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Abstract: This paper proposes a switched-element direction finding (SEDF) system based Direction
of Arrival (DOA) estimation method for un-cooperative wideband Orthogonal Frequency Division
Multi Linear Frequency Modulation (OFDM-LFM) radar signals. This method is designed to improve
the problem that most DOA algorithms occupy numbers of channel and computational resources to
handle the direction finding for wideband signals. Then, an iterative spatial parameter estimator is
designed through deriving the analytical steering vector of the intercepted OFDM-LFM signal by the
SEDF system, which can remarkably mitigate the dispersion effect that is caused by high chirp rate.
Finally, the algorithm flow and numerical simulations are given to corroborate the feasibility and
validity of our proposed DOA method.

Keywords: wideband OFDM-LFM signal; switched-element system; fractional autocorrelation;
DOA estimation

1. Introduction

As a novel synthetic aperture radar (SAR) system, the multiple-input multiple-output SAR
(MIMO-SAR) utilizes multiple antennas to emit mutually orthogonal waveforms, and employs
multiple receiving channels to process the echo signals simultaneously [1–3]. Subject to current
technical conditions, wideband Orthogonal Frequency Division Multi Linear Frequency Modulation
(OFDM-LFM) modulated waveforms are commonly employed in modern MIMO-SAR systems [1,4],
which brings challenge to the passive direction of arrival (DOA) estimation techniques.

Passive DOA estimation techniques have been implemented in electronic warfare equipment.
In particular, a review of the most commonly used techniques can be found in literatures [5–7].
However, most of them are derived for narrowband signals, which cannot handle the wideband signal
scenario, i.e., the OFDM-LFM signals. In this paper, we focus on the DOA estimation method for
un-cooperative wideband OFDM-LFM radar signals. Overview of existing DOA algorithms [8–13] for
wideband signals, the common approach is to sample the signals in the frequency domain through
the array sensors, then, consider each frequency component into a narrowband signal for processing
individually. The broadband beamforming approaches in H. L. Van Trees book [14] utilize arrays with
non-uniform element spacing and a time-shift operator to complete decoupling of broadband signals.

Sensors 2019, 19, 132; doi:10.3390/s19010132 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3125-214X
https://orcid.org/0000-0002-9649-1996
http://dx.doi.org/10.3390/s19010132
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/1/132?type=check_update&version=2


Sensors 2019, 19, 132 2 of 12

Although the mentioned methods can function well, they still suffer from huge cost of hardware and
computational resources. Therefore, we exploit the switched-element direction finding (SEDF) system
to solve the DOA estimation problem for wideband signals without much cost.

The block diagram of the modified SEDF and the target MIMO radar system are drawn in Figure 1.
Its primary advantages include reducing the hardware and storage costs, simplifying the channel
calibration process and decreasing the computation load [15–17]. Moreover, SEDF is also suitable for
dealing with long-pulse signals, because there is no need to store the entire pulse in each channel.
As shown in Figure 1, we consider a SEDF system with two receiving channels whose name are the
reference channel (RC) and the switched channel (SC) respectively. When a signal of interest (SOI)
is intercepted, the SC starts to switch in a constant period from antenna #1 to antenna #K. Thus,
the signal pulse is split into multiple sub-pulses in the SC. Meanwhile, the data are collected via the RC.
In formulating the DOA estimation problem for wideband OFDM-LFM signal on this SEDF system,
we found that the steering vector is turned into a discrete time LFM-like vector. Hence, we proposed
a modified approach to solve this estimation problem, which is inspired by a recently developed
parameter estimation algorithm called Fast Iterative Interpolated Digital Fraction Fourier Transform
(FII-DFrFT) [18].

...
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Figure 1. Block diagram of the Switched-Element Direction Finding System (RF is short for the
Radio Frequency, ADCs is short for Analog to Digital converters) and Multiple-input multiple-output
radar system.

The rest of this paper is organized as follows. In Section 2, we introduce the signal model and the
formula derivation for DOA estimation problem. In Section 3, the proposed FII-DFrFT estimator is
illustrated in detail. Numerical simulation results are shown in Section 4. Finally, in Section 5 some
conclusions are drawn.
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2. Problem Formulations

Consider an adversary MIMO-SAR with M transmitters. This radar employs wideband
OFDM-LFM waveforms, which were first introduced into the design of an MIMO radar system
by F. Cheng [19]. Afterwards, the signal of the mth transmitter is given as:

sm (t) = um (t) ej2π f0t, 0 ≤ m ≤ M− 1 (1)

um (t) = ej2π(m f∆t+ 1
2 γ0t2) (2)

where f0 denotes the carrier frequency; f∆ is the frequency step between two adjacent transmitters;

γ0 stands for the chirp rate. Besides, the bandwidth B of the OFDM-LFM signal is defined as B ∆
=

(M− 1) f∆ + γ0Tp, where Tp represents the pulse width of sm (t).
On the contrary, there are K + 1 antennas allocated in the SEDF system with interspace dR,

as shown in Figure 1. Here, we set the intercepted signal via RC as yRC (t) = s (t− t0) + nRC (t),
where t0 represents the propagation time, and nRC (t) is the additive Gaussian white noise in RC.
Since this paper focuses on the DOA, without loss of generality, it is reasonable to set t0 = 0 for the sake
of simplicity of derivations. Meanwhile, to avoid redundancy introductions of other scholars’ existing
work, we assume that the estimation for inner pulse parameters and the radio frequency demodulation
have already been accomplished by the techniques and algorithms in References [18,20–22], while using
the collected data in the RC. Moreover, we also assume the incident direction θ and the power of the
SOI is stable during the switch period Ts. Therefore, the OFDM-LFM signal intercepted via the SC can
be written as:

ySC (t) = A
M−1
∑

m=0

K
∑

k=1
sm (t− τk) rect

(
t−(k−1)Ts

Ts

)
+ nSC (t)

= A
K
∑

k=1

M−1
∑

m=0
exp

[
j2π

(
fmt + 1

2 γ0t2
)
+ j2π

(
− fmτk − γ0τkt + 1

2 γ0τ2
k

)]
rect

(
t−(k−1)Ts

Ts

)
+ nSC (t)

= A
K
∑

k=1

M−1
∑

m=0
um (t) ejϕm(τk ,t)rect

(
t−(k−1)Ts

Ts

)
+ nSC (t)

(3)

where τk = [kdR sin (θ)] /c is the propagation delay between the #k and #0 antenna, with c represents
the speed of light; Ts is the duration for each switch; nSC(t) is the thermal noise in SC; fm = f0 + m f∆;
the phase shift ϕm (τk, t) is recast to:

ϕm (τk, t) = 2π

(
− fmτk − γ0τkt +

1
2

γ0τ2
k

)
(4)

which is time related.
Let us consider a common LFM, whose chirp rate has the quantity of 1012Hz/s, while τk has the

quantity of 10−9 s. This means that the third term ( 1
2 γ0τ2

k ) in Equation (4) is almost 0. Thus, we discard
this term in the following derivations. Then, ignoring the noise term (its effect will be analyzed in the
performance evaluations Section), we can obtain the instantaneous cross correlation between the SC
and RC by:

r (t) = ySC (t) · y∗RC (t) = A2
K
∑

k=1

M−1
∑

m=0
um (t) exp [jϕm (τk, t)]

M−1
∑

m′=0
u∗m′ (t)

= A2
K
∑

k=1

[
M−1
∑

m=0

M−1
∑

m′=0
exp [j2π (m−m′) f∆t + jϕm (τk, t)] rect

(
t−(k−1)Ts

Ts

)] (5)

The above equation reveals that the interested phase shift terms (exp [jϕm (τk, t)]) are mixed with
the cross terms (exp [j2π (m−m′) f∆t]), which are caused by the multi-component of the intercepted
signal. In order to extract the phase shift term, a low-pass filter h (t) is designed [23] to filter out the
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cross terms, which ranges from ± exp [±j2π f∆t] to exp [±j2π (M− 1) f∆t]. Therefore, we can obtain a
new baseband signal x (t) after cross correlation and low-pass filter processing:

x (t) = {ySC (t) · y∗RC (t)} ⊗ h (t) ≈ A2
M−1

∑
m=0

K

∑
k=1

exp [jϕm (τk, t)] (6)

Afterwards, we collect the samples of x (t) every time when the SC switches the antenna, i.e., at
t = 0, Ts, · · · , (K− 1) Ts. Therefore, the sampled data is given by:

x = [x (0) x (Ts) · · · x ((K− 1) Ts)]
T
K×1 = A2a (θ) (7)

where the steering vector a (θ) is expressed as:

a (θ) =



M−1
∑

m=0
exp

[
−j2π

(
fm

dR sin(θ)
c

)]
M−1
∑

m=0
exp

[
−j2π

(
( fm + γ0Ts)

2dR sin(θ)
c

)]
...
M−1
∑

m=0
exp

[
−j2π

(
( fm + (K− 1) γ0Ts)

KdR sin(θ)
c

)]


K×1

(8)

For the simplicity of derivations, we define v ∆
= dR sin (θ) /c. Then, the kth entry of x can be

further denoted by:

x [k] = A2
M−1

∑
m=0

exp
[
−j2π

(
( fm − γ0Ts) vk + γ0Tsvk2

)]
(9)

It is interesting to find out that comparing with the traditional narrow band representation,
the steering vector of OFDM-LFM signal by SEDF system is also a chirp modulated signal, with respect
to k2. Thus, this spatial signal model brings failure to the regular DOA estimation algorithms such as
MUSIC and ESPRIT. Concerning on this, we approach our DOA estimation problem to the parameter
estimation for OFDM-LFM signals. Therefore, we define the spatial chirp rate (µ0) and spatial frequency

(ω) as µ0
∆
= 2vγ0Ts and ωm = ( fm − Tsγ0) v respectively. Then, Equation (9) can be simplified as:

x [k] = A2
M−1

∑
m=0

exp
[
−j2π

(
ωmk +

µ0

2
k2
)]

(10)

To solve this estimation problem, we introduce the fast digital algorithm of FrFT [24] as:

Xα

(
U

2∆x

)
=

Bα

2∆x
ejπ tan( α

2 )(
U

2∆x )
2 K

∑
k=−K

ejπ csc α(U−k
2∆x )

2

ejπ tan( α
2 )(

k
2∆x )

2

x
(

k
2∆x

)
(11)

where ∆x =
√

K and Bα =
√
(1− j cot α).

Substituting Equation (7) into Equation (11) we can obtain:

Xα

(
U

2∆x

)
= Bα

2∆x

M−1
∑

m=0

K
∑

k=−K
exp

[
jπ (cot αU2−2 csc αUk+cot αk2)

(2∆x)2 − j2π

(
ωm

k
2 + µ0

2

(
k
2

)2
)]

= Bα
2∆x exp

[
jπ cot α

(
U

2∆x

)2
]

M−1
∑

m=0

K
∑

k=−K
exp

[
jπ
(
−ωm − 2U csc α

(2∆x)2

)
k + jπ

(
− µ0

4 + cot α

(2∆x)2

)
k2
] (12)

From Equation (12), we can see that x can be reformulated into multiple (precisely say M)
impulses only for a particular α0(cot α0 = −Kµ0) in the FrFT domain when K → ∞. After peak
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searching, the peak coordinates (αB, UBm) in the FrFT domain can be utilized as an estimator for spatial
frequency v (θ) and DOA θ as: v̂ = − 1

M−1

M
∑

m=2
(UBm −UBm−1)

csc αB
2K f∆

θ̂ = arcsin
(

cv̂
dR

) (13)

However, since the number of antennas K is a limited value, there always some residual terms
between the quasi peaks (αB, UBm) and real peaks (α0, Um). In this paper, we define these residual
terms as φ0 and εm, where α0 = αB + φ0 and Um = UBm + εm. Concerning on the influence of these
residual terms to the estimation precision of DOA, we propose an iterative high-accuracy method to
solve this problem.

3. Proposed Method

3.1. Estimation of Spatial Chirp Rate

As the analytical formulation of |XαB (UBm)| involves Fresnel integral formula [25], it is difficult
to directly construct the estimator for φ0. Thus, we consider utilizing the Fractional Autocorrelation
(FA) spectrum of x (t) to form this estimator, which is defined as [26]:

χα (τ) =
∫

x
(
t + τ

2 sin α
)

x∗
(
t− τ

2 sin α
)
e2jπtτ cos αdt

=
∫

rect
(

t
TK

)
ej2πtτ(µ0 sin α+cos α)

M−1
∑

mi=0

M−1
∑

mj=0
e−jπτv(θ) sin α(mi−mj) f∆ e−j2πv(θ)(mi−mj) f∆tdt (14)

where TK
∆
= KTs.

Afterwards, we can calculate the detection statistic [26] interpreted as:

L (α) =
∫ ∞

−∞
|χα (τ)|dτ (15)

Substituting Equation (14) into Equation(15) yields

L (α) = |Γ (α)|
∫ ∞

−∞
|TKSinc [2πTK (µ0 sin α + cos α) τ]|dτ (16)

where

Γ (α) =
∫ ∞

−∞

∫ TK

0

M−1

∑
mi=0

M−1

∑
mj=0

e−jπτv f∆ sin α(mi−mj)e−j2πtv f∆(mi−mj)dtdτ (17)

We can ignore the Γ (α) in the following derivation as this term does not involve µ0. Therefore,
we can estimate µ0 by locating the peak of L (α), namely:

µ̂0 = − cot α|α=α0 (18)

where the coordination of the peak is given by α0 = arg max {L (α)}.
However, the estimation performance is affected by the grid size of searching, say ∆α, as is

demonstrated in Figure 2. To be specific, the actual residual term φ0 between the α0 and αB is also
defined by ∆α, which is given by:

α0 = αB + φ0 = αB + δ0∆α (19)
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where δ0 ∈ [−0.5, 0.5]. Therefore, the fine estimation is now equivalent to obtain an estimate of
δ0. Plugging in Equations (18) and (19), after some trigonometric derivation, we can define the FA
coefficient as:

LP = L (αB + P∆α) =
∫ ∞

−∞
|TKSinc [2πTK csc α0 sin ((P− δ0)∆a) τ]|dτ (20)

where Lp (P = ±0.5) calculates the interpolation coefficient at the both edges of αB. Afterwards,
we introduce the error mapping formulation through Algorithm 1 of [27] (see Table I in [7] for more
information), which is defined as:

h1 (δ) = Re
{

L0.5 + L−0.5

L0.5 − L−0.5

}
≈ 1

2δ0
(21)

 L 



0
B

0



Figure 2. Demonstraction on the effect of the off-grid.

It is worth noting that Equation (21) needs a small enough ∆α, then the following approximations
can be utilized: sin (δ∆α) ≈ δ∆α and sin [TK (0.5− δ)∆απ csc α̃τ] ≈ sin [TK (0.5 + δ)∆απ csc α̃τ].
Thus, we can construct the estimator δ̂0 = 1

2h1(δ0)
for δ0. Then, an iterative process can be combined to

improve the estimation accuracy by updating αB after each iteration, which will be shown in Section 3.3.

3.2. Estimation of Spatial Frequency

Firstly, following Equation (12), we consider one component, say m, of the OFDM-LFM signal
with a well estimated spatial chirp rate − cot α̂0 ≈ Kµ0. Thus, Equation (12) can be rewritten as:

Xα̂0

(
U

2∆x

)
=

Bα̂0

2∆x
ejπ cot α̂0( U

2∆x )
2 K

∑
k=−K

e
jπk
(
−ωm−

2U csc α̂0
(2∆x)2

)
(22)
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As we analyze in Section 2, the coordination estimated from the discrete searching is bias from
the actual value with the finite K. Hence, at the quasi peak (α̂0, UBm), Xα̂0

(
UBm
2∆x

)
equals:

Xα̂0

(
UBm
2∆x

)
=

Bα̂0

2∆x
ejπ cot α̂0

(
UBm
2∆x

)2 K

∑
k=−K

ejπk
(
−ωm−

UBm csc α̂0
2K

)
(23)

Substituting the real value ωm = − csc α̂0
2K Um and Um = UBm + εm into Equation (23), we can

rewrite it as:

Xα̂0

(
UBm
2∆x

)
=

Bα̂0

2∆x
ejπ cot α̂0

(
UBm
2∆x

)2 K

∑
k=−K

ejπk εm csc α̂0
2K (24)

Similar to the approach in Section 3.1, we can obtain Xα̂0

(
UBm±P

2∆x

)
as:

Xα̂0

(
UBm ± P

2∆x

)
= Γ′ (α̂0, UBm ± P)

 e−jπ (ε0∓P) csc α̂0
2

(
1− ejπ(ε0∓P) csc α̂0

)
1− ejπ (ε0∓P) csc α̂0

2N

 (25)

where Γ′ (α̂0, UBm ± P) =
Bα̂0
2∆x ejπ cot α̂0

(
UBm±P

2∆x

)2

.
When (εm ∓ P)� N, we can approximate Equation (25) by using the first order Taylor expansion

at x = 0 of 1− ex ≈ x. Then, similarly to Section 3.1, we could also construct the error mapping
through this approximation as:

Xα̂0

(
UBm ± P

2∆x

)
= Γ′ (α̂0, UBm ± P)

 e−jπ (ε0∓P) csc α̂0
2

(
1− ejπ(ε0∓P) csc α̂0

)
1− ejπ (ε0∓P) csc α̂0

2N

 (26)

Hence, we can similarly obtain an estimator δ̂m = 0.5h2 (δm) for the residual term ε̂m, and combine
an iterative process to improve its accuracy.

3.3. Iterative DOA Estimation for OFDM-LFM

In this subsection, the estimators of spatial chirp rate and spatial frequency are combined to
estimate the DOA for OFDM-LFM signals. Due to the fact that the FrFT is characterized by linear
transformations [28], the major estimation bias between multi-component and mono-component
signals through the FrFT based algorithm is caused by the energy leakage from the multi-component.
To adapt the above process to the multi-component scenario, we introduce the CLEAN algorithm [27].
Firstly, the noise-free actual fractional coefficient X̃α̂0,m

((
Ûm ± P

)
/2∆x

)
of the mth OFDM component

is defined as:
X̃α̂0,m

(
Ûm±P

2∆x

)
= DFRFT(α̂0,Ûm±P) (x [k])

= Xα̂0,m

(
Ûm±P

2∆x

)
+

M
∑

l=1,(l 6=m)

^

Xα̂0,l

(
Ûm±P

2∆x

) (27)

where
^

Xα̂0,l
((

Ûm ± P
)

/2∆x
)

denote the energy leakage from the other M− 1 OFDM components,
which can be calculated by:

^

Xα̂0,l

(
Ûm ± P

2∆x

)
= AlDFrFT(α̂0,Ûm±p) (ŝl [n]) =Al

Bα̂0

2∆x
ejπ cot α̂0

(
Ûm±P

2∆x

)2 N

∑
n=−N

e
jπn

(
(Ûl−Ûm∓P) csc α̂0

2N

)

(28)
where Al is the amplitude of the lth (l = 1, ..., M) component.
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Then, the target fractional coefficient X̂α̂0,m can be separated from the mixed term X̃α̂0,m by
subtracting the leakages as:

X̂α̂0,m

(
Ûm ± P

2∆x

)
= X̃α̂0,m

(
Ûm ± P

2∆x

)
−

M

∑
l=1,(l 6=m)

^

Xα̂0,l

(
Ûm ± P

2∆x

)
(29)

According to the above derivation, an iteration-based method to accomplish the DOA estimation
for OFDM-LFM signal is demonstrated in Algorithm 1.

Algorithm 1: Proposed FII-DFrFT DOA Estimation Method.

Initialization : Set δ̂0 = 0, ε̂m = 0, Âm = 0 and P = 0.5, where m = 1 · · ·M;
Find αB = arg Max

α
{L (α)}, where α ∈ [0 : ∆α : π] and u ∈ [0 : 1 : N − 1].

Estimation of Spatial Chirp Rate:
1. Calculate the detection statistic L (α) using Equations (14) and (15),

find αB = arg Max
α
{L (α)}, where α ∈ [0 : ∆α : π];

2.for q = 1 : 1 : Q do
2.1 Calculate L (αB ± 0.5∆α) and β using Equations (13) and (16).
2.2 Calculate δ̂q = 1/ (2h1), renew αB = αB + δ̂q∆α;

end
3. Finally, let α̂0 = αB.
Estimation of Spatial Frequency:
1. Calculate the Xα̂0 [u] = DFrFT(α̂0,u) (x [k]) using Equation (12).
2.for m = 1 : 1 : M do

2.1 if q = 1 then

X̃α̂0 [u] = Xα̂0 [u]−
M
∑

l=1,l 6=m
ÂlDFrFT(α̂0,u) (ŝl [k]), ÛBm = arg Max

u

(∣∣X̃α̂0 [u]
∣∣2);

end
2.2 Calculate X̂m,α̂0

(
Ûm ± P

)
and h2 (δm) using Equations (26)–(29);

2.3 Calculate ε̂m = 0.5h2 (δm), renew ÛBm = ÛBm + ε̂m;

2.4 Calculate Âm =

∣∣∣∣∣Xα̂0

[
Ûm
]
−

M
∑

l=1,l 6=m

^

Xα̂0,l

(
Ûm
2∆x

)∣∣∣∣∣ /
(

∆x
∣∣∣Bα̂0

∣∣∣)
end
3. Calculate Ûm = ÛBm + ε̂m.

Output:

 v̂ = − 1
M−1

M
∑

m=2

(
Ûm − Ûm−1

) csc α̂0
2K f∆

θ̂ = arcsin
(

cv̂
dR

)
4. Performance Evaluation

In this section, we report our numerical evaluation through a Monte-Carlo simulation. Since the
DOA estimation performance is mainly dependent on three factors, which are the signal-to-noise-ratio
(SNR), the incidence angle (θ) and the component number (M), we evaluate the estimation performance
with respect to these factors in a realistic case.

Consider a coherent MIMO radar (e.g. MIMO-SAR) which employs wideband OFDM-LFM
signal. The simulation parameters of this MIMO radar and our SEDF system are listed in Table 1. It is
worth noting that we assume the pulse width (TP) of the OFDM-Signal is greater than KTs, thus our
method can function well. Moreover, we assume the far field sources whose initial phase is uniformly
distributed within [0, 2π), and we take the thermal noise into consideration, which is modeled as
zero-mean Gaussian with variance σ2

n = 1. Additionally, in all simulations, 1000 independent runs
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are conducted to calculate the Normalized Root Mean Square Error (NRMSE) and Root Mean Square
Error (RMSE).

(a) DOA Estimation versus SNR

In this simulation, we evaluate the DOA estimation performance with respect to the SNR,
while the DOA θ is set as 30 deg. For the sake of comparison, we also simulate the following
approaches, Incoherent Signal-subspace Method Conventional Beam Forming (ISM-CBF) [29],
Coherent Signal-subspace Method Linearly Constrained Minimum Variance (CSM-LCMV) [11],
Rotational Signal Subspace Sparse Asymptotic Minimum Variance (RSS-SAMV) [12] and Sparse
Iterative Covariance-based Estimation (SPICE) [9] As these existing approaches are designed for single
wideband LFM signal, here, we consider the intercepted signal that received by our switched-element
system a mono-component wideband LFM signal (M = 1). Then, the above approaches and
FII-FrFT are utilized to process the output signal and obtain the DOA estimation results, respectively.
These results are collected and organized to NRMSE curves, which are shown in Figure 3. These curves
reveal that our FII-FrFT method outperforms most mentioned approaches when SNR is beyond −8 dB.
However, the NRMSE curve of FII-FrFT remains stable when SNR is beyond 12 dB and suffers a stable
estimation bias, which is caused by the approximations that we employed in the theoretical derivations
of Section 3.1 and the off-grid effect. On the other side, although the RSS-SAMV performs best in this
simulation, its implementation will consume much more hardware resource (K receiving channels)
and computational resource [12].

Table 1. Parameter Settings.

MIMO Radar Parameters

Number of antennas M 1–4
Pulse width Tp 20 µs

Carrier frequency f0 10 GHz
Chirp rate γ0 20 MHz/µs

Frequency step f∆ 400 MHz

Switched-element System Parameters

Number of ULA K 128
Carrier frequency f0 10 GHz
Interspace of ULA dR 0.015 m
Switching interval Ts 0.1 µs
Searching interval ∆α 0.01
Iteration number Q 3

Figure 3. Normalized root mean square error (NRMSE) of DOA versus the signal-to-noise ratio (SNR).
Cramer Rao, FII-FrFT, ISM-CBF, CSM-LCMV, RSS-SAMV and SPICE.
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(b) DOA Estimation versus Real Incident Angle and Component Number M

In this simulation, we focus on the DOA estimation performance as the function of the real
direction θ within [10, 70] degree by the FII-FrFT. We also consider the intercepted OFDM-LFM
signals consist different component numbers M = [2, 3, 4]. For intuitional comparison with different
OFDM-LFM signals, we define a different SNR in this subsection as ρ = 10 lg

(
MA2/σ2

n
)
. The root

mean square error (RMSE) of DOA estimation results at SNR = 10 dB are given in Figure 4. Firstly,
we can see from Figure 4 that our proposed method can handle the OFDM-LFM radar signal well,
while its component number affects the RMSE slightly. Secondly, the periodic variation of RMSE curves
in Figure 4 reflects the off-grid effect in the fixed searching interval on estimation performance, which is
in coincidence with our theoretical analysis in Section 3.2 and the simulation results in Reference [15].
This bias can be reduced by decreasing , i.e., using a denser grid, but it will also lead to the expensive
price of computational load. Therefore, our DOA estimation method has to reach a compromise
between accuracy and cost.

Figure 4. Root mean square error (RMSE) of DOA versus the incident angle.

5. Conclusions

In this paper, a FII-DFrFT based SEDF system was introduced to improve the DOA estimation
performance considering the wideband OFDM-LFM signals. The steering vector was reformulated
followed by the iterative interpolation in both FA and DFrFT spectrum. Numerical simulations
illustrated the validity and superiority of our algorithm compared with some other wideband DOA
estimation approaches like ISM-CBF, CSM-LCMV, RSS-SAMV and SPICE. On the other hand, in the
practice scenario, the modulated parameters of un-cooperative MIMO radar are generally unknown.
This will cause the DOA estimation to be possibly ambiguous. Fortunately, taking advantage of a
flexible switching interval, we can design a multi-interval SEDF system to resolve this ambiguity.
Finally, the estimation bias caused by the off-grid effect and approximation are also of interest and will
be the subject of our further investigation.
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