, environments where things can create
and share information are provided due to the penetration of intelligent digital devices. As things
such as vehicles, refrigerators, bicycles and even shoes are now able to communicate, new information
technology services are emerging. The Internet of Things (IoT) is intelligent networking where a
variety of things are connected to wired and wireless networks and collect and share information
for interaction [1–3]. Through the IoT, information can be created, collected and shared organically,
as everything including people, surrounding things and data are connected through the network.

Sensor network technology is essential to create, collect and exchange information for things over
the IoT environment [4–6]. Physical states and surrounding environment information are collected
by attaching sensors to various things, and information is transmitted among things using the sensor
network technology. A technology that can process or analyze big data collected through the sensor
network technology is required to provide intelligent services in the IoT environment [7–11]. In the IoT
environment, sensor networks can be used to determine future predictions and trends by detecting
physical situations or analyzing collected information. Recently, time-critical applications have been
developing to analyze data sensing from multiple sources in order to respond in real time in case
of abnormal and dangerous situations in the areas of disaster safety, manufacturing, transportation
and communication [12–14]. For example, manufacturers are building smart factories that collect and
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analyze product production data, environmental data and so on to determine if defective products
have occurred or to detect hazardous situations in a factory. In transportation, intelligent traffic services
are being developed to recognize situations around vehicles and roads through sensors and to provide
vehicles and pedestrians with a risk alert service in the case of a hazardous or sudden event.

A large number of studies have been conducted to process or analyze stream data generated
through numerous sensors in real time [15–18]. In particular, a complex event processing (CEP) method
has been developed to remove unnecessary information from a large amount of stream data generated
through sensors or to detect information that is required only for a specific application [19–21].
Generally, data processing is conducted by storing collected data in disks followed by batch processing
to create needed information. Thus, real-time processing is not appropriate since processing delay
occurs if a large amount of stream data is generated through sensors [22–24]. CEP analyzes real-time
stream data that are generated continuously, thereby delivering required information selectively once
users or application requirements are inputted as a continuous query form [25–27]. CEP utilizes
in-memory-based processing and event-driven architecture (EDA) to process stream data in real time
generated from sensor networks [28–30].

In CEP, stream data generated through sensors are defined as primitive events, which are
then combined through various operators to detect meaningful events to users or applications.
In stream-based and shared event (SASE) processing, complex events are expressed in the automata
form, and complex events are stored in a stack as primitive events and connected by pointers based
on the occurrence time [31,32]. However, complex events consisting of the same primitive events
are processed redundantly, which increases processing time. In the Radio frequency identification
(RFID) complex event detection algorithm (RCEDA), a pattern of complex events is configured as a
graph form, and all primitive events are delivered to parent nodes of the graph, thereby performing
an operation that compares the conditions [33]. However, if primitive events that require similar
operations are introduced, the operation for each event is processed individually, thereby increasing
computational load. Siddhi can reduce processing amount, since it can process redundant operations
into a single operation using a pipeline format. However, it has a problem of increasing computational
load as well due to individual processing of a large number of similar operations.

This paper presents an efficient CEP method considering similar and redundant operations
on sensor stream data. The proposed method generates an event query tree and detects similar
and redundant operations by circulating the tree to detect complex events, which is similar to the
structure of RCEDA. The similar operations that perform similar comparison operations or operations
that are interrelated with common events are combined by a single virtual operator for processing.
The redundant operations (i.e., those that perform the same operations on the same events) are
processed by a single operation. Once a primitive event occurs, the hash table is searched and the
primitive event is delivered to the event query tree to detect a complex event. Since a virtual operator
expresses a number of operations that perform similar operations, it expresses event occurrences
through bits, and when events that satisfy the condition occur, the events are delivered to the parent
node for the next operation.

This paper is organized as follows. In Section 2, related study trends and issues are described.
In Section 3, the proposed method is described in detail, and in Section 4, performance evaluation
is conducted to prove the superiority of the proposed method. Finally, in Section 5, conclusions and
future research are presented.

2. Related Works

RFID is a technology used to identify and track objects in logistics and supply chain management,
retail, healthcare, factory automation and security [34–36]. The objects with attached RFID tags are
automatically identified by RFID readers. The RFID reader sends energy via RF signal to the tag,
and the tag sends back a modulated signal. RFID readers can sense a number of RFID tags at the
same time. RFID uses short-range radio technology to transfer data between the readers and tags.
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Since RFID streams can be continuously generated, CEP is required to detect meaningful events in
RFID streams. RFID events are divided into primitive events and complex events in CEP. A primitive
event is an RFID tag sensed by an RFID reader. A complex event is a composite event which consists
of primitive events for applications or users [33,37].

SASE is a method to filter RFID data, monitor interrelated patterns, and detect meaningful
information [31,32]. SASE consists of event patterns of complex events, conditions (where), and time
intervals (within). The event pattern is a combination of primitive events, which are combined
through AND, OR, NOT, and SEQ operators. To select events, sequence scan and construction (SSC),
selection, within, and negation (NG) operations are performed. The SSC operation configures events
in the automata form, and stores occurring events in the stack through sequential scan. A state of
automata changes according to the sequential occurrence of primitive events. In SASE, even the
operations consisting of the same primitive events are processed individually. Thus, it has a problem
of increased overall computational load due to redundant inspection when processing similar or
redundant operations.

RCEDA is a RFID complex event-processing method using a graph-based computation model.
RCEDA presents the definition rules and processing method to process complex events efficiently [33].
RCEDA employs primitive operations such as AND, OR and NOT, and additional operators such
as SEQ, TSEQ, SEQ+ and TSEQ+ to configure complex events. The complex event is constructed
by combining operator trees and primitive events. In the leaf node of the tree, a primitive event is
positioned, and in the non-leaf node, an operator that connects events is positioned. Once the event
in the leaf node matches the condition, it is transferred to an operator in the parent node, and if the
event matches the condition of the operation in the root node, it is detected as a complex event. In the
case of the NOT operation, an event cannot be detected in the corresponding operator. Thus, a virtual
node is made in the upper hierarchy, and if the condition in the virtual node is satisfied in the NOT
operator in the lower hierarchy, the event is delivered to the parent node. In RCEDA, complex events
are registered as a graph form, and all occurred primitive events are delivered to the parent node,
thereby performing the complex event processing.

Siddhi consists of operations connected through the event queue, and operations are processed
through the pipeline mode [38]. The system consists of an event queue that stores data, and processors
that process input events. Once the primitive event is received through the input adapter,
the model is changed into the common data model. Each processor consists of executors, and each
executor processes the received events. Once the event that matches the condition occurs, the next
step is performed through the pipeline processing using the publication/subscription model.
Siddhi uses similar queries employed in the SQL, and constructs a query tree followed by performing
optimization. In the Siddhi system, redundant subqueries are processed simultaneously to reduce the
computational load.

The bitmap index-based CEP method processes complex events using a trigger according to
whether events occur or not [37]. In the above method, even if all events that make up the complex
events do not occur, operations continue for partially occurred events, thereby performing a large
number of operations and consuming a large amount of memory space. To solve this problem,
the bitmap index-based CEP method does not process all events that have occurred in a large amount
of stream data, but complex events are processed only when events that correspond to complex
events registered in the application layer occur. However, this has the problem that computational
load is not reduced significantly, since no consideration is given to operators at all in the case of
complex events consisting of the same primitive events. In [37], the complex events is detected only
when the minimum conditions for processing of events with regard to RFID stream data are satisfied.
To inspect the minimum conditions of events, complex events are registered in the grid index, and they
are extracted using the query indexes and bitmap. It only compares whether primitive events that
make up the complex events occur or not, and when all primitive events that make up the complex
events occur, the event detection operation is performed. However, since complex events, which have
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similar operations, have redundant searches for events stored in the bitmap, the problem of increased
computational load is incurred.

Since the existing methods cannot process events by sharing similar operations as one, they have
a drawback of increasing computation due to individual processing of events that have operations
of similar patterns. They also have no consideration about redundant operations that have the same
primitive events. Due to this drawback, computations to process complex events from a voluminous
data stream are increased significantly, and completion time is delayed because events cannot be
processed in a given time. Thus, a study on reduction of overall computational load is needed in
consideration of cases where primitive events that make up the complex events have similar and
redundant operations.

3. Complex Event Processing

3.1. Overall Procedure

The existing CEP methods require a large amount of comparison and inspection cost, since they
individually process similar and redundant operations that process the same event when a large
amount of stream data is generated in real time through sensors. Thus, a study on processing a large
amount of complex events rapidly is needed for reducing the computational load of complex event
detection. The proposed method is a new CEP method that reduces the processing cost of similar
and redundant operations. In this method, the execution plan for the detection of complex events is
converted into a tree, and an event query tree is reconstructed with regard to similar and redundant
operations. Similar operations are expressed as a single virtual operator to determine whether the
event occurs or not.

Figure 1 shows the overall processing procedure for complex events. Once a user or specific
application registers a query to detect a complex event, an event query tree is created to process
the event. In the operator identification, the event query tree is traversed to determine whether the
event is similar or redundant. The similar operation is changed into a single virtual operator, and the
redundant operation is converted into a single operation to reconstruct the event query tree. Once a
primitive event occurs through sensors, errors or redundant data are filtered. The complex event
detection determines whether the primitive event satisfies the complex event condition after event
filtering. Here, the reconstructed event query tree is employed to determine whether the complex
event condition is met. Once the complex event is detected, the event information is transmitted to
the user.
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3.2. Complex Event Registration

The input stream collected through sensors in the IoT environment is defined as a primitive event,
and a complex event is inferred by a query requested from a specific user and application to detect
meaningful information or remove unnecessary information. The primitive event is expressed as
raw data collected through sensors at a specific period of time, which is represented as < e, t, v >.
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Here, e refers to a sensor identifier as a primitive event type, t refers to a time that collected the
primitive event, and v refers to a value collected through the sensor. The primitive event means the
original data collected through the sensor itself. Each data collected by each sensor is defined as a
primary event and used as input data for complex event processing. Complex events are generated
by a combination of primitive events to create or extract meaningful information needed by a user
or application. Various event operators are used to generate composite events in combination with
primitive events. For the event operator, the operator defined in RCEDA is used in this study to define
the complex event.

A user and application registers a complex event that combines primitive events generated in
real time through sensors as a type of continuous query. The event query tree is created to detect
whether the registered complex event occurs or not. The event query tree consists of the combination
of primitive event and operator, which is similar to that of RCEDA. A primitive event is stored in
the leaf node in the tree, and operators for event combination or combined events are stored in the
internal node. Once the event query tree is created, the tree is in-order traversed to detect similar and
redundant operations, thereby creating a complex event information table (CEIT). The CEIT stores the
operator’s address, operation type, and parent node address. Figure 2 shows the event query tree of
complex event Q. When the event query tree is created, the tree is in-order traversed and numbers one
to nine are assigned according to the visit order of the internal node. In addition, information about
the visited node is stored in the CEIT.
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3.3. Operator Identification

Since a number of operators are contained in a complex event, the comparison and inspection
costs increase if similar and redundant operations are processed individually. To solve this problem,
similar and redundant operations are detected and their operators are converted. In this paper,
a redundant operation is defined when the number of the same operators is one or more in the same
event, and a similar operation is defined when interrelated operations or similar comparison operations
are performed with regard to the same event.

Table 1 presents a type of similar operations. OA refers to a case where OR and AND operations are
processed simultaneously with regard to the same event; SS refers to a case where the earlier-occurred
operation performs the same two SEQ operations; and OS refers to a case where the earlier-occurred
event in the SEQ operation performs an OR operation. In the OA operation, when one of the events
consisting of OR operations occurs, the event is transmitted to the higher node. In contrast, when all
events in the AND operation occur, the events are transmitted to the parent node. That is, when one of
the events that participates in OR and AND operations occurs, the event occurrence is transmitted
to the parent node in the case of OR operation and the occurrence of the previous event is set by a
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bit. In the case of AND operation, only when related other events occur is the result transmitted to
the parent node for processing. Since the SEQ operation takes the occurrence order of events into
account, the result of SS is delivered to the parent node depending on whether the other event occurs
or not while the one event that shall occur first between two SEQ events has already occurred in the
node. The result of the OR operation is transferred to the parent node if the precedent event in the SEQ
operation is one of the events that should be processed in the OR operation, and the result of the SEQ
operation is delivered to the parent node if the event that participated in the SEQ operation occurs.

Table 1. Similar operations on the same primitive events.

Similar Operation Participated Operation Description

OA E1 ∨ E2 E1 ∧ E2
When events that are contained in the OR and AND
operations are the same

SS E1; E2 E1; E3
When a precedent event occurs between events
included in two SEQ operations

OS E1 ∨ E2 E1; E3

When a precedent event in the SEQ operation among
the events included in the OR and SEQ operations is
included in the OR operation

The similar and redundant operations are detected while performing in-order traversal over the
event query tree. Here, the CEIT created in the complex event registration process is used. Table 2
presents the similar operation detection results, and Table 3 presents the redundant operation detection
results. OA and OS are detected as similar operations when there is an event query tree shown in
Figure 2. The AND and OR operations that can be combined as the similar operation OA, and OR
and SEQ operations that can be combined as the similar operation OS, are detected. As presented in
Table 3, the same operation on E1 and E3 events is performed in Nodes 2 and 8, and it is detected as
the redundant operation.

Table 2. Similar operation detection results.

Similar Operation Participated Operation Parent Node

OA(1, 6)
E1 ∨ E2 4
E1 ∧ E2 9

OS(3, 7)
E4 ∨ E5 4
E4; E6 9

Table 3. Redundant operation detection results.

Redundant Operation Participated Operation Parent Node
SO(2, 8) E3; E1 4, 9

3.4. Reconstruction of Event Query Tree

The event query tree is created to detect complex events once they are registered. The previously
created event query tree is reconstructed based on the similar and redundant operation detection
results to reduce the processing cost. In the event query tree, similar and redundant operations are
converted into a single operator to reduce the comparison and inspection cost. Similar operations
are converted into a virtual operator, and redundant operations are represented by a single operator.
A virtual operator is expressed in the lowest node number among the unique numbers in the nodes
related to the similar operations. In addition, the Event Occurrence Information Table (EOIT) is
created to determine whether a related event occurs or not in the virtual operator where two or more
operations are combined. In the EOIT, the Occurrence Bit (OB), which represents an operation to be
performed according to the event occurrence, and Parent node Address (PA), where the next operation
process is performed, are stored.
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Figure 3 shows the reconstructed results of the event query tree shown in Figure 2. The similar
operations are processed with a single virtual operator to reduce the comparison operation cost during
event detection. In the node that represents the virtual operator, the EOIT is stored together, and the
number of bits equal to the number of primitive events related to the virtual operator is assigned to
the EOIT. Since the number of primitive events of operations in the virtual operation OA(1,6) is two,
the bit that represents the occurrence is set to two, and the address of the higher node where the next
operation will be performed is stored. Since the virtual operation OS(3,7) is related to three events,
the bit that represents the occurrence is set to three. Nodes 2 and 8 are redundant operations where
the same SEQ operation is performed in E1 and E3. To reduce the processing cost of the redundant
operations, the operation of Nodes 2 and 8 is expressed as SO(2,8).
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As presented in Table 2, since Nodes 1 and 6 perform the OR and AND operations on the same
events E1 and E2, virtual operator OA(1,6) is created. Figure 4 shows the reconstructed results of the
event query tree through the virtual operator OA(1,6). The operation of Node 1 in the event query tree
is modified to OA(1,6), and the operation of Node 6 is deleted. Once the event is inputted, the event
occurrence is expressed by the bit in the OB, and when the event that matches the operation occurs,
the next execution request is given to the parent node address. Once E1 and E2 occur, the result of
the OR operation is delivered to the parent node. If other events occur in addition to the event that
satisfies the OR operation, the AND operation condition is checked and the next execution request is
given to all the parent nodes of the OR and AND operations.
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In the similar operation OS(3,7), as presented in Table 2, in the SEQ operation in Node 3 and the
OR operation in Node 7, the precedent event in the SEQ operation is included in the OR operation.
Thus, the SEQ operation in Node 3 and the OR operation in Node 7 can be combined to represent
OS(3,7), as shown in Figure 5. The virtual operator OS(3,7) is stored in Node 3, whose number is lower,
and Node 7 is deleted. Since events E4, E5 and E6 are related in the virtual operator OS(3,7), three bits
are assigned to the OB of the EOIT, and once an event that matches the operation condition occurs,
the OB is checked before the transfer to the parent node.
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The SS operation is related to two SEQ operations. Assuming that two SEQ operations are E3; E5

and E3; E1, then E3 is an operation that shall occur first in both of the two SEQ operations as shown in
Figure 6a. Thus, virtual operator SS(1,2) is created for the two SEQ operations, as shown in Figure 6b.
If E3 occurs first followed by E1 or E5, then the next execution request is given to the parent node
stored in the PA of the EOIT.
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Since the same operation is performed with regard to the same events in the redundant operations,
the event query tree is restructured to perform only a single operation for two operations. If the query
is modified to perform a single operation for the redundant operations, the next execution operation
should be processed individually. For example, although Nodes 2 and 8 are redundant operations
in Table 3, the execution operation that follows Node 2 is different from that following Node 8.
Thus, addresses of all nodes where the next operation will be performed should be stored. Nodes 2
and 8 in Table 3 are redundant operations where the SEQ operation is performed with regard to E1

and E3. SO(2,8) is created for the redundant operation, as shown in Figure 7. Nodes 2 and 8, where the
redundant operation is performed, are expressed as a single node, and the information of parent nodes
of Nodes 2 and 8 is added to perform the next operations individually.
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3.5. Complex Event Detection

After the event query tree is reconstructed using the similar and redundant operations, complex
events are detected through continuous comparison between the input stream data and query tree.
The general complex event detection process is similar to that of RCEDA except for the processing
procedure for similar and redundant operations. Once primitive events are generated through sensors,
the hash table is searched to deliver the primitive events to the event query tree where the operations
are performed for the primitive events. If the conditions performed in the event query tree are general
operators, all processes are the same as those done in RCEDA. If the operation to be performed is a
virtual operator, the event occurrence is set up, and when an event that satisfies the condition occurs,
the next execution request is given to the parent node stored in the PA of the EOIT. If the operation to
be performed is a redundant operation, the next execution request is given to multiple parent nodes
after the current operation.

When a primitive event occurs, the location of the event query tree where the operation will be
performed with regard to the primitive event should be identified. To do so, a hash table is created.
The hash table is composed of a list of the addresses of the event query tree where the operation
is performed with regard to the primitive events. Once a primitive event occurs, the hash table is
searched and the primitive event is delivered to the address where the operation is performed with
regard to the primitive event, and whether the next execution is performed or not is determined
through the operation. Figure 8 shows the process to access the event query tree through the hash
table when a primitive event occurs. Let us assume that a primitive event E1 occurs. To identify the
address of the event query tree where the operation related to E1 occurs in the hash table, the hash
table is searched, and the primitive event is delivered to Node 2, where the virtual operator OA(1,6)
and redundant operations are performed.
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Since the similar operations are expressed as a single virtual operator, the existing RCEDA
processing procedure cannot be used. Thus, the virtual operator employs the EOIT to process
multiple operations, which are in similar or inclusion relationships. Figure 9 shows the complex
event detection process with regard to virtual operators. Let us assume that two complex events,
Q1 : WITHIN(E1 ∨ E2, 1 sec) and Q2 : WITHIN(E1 ∧ E2, 0 sec, 3 sec)), are registered. The two
complex events have different time attributes, but the OR and AND operations are performed with
regard to primitive events E1 and E2. Thus, OA is created with regard to two complex events, E1 and
E2, as shown in Figure 9a. The OR operation has a time attribute of 1 s and the AND operation
has 0–3 s time attributes. Let us assume that new primitive events e0

2, e5
1 and e7

2 occur sequentially.

Here, ej
i means that event type i occurs at time j. Once the first event, e0

2, occurs as shown in Figure 9b,
a bit that represents the occurrence of E2 is set to one, because e0

2 occurred within 1 s. The OR operation
satisfies the condition even if only a single event occurs. Thus, when the OB of the EOIT is arrayed as
“01”, the next execution request is given to Parent Node 4, where the next operation will be performed.
When the second event e5

1 occurs as shown in Figure 9c, the occurrence of E1 is set to one, because the
OR operation that performs a process every 1 s occurred within 1 s. Since the previously occurred
e0

2 is outside the 0–3 s range, which is the condition of the AND operation, the occurrence of E2 is
set to zero. Thus, the OB of the collective events becomes “10”. When the OB of the EOIT is “10”,
the next execution node is 10. Thus, the next execution request is given to Node 10. When the last
event e7

2 occurs as shown in Figure 9d, the occurrence of E2 is set to one, because the OR operation that
performs a process every 1 s occurred within 1 s. Since the previously generated e5

1 occurred within
0–3 s, which is the condition of the AND operation, the occurrence of E1 is set to one. Thus, the OB of
the final event becomes “11”. The next execution request is given to Nodes 4 and 9 because both E1

and E2 occur.
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4. Performance Evaluation

To prove the superiority of the proposed method, performance evaluation was conducted
compared with the existing RCEDA method [33]. For the performance evaluation environment,
Intel Core i3-2100 processor and six-gigabyte memory were used, and the operating system was
Microsoft Windows. The modules for CEP were implemented by Java. Arbitrarily, 5000 to
40,000 primitive events were created, and processing times were compared according to the number of
events, ratio of similar operations, and ratio of redundant operations.

The processing time was compared with the existing RCEDA method according to the number
of primitive events through the created data. Figure 10 shows the comparison results of processing
time according to the number of primitive events. The processing efficiency of the proposed method
became better than that of the existing method as the number of primitive events increased, and the
proposed method showed higher processing speed, by 58% on average, than that of the existing
method. The existing method performed calculations of events that had similar operations individually,
whereas the proposed method grouped similar operations to reduce the repeated computation,
thereby exhibiting better processing efficiency than processing them individually.
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Figure 11 shows the processing time according to the ratio of similar operations. In the experiment,
approximately 40 identical complex event queries were used in the existing and proposed methods.
As the ratio of similar operations increased, the existing method showed a constant processing time,
whereas the proposed method exhibited a decreasing processing time. In addition, the processing
performance of the proposed method was higher when the ratio of similar operations was 30% to
50% compared to when it was 10 to 20%. Since the proposed method combined and processed
similar operations as a single virtual operation, which was not considered in the existing method,
it reduced computational load compared to the existing method. Thus, the above results verified that
the proposed method was on average 13.2% faster in processing time compared to the existing method.
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Figure 12 shows the comparison results of the processing time according to 10 ratios of redundant
operations in the level 1 tree structure among the complex event queries, using 40,000 events.
The proposed method reduced the total computation by conducting a single redundant operation
and using the result in all other redundant operations, in contrast with the existing method.
Thus, the proposed method had a processing time on average 18.8% faster than that of the existing
method, as the ratio of redundant operations increased in the complex event queries.
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The performance evaluation was conducted to prove that the proposed method requires less
computation than that of the existing method by using a virtual operator. In the performance evaluation,
event detection was compared between the existing and proposed methods using virtual operators
located in level 1 (except for parent nodes that had no virtual operators) using 40,000 events in the
complex event query tree. Figure 13 shows the number of detected events at 10 s, 20 s, 30 s, 40 s and
50 s with regard to operations located in level 1, where the virtual operators are present. As shown in
the figure, computational load was minimal between 10 and 20 s, but after 30 s, the proposed method
showed much faster computation than that of the existing method.
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5. Conclusions

In this paper, we proposed a complex event-processing method for sensor streams in the IoT
environment. The basic CEP method has a problem of increasing overall computation since it processes
similar and redundant operations individually with regard to common primitive events. In the
proposed method, the characteristics of the operators used to perform complex events are analyzed,
and similar and redundant operations are detected. Similar operations are processed as a single
virtual operation, and redundant operations are combined into a single operation to process complex
events. Thus, the proposed method can shorten processing time because it does not perform redundant
comparison operations or inspections on the same events. The performance evaluation on processing
time was conducted according to the event processing time and ratios of similar and redundant
operations, and the results showed that the proposed method improved processing time compared to
that of the existing method. As sensor big data is created along with expansion of IoT-based services,
research is needed to process large amounts of sensor stream data. In future works, we will conduct
CEP distributed processing methods for processing large sensor stream data. In addition, we will
implement the proposed method for actual open CEP systems and perform performance evaluations
as workloads change.
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