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Abstract: Proper calibration of eye movement signal registered by an eye tracker seems to be one of
the main challenges in popularizing eye trackers as yet another user-input device. Classic calibration
methods taking time and imposing unnatural behavior on eyes must be replaced by intelligent
methods that are able to calibrate the signal without conscious cooperation by the user. Such an
implicit calibration requires some knowledge about the stimulus a user is looking at and takes into
account this information to predict probable gaze targets. This paper describes a possible method
to perform implicit calibration: it starts with finding probable fixation targets (PFTs), then it uses
these targets to build a mapping-probable gaze path. Various algorithms that may be used for
finding PFTs and mappings are presented in the paper and errors are calculated using two datasets
registered with two different types of eye trackers. The results show that although for now the
implicit calibration provides results worse than the classic one, it may be comparable with it and
sufficient for some applications.
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1. Introduction

With growing access to cheap eye-tracking devices using simple web cameras, and advancements
in image processing and analysis, it has become possible to incorporate eye tracking as yet another
human–computer interface.

The accuracy and precision of cheap eye trackers (priced less than $500) are lower than the
high-end eye trackers (for more than $5000); however, there are numerous examples that such eye
trackers may be used not only for simple tasks but also for research [1]. There are publications
confirming that e.g., The Eye Tribe [2], Gazepoint GP3 [3] or Tobii EyeX [4] may give reliable
eye-tracking results when certain conditions are met.

However, one of the most important problems when considering eye-tracking usage on an
end-user market is the necessity of calibration. Most eye trackers require to be calibrated prior to each
usage. Unfortunately, the calibration procedures currently used are cumbersome and inconvenient.
Additionally, to achieve reliable results, they often require qualified operators that control the process.
As a result, eye tracking is reliable only in laboratory conditions and usage of eye tracking in the wild
by unqualified users is often impossible.

The goal of the research summarized in this paper is to develop calibration methods that make
using eye tracking possible also for unattended and inexperienced end-users. The idea that the
calibration may be done implicitly, during normal user’s activities is our main research hypothesis.
The possibility of such a calibration has been confirmed in several papers [5–8]; however, the main
challenge is to achieve generality of the solution and accuracy that is sufficient for end-user eye-tracking
usage in various eye-tracking applications.
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1.1. Calibration

Every eye tracker produces some output, which may be multidimensional and depends on
the type of the eye tracker used. It may be information regarding image coordinates of the pupil
center, light reflections (glints) positions, signal intensity (for Direct Infra Red Oculography or
Electrooculography ) or just the whole eye image used by appearance-based methods. This output may
be treated as a set of attributes e1, ... en. The purpose of the calibration is to build a model (calibration
function fcalibration) that converts this output into information about the gaze point—a place where
the examined subject is looking at a particular moment. The gaze point is given in scene coordinates
and typically is presented as a point in a two-dimensional scene space (Equation (1)) but may also be
defined in three-dimensional (3D) space [9,10]. The scene coordinates may be specified in relation to
the observed screen (in the case of eye trackers working with screens) or in relation to scene camera
coordinates (in the case of eye trackers equipped with a scene camera) [11].

gazei(x, y) = fcalibration(e1, e2, ...en) (1)

During the classic calibration procedure, the subject is expected to look for some time at predefined
locations in the scene (so called targets). When a certain degree of eye tracker output data with the
corresponding known gaze locations is available, it is possible to build the calibration function that
will be able to map a future eye tracker output to gaze points. The quality of the function depends
on the amount of training data available, diversity of recorded gaze points’ positions and quality
of the recordings [11,12]. While the two first aspects may be adjusted by prolonging the calibration
procedure, the latter is difficult to inspect.

Such a calibration scenario typically requires focusing on one target and leaving the eyes stable
for a long time to collect the necessary data. As human eyes tend to change focus several times a
second, gazing at a static target is not a natural task. Therefore, such a procedure is cumbersome and
inconvenient for users and prone to errors when participants do not look where they are expected to
because of tiredness or loss of focus.

Another problem is that the accuracy of results derived by the calibration function tends to
decrease with time [5,13]. To solve this problem, the calibration procedure must be repeated from time
to time which makes the usage of an eye tracker even more inconvenient.

These issues have resulted in the search for alternative calibration methods. There were many
other scenarios tested, including: a click-based calibration [14], smooth pursuit calibration [15],
vestibulo-ocular reflex (VOR)-based calibration [16] and others. However, all these methods share the
same burden: they take time, are not very convenient for users and their results lose accuracy with
time. For this reason, there is a growing interest in methods able to perform an implicit calibration,
during a normal user’s activities.

1.2. Implicit Calibration

The main assumption of the presented research is that when information about an observed
scene is available, it is possible to predict—with some probability—at what location a subject will look.
Having this information and data from an eye-tracking device, it is possible to construct a model that
can estimate the gaze point, similarly to the classic calibration. Such a calibration does not require any
explicit nor active cooperation of the user—in fact, the users may even not be aware that they are being
calibrated. Therefore, such a calibration is called implicit calibration and because it may be performed
online, during the whole eye-tracking session it may be also treated as continuous calibration.

Implicit calibration always requires information about the scene, which is explored by the
user. The probability that the user looks at specific points may be calculated using various criteria.
The simplest algorithm may use the center location paradigm that states that most of the time the user
is looking at the center of a scene [17]. More sophisticated algorithms may use saliency map models,
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or any other predictions [18]. It is worth noting that the implicit calibration may replace a classic
calibration but may also be used only to improve or maintain an already performed calibration [19,20].

1.3. The State of the Art

The problem of implicit calibration has been already analyzed in several publications; however,
to the best of our knowledge, there are still no out-of-the-box solutions, which may be directly used by
potential users.

One of the first papers using solutions similar to implicit calibration was [5]. The authors aimed to
correct systematic calibration drift using clues regarding gaze position obtained during a participant’s
work. The clues were locations of mouse clicks (with the assumption that people look where they
click) and were used to check the calibration quality and invoke recalibration if necessary. A similar
assumption was made in [20], where the initial calibration was completely removed, and the calibration
was done only based on mouse-click positions.

When the number of clicks is insufficient, it is possible to use other information about the scene,
e.g., identify objects that should be fixated to accomplish tasks, such as labels, icons to find, etc.
This idea was used to correct drift errors in the calibrated signal in [13,19].

When a scene does not consist of easily distinguishable objects, as in the case of user interfaces,
a more general solution must be used that tries to predict fixation targets taking into account only
information about the scene a user is looking at. Such a solution involves creation of a saliency map—a
function that estimates for each scene point a probability that user will look at this point [21].

Probably the first paper in which saliency maps were used as an input to the calibration model
was [7], extended later in [22]. The authors used graph-based visual saliency (GBVS) model [23] and
face detector to calculate saliency for each frame of a movie. The saliency map was later aggregated
to improve optimization. The same saliency model was used in [17]. Another example includes [8]
where the map was built using a self-developed algorithm based on the Regression Convolutional
Neural Network (RCNN). Instead of using algorithmic saliency model it is also possible to use gaze
data recorded earlier for the same image as it was done in [24]. However, such a solution is possible
only when the same stimulus is presented many times and is not feasible in general case.

Some methods use not only a pure saliency maps but use also natural constraints like center bias
that assumes that gaze locations are biased towards the center of the scene during free viewing [25,26].

When saliency for every frame is known, it may be used to estimate parameters of a calibration
model that, for the given data, maximizes the likelihood that the computed gaze falls in the region
of high saliency. There are different optimization methods used: Gaussian process regression [22],
Bayesian network [17], K-closest points and mixture model methods [24] or minimization of the
Kullback-Leibler divergence between distributions [8].

Most experiments published so far recorded a set of gazes while a person was watching static
images [8,17,24,27]. Only in [22] the authors used a set of frames from a movie and computed a saliency
map for each frame. Results presented in one of the recent papers [28] showed that implicit calibration
may be used also in an unconstrained environment.

1.4. Paper’s Contribution

This paper describes a novel technique to perform an implicit calibration. This technique is based
on the assumption that in most cases there are only a few points (targets) in a scene being observed
where users may fixate their gazes. After finding these targets it will be possible to build a calibration
model (Figure 1). As there may be more than one target for each fixation, such targets are named
probable fixation targets (PFT).
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Figure 1. The image with two probable fixation targets (PFTs). It may be assumed that while looking at
the image, most of the time people will fixate on one of the regions inside the yellow squares.

This paper discusses all consecutive steps that are necessary to perform the implicit calibration
using PFTs. The steps include:

• saliency maps prediction,
• conversion of saliency maps to lists of PFTs,
• choosing a mapping (a set of PFTs) using miscellaneous criteria and heuristic algorithms,
• using the chosen PFT mapping to build a calibration model.

The experimental part of the paper checks the usability of the proposed solutions using two
datasets containing uncalibrated eye movement data recorded by different eye-tracking devices and
various stimulations. The datasets are publicly available and may serve as a convenient testbed for
future calibration algorithms.

The paper summarizes the idea introduced in two conference publications [6,29]; however, it
significantly extends it by:

• Analyses of algorithms for PFT (targets) creation using saliency maps.
• Introduction of new mapping comparison functions.
• More extensive analyses of results and possible algorithms’ parameters.
• Introduction of two new datasets.
• Implementation of all presented algorithms in a publicly available new version of the ETCAL

library which has been created for calibration purposes and is available at GitHub [30].

2. Methods and Materials

The original idea, used during the research presented in this paper, is introducing an additional
step of processing during which a saliency map is used to build a short list of PFTs. Having a limited
number of such targets for every fixation, it is possible to build the model assuming that most of the
time a user would look at one of these targets.

All processing steps of the algorithm are presented in Figure 2. It gets two input signals:
information about a scene being observed and eye tracker output. The eye tracker output is a set of
attributes (e1, e2, ..., en) and it will be denoted as Ei(e) in the subsequent text. The e may be any set
of attributes depending on the type of eye tracker used: eye center coordinates in the eye camera,
eye-glint vector, electrooculogram, etc. The first step is the extraction of PFTs from scene information
(Targets Extractor) and fixations from an eye tracker output (Fixations Extractor). Then the list of
PFTs together with the corresponding fixations Fi(e) is used to build the training set (Training Dataset
Builder). The training set consists of M fixations and for each fixation Fi there is a list of mi PFTs:
{T(1)

i , T(2)
i , ..., T(mi)

i } where each T is a (x, y) pair (see Equation (2)).
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F1 : E1(e), {T
(1)
1 , T(2)

1 , ..., T(m1)
1 },

F2 : E2(e), {T
(1)
2 , T(2)

2 , ..., T(m2)
2 },

...

FM : EM(e), {T(1)
M , T(2)

M , ..., T(mM)
M }.

(2)

Figure 2. Data flow schema of the implicit calibration algorithm taking into account PFT.

The training set is analyzed to find the possible targets (Target Mapper). The mapper chooses one
PFT for each fixation (see Figure 3), so then it is possible to build the calibration model (Calibration
Model Builder). When the calibration model is built, it may be used to calibrate subsequent eye tracker
output (Calibrator).

targets

screens

Figure 3. Fixations with targets. The figure shows subsequent scenes/screens with several targets
(PFTs) on each. Horizontal axis represents time. The path visualizes one possible mapping.

It is important to note that the whole process may be iterative—new output together with new
targets may be continuously used to improve the calibration model.

Every step listed in this section is described in detail in the following subsections. Specifically:
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• Extraction of targets (PFTs) from saliency information.
• Choosing the mappings comparison function (MCF).
• Developing heuristic algorithms for searching the mapping space (genetic and incremental)
• Building a calibration model using the ETCAL library ([30]).

2.1. Extraction of Targets (PFTs) from Saliency Information

The main requirement for the implicit calibration is knowledge of the observed scene. Based on
its analysis it is possible to build a function calculating, for each point of the scene, the probability that
a subject will focus on it.

The simplest algorithm may use center location paradigm that states that most of the time user is
looking at the center of a scene [17]. More sophisticated algorithms may use various predictions [18];
however, the most popular way to calculate the probability function is the application of a saliency
model that produces a saliency map [31].

Saliency maps are computational models of human visual attention, the concept was conceived
by Koch and Ullman in [32]. It is a topographical map of a scene that describes scene fragments as
weights—how likely a human gaze will be fixed at a certain location. However, despite apparent
similarity, saliency maps should not be interpreted or confused with the probability density function
of the subconscious process. Contrary to random processes, selection of fixations is not a stochastic
process of independent events—it is chaotic [33]—therefore describing it as PDF would be irrelevant.

The first practical, biologically inspired, implementation of the saliency model was proposed by
Itti, Koch and Niebur [21]. It started intense research on further models based on various fundamental
premises and assumptions [34]. It may be the bottom-up approach that uses only image parameters
(like contrast) or top-down that uses knowledge regarding human behavior (like a face detector).
Recently, methods that combine both approaches have gained popularity—e.g., the model by Le
Meur [35] modelling a saliency map with the low-level visual feature-based saliency map and
modelling the fixation selection based on: context-dependent statistics of saccade length and angle,
inhibition of return, and forgetting of previous fixations.

There were nine different saliency models used in this research. The following list enumerates
and briefly describes each of the employed saliency map models:

• BMS—Boolean maps saliency [36]—a graphical model based on a series of thresholds and
sophisticated mathematical morphology,

• CovSal [37]—based on the innovation introduced in a certain area when compared to its
neighborhood in image, using covariance as a measure,

• FES [38]—Bayesian bi-variate modelling of saliency based on the center-surround model at
multiple scales.

• GBVS—the graph-based visual saliency model by Harel et al. [23], location vectors dissimilarity
used as graph edge values,

• IttiKoch—a biologically plausible model, based on modelling of the underlying processes [21],
• LDS—Learning Discriminative Subspaces [39]—based on the image segments projection onto

pre-trained dictionary patches of PCA reduced visual features.
• RARE2012 [40]—based on the multiscale innovation (rarity) in location, identified with Gabor

filters and information theoretic measure self-information.
• SR-PQFT—a spectral residual (SR) model (as proposed by Hou and Zhang in [41]), but in a

variant that was developed by Schauerte and Stiefelhagen [42] for color images, where color
values are quaternion encoded in opponent color space and the quaternion formula of Fourier
transform is employed (PQFT),

• SWD [43]—spatially weighted dissimilarity—saliency model also based on the difference from
the surrounding area, where outlying segments are identified in PCA reduced feature space.

Apart from artificial saliency models, we also created two sets of targets based on
human observation:
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• GT—users’ fixation maps created using eye-tracking information gathered during genuine
observations undertaken by several participants.

• EXP—additionally, we also tested if PFTs may be set manually, by the ‘fixation expert’. One of
the co-authors of the paper manually defined PFTs for each image, based on his experience
(before seeing any saliency map).

Every saliency map had to be transformed to a set of PFT. The list should contain only a limited
number of points with high saliency. For this purpose, each saliency map was processed using the
following cascade of transformations from the OpenCV [44] library:

• histogram equalization
• binarization with a threshold equal to 240
• series of dilations and erosions
• edge detection using the Canny algorithm [45]
• contours extraction using the Suzuki algorithm [46]

Then, for every contour identified, the center of the mass was computed and added as a probable
fixation target. The number of PFTs varied for images and maps and ranged from 1 to 16. Of course,
this approach is just one of the possibilities and better algorithms converting saliency maps into targets
may be considered as an element of future studies.

Examples of maps and calculated PFTs are presented in Figure 4.

Figure 4. Exemplary image with corresponding saliency maps obtained with different methods. The
targets (PFTs) are presented as cyan dots with labels on each image.

2.2. Choosing the Best Mappings Comparison Function (MCF)

To calculate parameters of a calibration function it is necessary to choose one target with index
ci for every fixation Fi. Therefore, for every fixation an index of one of its PFTs is chosen denoted as
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ci where ci ∈ 〈1, mi〉. The list of chosen indexes for all fixations in the training set c1...cM is called
a mapping.

mapping = {c1, c2, ..., cM} (3)

The question is how to find a correct mapping from a list of all possible mappings.
Without ground-truth information the only data that may be used is the uncalibrated output from an
eye tracker. It is necessary to define criteria that may be used to compare two distinct mappings. Such
a criteria function is called mappings comparison function (MCF).

2.2.1. Regression Based Mappings Comparison Function

One of the possible solutions is to evaluate the specific mapping by: (1) building a linear function
that recalculates eye tracker output to target coordinates (gx, gy) and (2) checking the function error
for the same target points.

The linear function that recalculates eye tracker output separately to vertical and horizontal
coordinates of the gaze may be defined as follows:

gx = β0x + β1x · e1 + β1x · e2 + ... + βnx · en (4)

gy = β0y + β1y · e1 + β1y · e2 + ... + βny · en (5)

where gx and gy are horizontal and vertical gaze coordinates respectively and parameters βij are
regression coefficients calculated using the Levenberg-Marquardt algorithm based on known eye
tracker output Ei(e1 ... en) and the corresponding PFT values Ti(tx, ty).

The next step is the calculation of the coefficient of determination R2, which compares a function’s
results with the target values:

R2
x(tx, gx) = 1− ∑M

i (gx(i)− tx(i))2

∑M
i (tx(i)− tx)2

(6)

where M is the number of fixations and tx is the average of all reference values tx(i). R2
x is equal to 1

when the model fits perfectly, i.e., every gx(i) point is exactly at the same location as the corresponding
tx(i) point.

The same formula may be used for the vertical axis to calculate R2
y(ty, gy). Both results are then

combined together to form one value that is treated as the ‘quality’ of the mapping:

MCFREG(mapping) = (R2
x(tx, gx) · R2

y(ty, gy))
2 (7)

It may be assumed that the higher value of MCFREG means that it was easier to build a linear
function recalculating the eye tracker output to the given mapping and therefore the probability that
this mapping is correct (i.e., a person really looked at these targets) is higher.

2.2.2. Mapping Comparison Function Based on Relative Distances

The MCFREG function is applicable in any general case; however, it is not very efficient as it
requires calculation of a regression model and its error for each mapping. Another option is to use
the fact that some information concerning a spatial correlation between gazes may exist even in an
uncalibrated signal.

For instance, we can assume that if we calculate the Euclidean distance between eye tracker data
points (Ei) it should be correlated with distances between gaze points (Ti) corresponding with those
outputs. Therefore, when ‖Ei, Ej‖ < ‖Ej, Ek‖, we can expect that for the chosen targets, the distance
‖Ti, Tj‖ will also be lower than ‖Tj, Tk‖.

This assumption was used to calculate another MCF. For each three fixations i, j, k the proportion
of distances was calculated using the Formula (8):
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Pijk = (
‖Ei, Ej‖
‖Ei, Ek‖

− 1)/(
‖Ti, Tj‖
‖Ti, Tk‖

− 1) (8)

and then the P values for all triples in the mapping were used to calculate the value of MCFDIST for
the mapping:

MCFDIST(mapping) =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k=j+1

{
1, Pijk > 0
0, otherwise

(9)

2.2.3. MCF Based on Correlation between Distances

The MCF defined in the previous section is time consuming as it requires comparison of every
triple of fixations. Therefore, a faster method was also proposed and tested that works based on the
same principle (distances comparison) but is less complex.

At first the distances are calculated for each neighboring pair (Ei, Ei+1) to build a variable ‖E‖.
Then all neighboring distances (Ti, Ti+1) are used to form another variable ‖T‖. We assume that
relations between distances in both variables will be similar, therefore the final value of MCFDISTC is
calculated as a correlation coefficient between both variables:

MCFDISTC(mapping) = ρ(‖E‖, ‖T‖) (10)

Once again, the assumption is that a higher MCF value (i.e., higher correlation between distances)
means a better mapping.

2.2.4. MCF Based on Direction

Another assumption taken into account was that the shape of the eye tracker output signal should
be similar to the resulting gaze path. For instance, when the head-mounted eye tracker with eye
camera is used, and an output signal consists of eye center coordinates as visible in the eye camera,
it may be assumed that a correlation exists between the direction of eye center changes and gaze
positions. Generally, when the eye center moves down in the camera image, it may be expected that
the gaze should move down as well. Similarly, when the eye center moves right, it may be expected
that the gaze position moves left (due to the mirror effect) and so on. Therefore, the shape of eye center
points should be similar to the shape of gaze points (see Figure 5).

Figure 5. The participant was looking at T(1)
a during fixation a and the eye center was in the point

shown in eyea image. Having fixation b with the eye center in the point shown in eyeb image it may be

assumed that the correct gaze target should be T(3)
b , because it results in the lowest angle between ~Eab

flipped horizontally (Equation (12)) and ~Tab (Equation (13)).
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This assumption may always be used when the eye tracker produces only two attributes. It seems
to be a problematic constraint; however, it occurs that many eye trackers fulfill this condition.
For example head-worn eye trackers that output eye center coordinates, remote eye trackers that
output eye center–glint vector, EOG eye trackers that produce two voltage signals or Direct Infra Red
eye trackers such as Jazz-Novo [12] that output luminance information.

Taking this assumption into account it was possible to define another MCF to evaluate a mapping.
At first, for two fixations Fi and Fj it is possible to calculate a vector between eye center positions for
these fixations:

~Eij = (ex(j)− ex(i), ey(j)− ey(i)) (11)

In the case of eye camera and eye center coordinates the vector must be flipped horizontally:

~Eij = (ex(i)− ex(j), ey(j)− ey(i)) (12)

It is also possible to calculate a vector between two targets:

~Tij = (tx(j)− tx(i), ty(j)− ty(i)) (13)

Due to the supposed similarity between eye centers and gaze points it may be assumed that both
vectors should be more or less parallel to each other (see Figure 5).

When a cosine of angle between ~Eij and ~Tij vectors is calculated for every two fixations, it may be
used to establish a MCF:

MCFDIR(mapping) =
n−1

∑
i=1

n

∑
j=i+1

cos( ~Eij, ~Tij) (14)

For this MCF it is assumed that the mapping with a higher value should yield better calibration
results (see Figure 5 for visual explanation).

2.2.5. Fusion of More than One MCF

The MCF presented in the previous sections should give some information about the mapping’s
quality. It is also possible to combine several MCFs with different weights to create a new—possibly
more robust—mapping comparison function according to formula (Equation (15)):

MCFFUS(mapping) = w0 ×MCFi + w1 ×MCFj + ... (15)

Such a function with correctly tuned weights may give better results than each of the
MCFs separately.

2.3. Heuristic Algorithms for Searching the Mapping Space

One problem is to find the MCF, which enables comparison between mappings, another problem
is to find the best mapping according to the given MCF. This issue is not trivial. If there are n fixations
and mi targets for every fixation the number of possible mappings is m1 ×m2 × ...×mn, so it is not
feasible to do an exhaustive search through all mappings. Therefore, a heuristic algorithm must be
used. Two possible heuristics are proposed in this paper: genetic and incremental.

2.3.1. Genetic Algorithm

The genetic algorithm treats each target as a gene and each mapping as a chromosome (set of
genes). The task is to find the best possible chromosome. At first the algorithm randomly chooses
some number of mappings (e.g., 200). Then it evaluates every mapping and mixes some of the best
of them to build new mappings (chromosomes) using cross overs. Additionally, each chromosome
is mutated—some number of genes (targets) is changed randomly. The process is conducted in



Sensors 2019, 19, 216 11 of 27

many iterations (e.g., 1000) to find the best possible mappings. The algorithm is described in detail
in Algorithm 1.

Algorithm 1 Heuristic genetic algorithm searching for the best mapping

procedure FINDBESTMAPPPING

pop← 200 random mappings
iterations = 0
noProgress = 0
while iterations < 1000 and noProgress < 200 do

newPop← ∅
newPop.add(pop.bestMapping)
for i = 2→ 200 do

mapping1 = chooseGoodRandomMapping(pop)
mapping2 = chooseGoodRandomMapping(pop)
newMapping = crossOver(mapping1, mapping2)
newPop.add(newMapping)

for i = 2→ 200 do
mutate(newPop.mapping(i))

if newPop.bestMapping > pop.bestMapping then
noProgress = 0

else
noProgress ++

pop = newPop
return pop.bestMapping

procedure CHOOSEGOODRANDOMMAPPING

Choose 5 random mappings and return the one with the best fitness
procedure CROSSOVER(mapping1,mapping2)

Return a new mapping with values randomly chosen from the first or the second mapping
procedure MUTATE(mapping)

Randomly change 1.5% indexes in the mapping

2.3.2. Incremental Mapping

The genetic method explained in the previous section has two significant disadvantages: it needs
all data to start optimization and it is quite slow. To use the implicit calibration in a real-time scenario
it is necessary to propose an algorithm that can calculate the calibration model adaptively and improve
it when new data arrives.

The algorithm for incremental implicit calibration works as follows: it starts when only a few
fixations are available and creates a list of all possible mappings. When the next fixation (with its own
PFTs) arrives, the algorithm creates a new list by adding one of the new PFT indexes to every mapping
from the previous list (see Algorithm 2). Every new mapping is evaluated according to the score
calculated for the chosen optimization criterion (Line 14). The list of mappings is sorted in descending
order (Line 6). The same is done for every new fixation—when fixation n + 1 is added and there are
x mappings (of length n) on the list, a new list is created with x×mn+1 mappings. The number of
indexes in every mapping on the new list is n + 1. The mappings are sorted in descending order
according to the given criterion. When the number of mappings on the list exceeds a predefined
maximal number cuto f f (e.g., 100), the algorithm removes mappings with indexes above cuto f f
(the ones with the lowest criterion value) (Line 7).
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Algorithm 2 Iterative algorithm finding cuto f f best mappings after adding a new fixation with
newTargetIndexes to mappings created so far

1: procedure NEWMAPPINGS(oldMappings, newTargetIndexes)
2: newMappings← ∅
3: for all mapping ∈ oldMappings and index ∈ newTargetIndexes do
4: newMapping← AddTarget(mapping, index)
5: newMappings.add(newMapping)
6: SortDescending(newMappings)
7: RemoveElementsOverCutoff(newMappings, cuto f f )
8: return newMappings
9: procedure ADDTARGET(oldMapping, newIndex)

10: newMapping← ∅
11: for all index ∈ oldMapping do
12: newMapping.add(index)
13: newMapping.add(newIndex)
14: newMapping.calcValue()
15: return newMapping

A procedure outcome may be used at every moment and applied to build a calibration model at
the early stage of data processing, even after several steps. It may be expected that the calibration error
will be high at the beginning; however, it will decrease with the number of fixations used.

The main advantage of this solution, as compared to heuristic algorithms is that it is considerably
faster—the complexity is linear because calculation of a value for a new mapping may use the already
calculated value of the mapping one index shorter. Moreover, as it was mentioned above, the results
are available from the beginning of the experiment (although are only really valuable after some
time—see the Results section for details).

2.4. Removing Irrelevant Fixations

When the best mapping is chosen using the steps explained in the previous sections, it should
be additionally processed to remove irrelevant fixations. The rationale behind this step is that even
when participants look at the predefined PFTs, there will always be some number of fixations that fall
somewhere else.

At first all fixations—pairs {Ei(e1, ... en), T(ci)
i (x, y)}—are used to calculate parameters of the

linear polynomial calibration function fl using the Levenberg-Marquardt (LM) damped least-squares
algorithm [47]. In the next step gaze coordinates are calculated for every pair based on the
following function:

gazei(x, y) = fl(Ei(e1, ...en)) (16)

and the Euclidean distance between the gazei(x, y) and T(ci)
i (x, y) is calculated. Then removalPercent of

pairs with the greatest distance are removed from the dataset.
Removal of outliers is of course a broad topic and many algorithms may be used for this purpose.

The RANSAC algorithm [48] is an example of a commonly used approach, which we tested during
our studies. However, because the results after its usage were not significantly better than after using
the approach presented above, we finally decided to use the latter as it is simpler and faster.

2.5. Classic Calibration Using ETCAL Library

The last step is the usage of the mapping to build a calibration model. When the training set
consists of pairs of eye tracker output ((Ei(e)) and the corresponding one target (T(ci)

i ) it is possible to
use these pairs as a training set and build a calibration model that is able to calculate gaze point (Gi(e))
for every possible eye tracker output (Ei(e)).
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There are many possible methods that may be used for this purpose, starting from polynomial
approximation to nonlinear methods such as Support Vector Regression or Neural Networks [12].
The ETCAL library [30], which was created by the authors of the paper, implements both polynomial
and SVR algorithms. The library allows choosing the specific algorithm and training its parameters.
However, for simplicity, we decided to skip the training phase and use a classic quadratic polynomial
function. The task was therefore to use the training set to calculate parameters of two quadratic
equations that may be later used to find horizontal and vertical gaze coordinates. When there are only
two eye tracker output values (like e.g., x and y coordinates of eye center) there are 12 parameters of
the equation (Equation (17)):

gx =Axe2
x + Bxe2

y + Cxexey + Dxex + Exey + Fx

gy =Aye2
x + Bye2

y + Cyexey + Dyex + Eyey + Fy
(17)

where gx and gy are gaze point coordinates. For more E values the equation becomes more
complicated; however, the ETCAL library can solve it using the LM algorithm [47].

3. Experiments

Two datasets recorded with two types of eye trackers: the remote one, placed under a display
(The Eye Tribe Tracker, The Eye Tribe, Copenhagen, Danmark) and the head-mounted one (Pupil
Headset, Pupil Labs, Berlin, Germany), were prepared to verify the correctness and performance of the
proposed methods (Figure 6).

For both eye trackers, we registered eye movements of participants looking at predefined
stimulations consisting of static images. To preserve generality of the results there were different sets
of images and different groups of participants involved in each experiment.

Figure 6. Eye trackers used during the experimental part of the research. Left: Pupil Labs headset eye
tracker, right: The Eye Tribe remote eye tracker to be mounted below a screen.

After collecting data, the next step was to compare the implicit calibration with the classic
calibration. Our assumption was that, even when we did not expect the implicit calibration to
outperform the classic one, the results would be comparable.

We compared 11 ways of producing PFTs: with the usage of expert knowledge (EXP), ground
truth (GT) and nine saliency models. For the given PFTs we searched for the best mapping using both
genetic and incremental algorithms and four MCFs described above: REG, DIST, DISTC and DIR.
Additionally, we checked the results for various fusions of these functions and removalPercent values.

3.1. Head-Mounted Eye Tracker

The first experiment aimed at checking if the proposed implicit calibration algorithms may
be used for a headset eye tracker equipped with two cameras: eye camera and scene camera.
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Twelve participants took part in the experiment. The participants task was to look at the stimulation
displayed on the 21-inch display. They were unconstrained and could move their heads freely.

The stimulation presented on the display consisted of the following steps:

• Initial classic nine points calibration
• Reference screen 1
• 34 images—two seconds per image
• Reference screen 2
• 34 images—two seconds per image
• Reference screen 3

There were nine, equally distributed points presented on each reference screen. The task for
participants was to look at the point and click it with the mouse. Every point had to be clicked
twice. The results were later used to calculate errors of calibration algorithms. The whole stimulus
presentation has been published and is available online [49]. The result of every session was a set of
frames taken from a scene camera and eye camera. At first, every scene frame was processed to find
screen corners and the corresponding eye-camera frame was processed to find eye center coordinates.
As the eye camera was always in the same position in relation to the participant’s eye, the eye center
coordinates could be used as eye tracker output sufficient to calculate gaze position. Therefore, eye
tracker output E is denoted as eye(xe, ye) for this experiment.

Eye center coordinates in the eye-camera frame were found after a pipeline of transformations:
conversion to monochrome, histogram equalization, binarization, dilatation, erosion, and finally Canny
edge detection. Screen corner coordinates in the scene camera frame were found after calculating the
frame image integral and searching for corner-like patterns in the scene. To accelerate the algorithm,
new corners were searched only in the neighborhood of the corners found in the previous frame.

In the next step, the coordinates of PFTs were recalculated into a scene coordinate system for
every scene frame containing an image (see Figure 7). The last step was aggregation of frames into
fixations. A sequence of frames was treated as a fixation when there were at least five subsequent eye
images (about 150 ms) with eye center locations closer than five points (in eye-camera coordinates)
which is equivalent to less than 0.5 deg. Such frames were aggregated into one fixation. Finally, the list
of fixations (as defined in Equation (2)) was created for every trial.

Figure 7. A pipeline of image processing converting scene and eye frames to a list of fixations with eye
and targets coordinates.
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The k frames that were recorded during the initial calibration were collected separately with
information regarding the calibration point’s position cp(x, y) recalculated into scene coordinates and
saved as calPoints:

calPoints : {(E1(ex, ey), cp1(x, y)), ..., (Ek(ex, ey), cpk(x, y))} (18)

Similarly, the l frames recorded during the reference screens when the participant task was to
look at a specific reference point rp(x, y) were saved as refPoints:

re f Points : {(E1(ex, ey), rp1(x, y)), ..., (El(ex, ey), rpl(x, y))} (19)

The calPoints were later used to calculate the reference results of explicit calibration. The refPoints
were used as the GT to calculate errors of different calibration models.

All other frames (e.g., recorded during information screens presentations) were skipped.
To use the gathered data for the implicit calibration it was necessary to define PFTs for each of

the 68 images. There were ground-truth PFTs found using data taken from genuine user observations
(GT), PFTs defined by an expert (EXP) and PFTs calculated by means of nine different saliency models
(see Figure 4 as an example).

Incremental and genetic algorithms were used with four different MCFs. To find the best mapping
the genetic algorithm was run with 1000 iterations and stopped after 200 iterations if no progress was
visible. The cutoff value for the incremental algorithm was set to 100. Additionally, all calculations
were performed with various removalPercent: 0, 10, 20, 30 and 40.

Every calibration model was used to calculate gaze positions for re f Points on the reference
screens. The obtained values gi(x, y) were then compared with rpi(x, y)—genuine gaze locations for
each re f Point (Equation (19)). As the scene camera resolution was 640 × 480, the difference in scene
camera pixels was recalculated to a percentage of the scene resolution using the formula:

Error(x) = 100 ∗ |rp(x)− g(x)|/640

Error(y) = 100 ∗ |rp(y)− g(y)|/480
(20)

Errors for all re f Points where then averaged.
Reporting error in the scene-size percentage is in our opinion the most intuitive way when

Human-Computer interfaces are taken into account (and this is the main application of the presented
solution). However, recalculation of those values to degrees is possible after estimating the scene
camera viewing angle [50]. Our camera viewing angle, as reported by the manufacturer, was 60 degrees,
but our measurements revealed it to be 70 degrees horizontally and 53 degrees vertically. Therefore,
the errors presented in the Results section may be recalculated to degrees by multiplying the horizontal
percent error by 0.7 and the vertical error by 0.53.

3.2. Remote Eye Tracker

The Eye Tribe eye tracker registering eye movements with a frequency of 60 Hz was used in
the second experiment. As this eye tracker needs to be calibrated to start working, the calibration
procedure was initially started with one person who did not take part in the later experiments.
Therefore, the signal obtained from the eye tracker could be treated as an uncalibrated signal in the
further experiments.

The stimulation consisted of the following steps:

• Initial 9-point calibration
• 6 images observations (3 s each)
• Reference screen—user clicks 9 points looking at them
• 6 images observations (3 s each)
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• Final 9-point calibration

Twenty-nine participants took part in the experiment. The eye movement signal recorded during
the reference screen presentation for each of them was used to check the implicit calibration algorithm.
The initial and final calibrations were done to enable comparison of our method to the standard
calibration. All errors were calculated as the difference between the calibrated gaze locations and
locations computed using data from the reference screen. Due to different screen resolutions for each
trial and to maintain consistency with the previous experiment, the error is reported as a percentage
of screen dimensions independently for X and Y axes. These values may be converted to degrees
only when the distance between the screen and the observer is known, which enables calculation
of the screen size in degrees [50]. Unfortunately, we did not collect such information during every
trial. However, if we assume that this distance was approximately 60 cm, it may be derived that
the screen covered about 40 degrees horizontally and 32 degrees vertically in the observer’s field of
vision. Therefore, a rough recalculation to degrees requires multiplying the horizontal errors by 0.4
and vertical errors by 0.32.

To use the gathered data for implicit calibration it was necessary to define PFTs for each of the
12 images. As in the previously described experiment, the PFTs were identified by means of data taken
from: genuine users’ observations (GT), PFTs defined by an expert (EXP) and PFTs calculated using
nine different saliency models. Incremental and genetic algorithms were used with four different
MCFs and all calculations were performed with various removalPercent: 0, 10, 20, 30 and 40.

3.3. Movie Experiment

The Eye Tribe eye tracker registering eye movements with a frequency of 60 Hz was also used
in the third experiment. This time 20 participants were watching a movie. The movie lasted for 66 s
and presented part of an animation movie ’Bolek i Lolek’ (see Figure 8). Similarly to the previous
experiment, the simulation consisted of several steps:

• Initial 9-point calibration
• Movie watching
• Reference screen—user clicks 9 points looking at them

The whole video sequence is available online [51].

Figure 8. A frame from the movie presented during the third experiment.

The first processing step was the extraction of frames from the movie. Five frames were extracted
from each second of the video giving the overall number of 328 frames. The next step was the
calculation of saliency maps for each frame. All nine saliency models and the GT fixation map were
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used. Then the targets were extracted for each frame. The rest of the calculations was the same as for
the previous experiments.

4. Results

This research aimed to check if the described implicit calibration algorithms may give results
usable in practical applications. Therefore, the data gathered during all three experiments was used to
build various calibration models and calculate the calibration errors.

4.1. Head-Mounted Eye Tracker

The first step was checking which value of removalPercent gives the lowest error for GT saliency.
The results are presented in Table 1. The differences were not significant and 20% was chosen for
subsequent tests.

Table 1. Average errors for various removalPercent values.

Removal Percent Error X (%) Error Y (%) Avg Error (%)

0 8.52 7.17 7.84
10 8.11 7.06 7.59
20 8.06 7.03 7.55
30 8.12 7.08 7.60
40 8.13 7.23 7.68

The next task was checking the results of a classic calibration. The calPoints (Equation (18)) were
used as input to the LM algorithm calculating calibration function parameters. The errors are presented
as CALIB in Table 2.

Table 2. Average errors for various MCFs with GT and expert (EXP) saliency models. CALIB stands
for classic explicit calibration and CENTER for center target calibration. Algorithm G—genetic
optimization, I—incremental optimization.

MCF Algorithm Saliency Model Error X (%) Error Y (%) Avg Error (%)

CALIB 2.49 2.02 2.26
DIR G GT 2.36 2.82 2.59
DIR I GT 2.40 3.15 2.77
DIR I EXP 2.65 2.97 2.81
DIR G EXP 2.71 2.94 2.83
REG G EXP 5.76 6.92 6.34
DIST I GT 7.72 5.63 6.68
REG I EXP 8.09 7.19 7.64
DIST I EXP 9.69 5.74 7.71
DC G EXP 8.76 7.33 8.05

DIST G EXP 9.54 6.94 8.24
DISTC I EXP 9.00 7.55 8.28
DISTC I GT 8.28 8.52 8.40

DC G GT 9.02 8.58 8.80
DIST G GT 10.64 8.80 9.72
REG G GT 11.53 9.06 10.30
REG I GT 12.49 9.72 11.11

CENTER 12.41 10.03 11.22

To check the baseline calibration—without the PFTs defined—we decided to additionally build
a calibration model that uses the ’center location paradigm’ stating that most of the time observers
look at the center of a screen. Therefore, for each fixation we created an artificial target in the middle
of a screen and we built the mapping that takes into account only these targets. The errors of such a
calibration are denoted as CENTER in Table 2.
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Finally, the calibration models were built using various MCFs and both optimization algorithms.
The errors for GT and EXP saliencies are presented in Table 2.

It is important to note that, because in this case the image from the eye camera is flipped
horizontally in relation to the scene camera image, it was necessary to use Equation (12) instead
of (11) in MCFDIR calculation.

As the MCFs using DIR occurred to be significantly better, only MCFDIR calculated using genetic
algorithm was used in the next step, which involved comparison of different saliency models (Table 3).

Table 3. Errors for various saliency models when MCFDIR is used. The last column shows the average
number of targets per image found for the given saliency model.

Saliency Model Error X (%) Error Y (%) Avg Error (%) Number of Targets

GT 2.36 2.82 2.59 10.38
EXP 2.71 2.94 2.83 3.47

RARE2012 3.18 3.36 3.27 4.79
SWD 3.48 3.68 3.58 9.25
GBVS 3.05 4.21 3.63 3.47
BMS 4.03 3.52 3.78 5.12

SR-PQFT 4.99 3.64 4.31 4.12
IttiKoch 4.12 4.98 4.55 4.24

LDS 7.95 7.10 7.52 1.78
FES 8.07 7.91 7.99 1.74

CovSal 10.63 8.91 9.77 1.49

The GT and EXP models are not surprisingly the best ones; however, RARE2012, SWD, GBVS,
and BMS models give errors that are almost the same. To check the significance of these differences,
we used the t-Student test. The test was calculated for every pair of saliency models separately for
both x and y axes, and the difference between them was defined as significant only if the difference for
one of the axes occurred to be significant (with p-value < 0.001) (see Table 4). It may be noticed that
three groups of models may be distinguished—(1) RARE2012 and GBVS which are not significantly
worse than GT and EXP; (2) SWD, BMS, SR-PQFT and IttiKoch which are significantly worse than GT
and EXP but still not significantly worse than the first group; and (3) LDS, FES and CovSal which are
clearly the worst ones and their usage in this application is questionable. The most probable reason
it the fact that there were very few targets found using these models. However, there is no apparent
correlation between the number of targets and the error—the best GT defines the highest number of
targets but, at the same time, the number of targets for EXP model is one of the lowest.

Table 4. Significance of differences of calibration errors between various saliency models taking
MCFDIR and removalPercent = 20. The asterisk (*) denotes that according to the t-Student test for either
x or y axis the difference was significant (p < 0.001).

GT EXP RARE2012 GBVS SWD BMS SR-PQFT IttiKoch LDS FES CovSal

GT * * * * * * *
EXP * * * * *

RARE2012 * * *
GBVS * * *
SWD * * * *
BMS * * * *

SR-PQFT * * * * *
IttiKoch * * * * *

LDS * * * * * * * * *
FES * * * * * * * *

CovSal * * * * * * * * *

The next step was checking various fusions of MCFs. As MCFDIR appeared to be the best option,
all fusions included this type of MCF complemented by one of the other MCFs with various weights
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from 0.2 to 0.4. The results are presented in Table 5, only for fusions that resulted in an average
error less than MCFDIR(g). It occurred that only fusions using the genetic algorithm were able to
improve the result. Additionally, the fusions of MCFDIR with MCFDISTC occurred to give the best
results. It seems that—despite not good results as a single criterion—the MCFDISTC function is the
most valuable addition to MCFDIR criterion when a fusion is taken into account.

Table 5. Average errors for various MCF fusions calculated for GT saliency and removalPercent = 20%.
Only fusions that gave results better than the baseline MCFDIR(g) are listed.

MCF Algorithm Error X (%) Error Y (%) Avg Error (%)

DIR + 0.3× DISTC G 2.24 2.62 2.43
DIR + 0.2× REG G 2.17 2.69 2.43

DIR + 0.2× DISTC G 2.24 2.69 2.47
DIR + 0.4× DISTC G 2.29 2.66 2.47

DIR + DISTC G 2.29 2.71 2.50
DIR + 0.4× REG G 2.34 2.71 2.53

4.2. Remote Eye Tracker

Similarly to the previous experiment, we checked which value of the removalPercent gives the best
results when taking into account targets defined by genuine gazes (GT).

The best results were achieved for the removalPercent equal to 20%, so all subsequent results are
reported taking into account only tests with such value (Table 6).

Table 6. Average errors for various removalPercent values for GT saliency.

Removal Percent Error X (%) Error Y (%) Avg Error (%)

0 14.81 12.51 13.66
10 14.16 11.80 12.98
20 13.97 11.35 12.66
30 14.05 11.43 12.74
40 14.42 11.48 12.95

The baseline for evaluating the implicit calibration results were errors for two classic calibrations
performed at the beginning and end of the trial. The error values for the classic calibrations are
presented as CALIB1 and CALIB2 in Table 7.

The center location paradigm was used as another baseline to evaluate implicit calibration errors.
The mapping that takes into account only targets in the middle of the screen was denoted as CENTER
in Table 7.

Table 7 presents error values of different MCFs in relation to the baselines described above. The
errors were calculated for GT and EXP defined PFTs.

It occurred that MCFs using the DIR algorithm are significantly better than other methods. When
we chose the best MCF (DIR G) and 20% removal percent it was possible to compare different saliency
maps (Table 8).

We may observe that once again EXP and GT models give the best results. This time only
SR-PQFT and BMS models are comparable with them. To check the significance of these differences,
we performed the t-Student test for every pair and treated the difference as significant only if the
test gave a p-value < 0.001 for either horizontal or vertical axis. The results are presented in Table 9.
When comparing these results with the results for the head-mounted eye tracker (Table 4), we may
observe that: (1) LDS, CovSal and FES models are consistently the worst ones; (2) RARE, GBVS,
and BMS models are still among the best ones (however the difference between them and the EXP
model this time is significant); (3) The results of SWD model are worse and the results of SP-PQFT
are better than previously. The numbers of targets are similar for each model with an exception for
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SWD (the number is higher) and CovSal and FES (the numbers are lower). However, there is no strong
correlation between errors and the number of targets.

Table 7. Average errors for GT PFTs and various mapping comparison functions (MCF).

MCF Type Algorithm Saliency Error X (%) Error Y (%) Avg Error (%)

CAL2 3.04 4.21 3.63
CAL1 3.04 4.59 3.82
DIR G EXP 3.44 5.37 4.41
DIR I EXP 3.44 5.77 4.60
DIR G GT 4.85 6.50 5.68
DIR I GT 5.35 6.41 5.88
REG G EXP 8.44 7.70 8.07
REG G GT 10.15 11.41 10.78
REG I EXP 12.65 9.51 11.08
DIST I GT 13.64 12.16 12.90
DIST I EXP 16.42 10.38 13.40

DISTC G EXP 16.91 13.23 15.07
DIST G GT 19.88 11.53 15.70

DISTC I EXP 17.94 14.08 16.01
DISTC G GT 19.48 12.69 16.08
DISTC I GT 18.28 14.87 16.58
REG I GT 20.33 15.33 17.83
DIST G EXP 22.27 15.35 18.81

CENTER 21.37 18.41 19.89

Table 8. Average errors for various saliency models taking MCFDIR and removalPercent = 20.

MCF Type Error X (%) Error Y (%) Average Error Number of Targets

EXP 3.44 5.37 4.41 3.07
GT 4.85 6.50 5.68 4.62

SR-PQFT 5.89 7.78 6.84 3.71
BMS 4.87 9.53 7.20 4.79

GBVS 5.94 10.19 8.07 4.43
RARE2012 4.77 12.29 8.53 5.43

IttiKoch 9.18 8.21 8.70 5.36
SWD 8.90 8.51 8.71 9.71
LDS 12.91 11.46 12.18 2.29

CovSal 19.18 18.37 18.78 1.36
FES 20.83 17.20 19.02 1.36

Table 9. Significance of differences of calibration errors between various saliency models taking
MCFDIR and removalPercent = 20. The asterisk (*) denotes that according to the t-Student test for either
x or y axis the difference was significant (p < 0.001).

EXP GT SP-PQFT BMS GBVS RARE2012 IttiKoch SWD LDS CovSal FES

EXP * * * * * * * *
GT * * * * * *

SP-PQFT * * * *
BMS * * * * *

GBVS * * * *
RARE2012 * * * * * * *

IttiKoch * * * * *
SWD * * * * * * * *
LDS * * * * * * * * *

CovSal * * * * * * * * *
FES * * * * * * * * *

As in the previous experiment with the head-mounted eye tracker, the next step was to search
for the best fusions of different criteria. As MCFDIR appeared to be the best option, all fusions used
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this type of MCF and additionally added one of the other MCFs with various weights from 0.2 to 0.4.
The best results are presented in Table 10.

Table 10. Average errors for various fusions of MCFs, saliency EXP and removalPercent = 20. Only the
best achieved fusions are presented.

MCF Type Algorithm Number of Trials Error X (%) Error Y (%) Average Error

DIR + 0.2× DIST G 29 3.00 4.83 3.91
DIR + 0.2× REG G 29 2.97 4.86 3.91
DIR + 0.4× REG G 29 2.93 5.03 3.98

DIR + 0.2× DISTC G 29 3.07 5.00 4.03
DIR + 0.3× DISTC G 29 2.93 5.14 4.03
DIR + 0.4× DISTC G 29 2.79 5.28 4.03

DIR + 0.3× REG G 29 2.93 5.14 4.03
DIR + 0.4× DIST G 29 3.00 5.14 4.07

4.3. Movie Experiment

The results for the third experiment are presented as for the previous ones. The comparison of
different saliency models is presented in Table 11. The results are worse than for the experiment with
static images; however, they are comparable for automatically generated saliency maps. Interestingly,
the model based on real gazes was not able to perform satisfactorily. It must be remembered that using
classic saliency models when the stimulus is an animated movie carries certain limitations:

• The models do not take into account the contents of the previous frames, while such information
may be important to estimate points of interest correctly.

• All models used in this research were prepared for real-world images (for instance photographs
of nature or people), so their performance during the animated movie with artificial and sharp
contours may be far from optimal.

Probably the type of images (drawings instead of natural images) resulted also in the lower
number of targets found for each image. Nevertheless, the results show that the implicit calibration
based on PFTs is usable even in such a case.

Table 11. Average errors for various saliency models taking MCFDIR and removalPercent = 20.

MCF Type Error X (%) Error Y (%) Average Error Number of Targets

CAL 3.44 3.90 3.67 3.35
RARE2012 7.38 11.51 9.45 4.35

IttiKoch 10.22 9.48 9.85 2.46
GT 12.92 9.76 11.34 1.38

GBVS 9.00 15.16 12.08 2.14
SR-PQFT 12.06 14.32 13.19 3.62

BMS 13.27 14.13 13.70 6.29
FES 14.31 13.24 13.77 2.13

SWD 17.59 15.75 16.67 1.74
LDS 19.71 15.80 17.75 1.38

CovSal 19.82 17.35 18.58 1.62

4.4. Time Analysis

The ultimate goal of this project is to prepare an algorithm that will be able to work online,
during the usage of an eye tracker. Therefore, time analysis is an essential part of the work.

Computation times for the saliency maps are demonstrated in Table 12. These are average values
of computation time per frame for the test movie (see Figure 8). The testing machine was Lenovo
ThinkStation S20 with Xeon W3550 at 3.06 GHz CPU, 12 GB RAM.
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Table 12. Average execution time for saliency maps computation per frame of movie in the
third experiment.

Saliency Map Implementation Average Execution Time (s)

FES MATLAB 0.170
BMS exe (binary) 0.196
SWD MATLAB 0.242

Itti-Koch MATLAB 0.328
SR-PQFT MATLAB 0.388

LDS MATLAB 0.511
RARE2012 MATLAB 0.746

GBVS MATLAB 0.921
CovSal MATLAB 21.4

The results are not impressive as only two of the models offered more than five frames per second.
However, it should be noted that all but one of the implementations were executed using the MATLAB
environment (Matlab 2016b working on Windows 10). It may be supposed that the results would be
much better if a compiled code has been used. Moreover, as shown in the movie experiment, even five
frames per second is quite enough for movie frames analysis.

The next time-consuming step was mapping calculation. There were two optimization algorithms
used: genetic and incremental ones and four MCF. Table 13 presents the time required to calculate
mapping when all the data from dataset 2 (remote eye tracker with static images) was used. It is visible
that only MCFDISTC and MCFDIR algorithms offer efficiency suitable for the online calibration.

Table 13. Average times of execution for different MCFs for remote eye tracker.

MCF Type Incremental Time (s) Genetic Time (s)

DISTC 0.10 2.32
DIR 3.78 9.52
REG 26.86 62.24
DIST 127.64 492.41

The results presented above were calculated for all fixations and all targets available. Therefore,
an interesting question was how many fixations are necessary to obtain reliable results. The MCFDIR
and incremental algorithm were used to assess how the error changes when the number of fixations
increases. The results are presented in Figure 9 for the remote eye tracker and in Figure 10 for the
head-mounted eye tracker.

It is visible that after analysis of approximately 50 fixations (20–30 s depending on the trial) the
error stabilizes.
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Figure 9. Error for the remote eye tracker with MCFDIR and incremental algorithm depending on the
number of fixations. Left: horizontal error, right: vertical error. The gray area represents standard deviation.
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Figure 10. Error for the headset eye tracker and MCFDIR incremental algorithm depending on the
number of fixations. Left: horizontal error, right: vertical error. Gray area represents standard deviation.

5. Discussion

This paper presents an implicit calibration algorithm that uses the idea of PFTs. Using the targets
instead of the whole saliency maps as was typically done in previous research [17,22,24] has several
important advantages:

• Data processing is easier and faster, which makes a ’real-time’ calibration feasible.
• It is more universal as it may be used with any stimulus: static images, movies—but also with

computer interfaces (e.g., with buttons or labels as targets) or games (e.g., with avatars as targets
as was proposed in [6]).

• Creating a short list of potential targets could be faster than the creation of a full saliency map.
For example a face extractor using fast Haar cascades may be used to define each face as a
potential target.

• Definition of targets may be easily done manually, by a human expert (which was checked
experimentally) while the creation of a saliency map requires special algorithms.

The results of three experiments described in the previous section show that the implicit calibration
using PFTs may be used instead of classic calibration. Error levels are higher than for the classic
calibration; however, these levels are comparable for some MCFs.

It is challenging to reliably compare the achieved results to results of other implicit calibration
algorithms. On one hand implementation of their algorithms is often not possible due to an incomplete
description, on the other hand, the datasets for which the experiments were performed are typically not
available. The comparison of bare results given in degrees when different data registered using different
eye trackers and with different preprocessing algorithms were used is in our opinion not reliable.
Nevertheless, it may be concluded that our method, with errors less than 2 degrees for static images
and less than 4 degrees for a movie is comparable with other state-of-the-art methods. For example
Sugano et al. [28] reports errors over 5 degree, Alnajar et al. [24] about 4 degrees, Chen et al. [17] less
than 3 degrees.

Unsurprisingly, the best results were achieved for GT and expert-based targets. However, for
some fully automatic saliency models, the results were not much worse than for the GT (and even
better for the movie experiment). Specifically, the results for the RARE2012, GBVS and BMS models
occurred to be similarly acceptable for all three experiments, while the results for the LDS, FES and
CovSal models occurred to be unacceptable. Probably these outcomes may be improved, when more
sophisticated algorithms for targets extraction will be used—which may become an interesting direction
for further research.

Of course, the quality of the PFT-based calibration, as for every implicit calibration, depends
heavily on the type of stimulus being presented. If the probable targets of stimuli are always near the
center of a screen (which is e.g., typical for movies), the quality of the calibration model near the edges
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of the scene will decrease. This is the main limitation regarding the presented solution. However,
the same problem applies to every implicit calibration algorithm and if all probable targets are indeed
gathered near the center of the screen, then the calibration model should also focus on the center and
its accuracy near the edges may be not so important. It may be observed in the video created for one
participant, comparing ground-truth gazes (red circle) with the gazes calculated with the usage of
RARE2012 saliency model (cyan circles) [51]. It occurs that the calculated gaze is quite accurate near
the center of the screen and the accuracy drops when the gaze goes towards the screen edges.

Another limitation is that errors obtained for implicit calibration using saliency models are so far
significantly higher than for the classic calibration. However, there is still a lot of room for improvement.
As for the future work we plan to investigate how to improve the PFTs generation algorithm that will
find more robust PFTs by extracting it from saliency maps. We also plan to test new fusions of already
introduced MFCs and search for new MFCs. Finally, we would like to test the method using new
datasets with different stimuli such as movies or classic user interfaces.

To maintain the repeatability of the research the code and the datasets were published online at
www.kasprowski.pl/etcal (Supplementary Materials).

Supplementary Materials: The code of ETCAL library used for experiments and both datasets are available
online at www.kasprowski.pl/etcal.
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