
sensors

Article

An Efficient Incremental Mining Algorithm for
Discovering Sequential Pattern in Wireless Sensor
Network Environments

Xin Lyu * and Hongxu Ma

College of Computer and Information, HoHai University, Nanjing 210098, China; mdaha@hhu.edu.cn
* Correspondence: lvxin@hhu.edu.cn; Tel.: +86-139-2143-8098

Received: 16 November 2018; Accepted: 18 December 2018; Published: 21 December 2018 ����������
�������

Abstract: Wireless sensor networks (WSNs) are an important type of network for sensing the
environment and collecting information. It can be deployed in almost every type of environment in
the real world, providing a reliable and low-cost solution for management. Huge amounts of data
are produced from WSNs all the time, and it is significant to process and analyze data effectively to
support intelligent decision and management. However, the new characteristics of sensor data, such
as rapid growth and frequent updates, bring new challenges to the mining algorithms, especially
given the time constraints for intelligent decision-making. In this work, an efficient incremental
mining algorithm for discovering sequential pattern (novel incremental algorithm, NIA) is proposed,
in order to enhance the efficiency of the whole mining process. First, a reasoned proof is given to
demonstrate how to update the frequent sequences incrementally, and the mining space is greatly
narrowed based on the proof. Second, an improvement is made on PrefixSpan, which is a classic
sequential pattern mining algorithm with a high-complexity recursive process. The improved
algorithm, named PrefixSpan+, utilizes a mapping structure to extend the prefixes to sequential
patterns, making the mining step more efficient. Third, a fast support number-counting algorithm
is presented to choose frequent sequences from the potential frequent sequences. A reticular tree is
constructed to store all the potential frequent sequences according to subordinate relations between
them, and then the support degree can be efficiently calculated without scanning the original database
repeatedly. NIA is compared with various kinds of mining algorithms via intensive experiments on
the real monitoring datasets, benchmarking datasets and synthetic datasets from aspects including
time cost, sensitivity of factors, and space cost. The results show that NIA performs better than the
existed methods.

Keywords: WSNs; big data; incremental mining; prefix projection database; reticular sequence tree

1. Introduction

WSNs are made up of a large number of sensor nodes deployed in the monitored area, and by
wirelessly communicating between the nodes, it forms a multi-hop self-organized network system
to perceive, collect, and process the information of objects continuously, where the results are then
forwarded to the central node. Nowadays, WSNs have been widely used in all sorts of fields, such
as smart homes [1], urban traffic [2,3], safety monitoring of large buildings [4,5], environmental
monitoring [6,7], space exploration [8], and so on, such that it produces diverse and large amounts
of sensor data constantly. Evidently, the data contains enormous potential value, which shall be of
great value for decision and management. For instance, in dam safety monitoring, there are at least
thousands of sensors that are embedded in the dam or spread over the surrounding area, and they
feed back various signals in real time, such as seepage pressure, deformation, displacement, and water
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level. If the correlation between different kinds of measured values, like the value of displacement and
water level, can be discovered, then it is able to set the safety threshold of water level based on the
discovered patterns or rules. Furthermore, the safety condition of the dam can be predicted through
some forecasting information, like rainfall. Obviously, these are extremely helpful for decision-support,
especially in the scenario of emergency response and providing early risk warnings. Therefore, it is
necessary to design effective data mining and analysis methods to discover the knowledge buried in
the sensor data.

The sensor data commonly belongs to a type of time series, and sequential pattern mining
(SPM) is an important and active research topic in data mining [9–13]. The main target of SPM is
to discover the set of frequent sequences measured by a user-specified minimum support threshold,
which was first proposed by Agrawal et al. in 1995 [11]. It finds customer-purchased sequences to
predict whether there is a high probability that, when customer buys some products, they will buy
some other products in later transactions. With a certain minimum support specified by the user,
the problem of mining sequential patterns is to find the maximal sequences among all sequences
satisfying the support constraint. For instance, there is a dataset that contains five sequences:
〈(30)(90)〉, 〈(10 20)(30)(40 60 70)〉, 〈30 50 70〉, 〈(30)(40 70)(90)〉, 〈(90)〉. When minimum support set
to 25%, two sequences: 〈(30)(90)〉 and 〈(30)(40 70)〉 are maximal among those satisfying the support
constraint, and they are the desired sequential patterns. In Reference [11], three algorithms, AprioriAll,
AprioriSome, and Dynamicsome, were presented to solve the problem of SPM, and the performance of
these algorithms were evaluated empirically using synthetic data. They are the foundational algorithms
of sequence data mining. Since then, many algorithms have been proposed to improve mining time.
Zaki [13] proposed a new algorithm named SPADE (Sequential PAttern Discovery using Equivalence
classes) for fast mining of sequential patterns, which decomposed the original problem into smaller
sub-problems using equivalence classes on frequent sequences. Thus, the mining process is completed
in only three database scans. The experiments were conducted both on synthetic datasets and a real
dataset to show the advantages of SPADE. Ayres et al. [12] introduced a novel depth-first search
strategy with effective pruning mechanisms for mining sequential patterns, and a vertical bitmap
representation was utilized to store each sequence in the database for efficient support counting.
The proposed algorithm was tested on numerous synthetic datasets, and the results demonstrated
that it outperforms SPADE [13] on large datasets by over an order of magnitude. Philippe et al. [10]
analyzed the major problems of the existing SPM algorithms, and two novel algorithms, RuleGrowth
and TRuleGrowth, were proposed to mine “partially-ordered sequential rules.” RuleGrowth used
a pattern-growth approach for discovering valid rules to avoid considering rules not appearing
in the database. TRuleGrowth allows the user to specify a sliding-window constraint on rules
to be mined, which reduced the execution time and the number of valid rules. The performance
study with four real-life datasets showed that the proposed algorithms have excellent performance
and scalability compared to the baseline algorithms, and they are suitable for a real application.
In particular, Philippe founded an open-source data mining library, called SPMF (Sequential Pattern
Mining Framework) [14,15], specialized in pattern mining, offering implementations of 156 data
mining algorithms. It has been cited or used in more than 600 publications to solve applied problems
from a wide range of domains. Its implementations are also commonly used as benchmarks in research
papers. Wu et al. [9] proposed a new a-priori-based sequence pattern mining algorithm named NOSEP
(NOnoverlapping SEquence Pattern), in which a nonoverlapping sequence pattern allows sequence
letters to be utilized flexibly for pattern discovery; it also used a designed data structure, Nettree, to
calculate the exact occurrence of a pattern in the sequence. Sixteen benchmark datasets from three
domains in real life were used in the experiments, and the results demonstrated that NOSEP can
discover more frequent patterns than state-of-the-art algorithms.

A great part of SPM studies has been focused on the static databases. However, databases utilized
in the real world are dynamic with frequent insertions or deletions, such as the monitoring scenario
mentioned before. Discovered sequential patterns may become invalid since sequences are changed
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in dynamic databases. An intuitive way to solve this problem is to rescan the updated database
and re-mine the sequential patterns. This requires considerable computations when the database is
huge, and it is inefficient in real applications, especially the number of changed sequences is very
small. To deal with dynamic databases, various methods were proposed. Cheng et al. proposed an
incremental mining algorithm named IncSpan [16], based on PrefixSpan [17]. The frequent patterns
can be efficiently discovered via projection mining on semi-frequent sequences and the sub-sequence of
frequent sequences. However, Nguyen et al. [18] had proved IncSpan does not display completeness,
and presented an improved version named IncSpan+. In order to achieve completeness, the algorithm
should carry out projection mining on more sequences, resulting in low efficiency. Liu et al. proposed
a sequence tree-based incremental mining algorithm ISPBS (Incremental Sequential Pattern mining
Based on Sequence tree) [19]. The mining information is stored in the sequence tree. To obtain the
new set of frequent sequence, ISPBS just needs to add the incremental sequences to the sequence
tree. However, it apparently has to bear excessive memory consumption to store all the sequence
trees. The pre-large concept was also proposed to deal with dynamic database [20,21], which had been
proved to be more efficient than the a-priori-like algorithms in batch mode. The pre-large concept
employs two thresholds, which are upper and lower, and all the patterns are classified into nine
cases. When new data are inserted, just a few cases require rescanning operation. Hence, the methods
based on the pre-large concept have better performance than the methods that always rescan the
original database, but they still need a number of re-scans and generate many candidate patterns.
Lee et al. [22] suggest an efficient pattern mining approach, which is still based on the pre-large concept.
It introduces a proper data structure for mining patterns, enabling the mining process to be completed
with a one-time scan. Huynh et al. [23] proposed a parallel approach named MCM-SPADE (Multiple
threads Co-occurence Map-SPADE) using a multi-core processor system for an SPM with a very large
database. The frequent pattern mining expresses item information of databases as a binary form, so
it has a limitation that it cannot consider real data’s non-binary character. For instance, in market
databases, an item has its own different price or profit and can be sold multiple copies in a transaction,
which are not binary data. To address this issue, some recent studies incorporated the concept of utility
into classic SPM, leading to the emergence of high utility sequential pattern (HUSP) mining. In HUSP
mining, the utility of a sequence represents its importance, which may be measured in terms of profit
or other information valuable for users. Wang et al. [24] introduced a tighter upper bound of the utility
of a sequence (TSU) and design a novel data structure to maintain high utility sequences, facilitating
incremental HUSP mining. Lin et al. [25] proposed a novel high-utility sequential pattern mining with
multiple minimum utility thresholds framework. LS-tree (Lexicographic Sequence-tree) and UL-list
(Utility Linked-list) structure are designed to efficiently mine HUSPs, and in the meantime, three
pruning strategies are introduced to improve the performance of the proposed algorithm. SPM is also
becoming important in new types of sensor networks, such as body sensor networks [26]. Through
mining the complete set of periodically/regularly occurring patterns in a BSN (Body Sensor Network)
data stream, it would be useful to promote and assist important decision-making in healthcare.

Motivated by the real applications and the problems mentioned above, an efficient incremental
mining algorithm for discovering sequential pattern named NIA (Novel Incremental Algorithm) is
proposed. The main contributions of this paper are as follows: (1) the mining space is greatly narrowed
based on the analysis of the sequence-related properties in the updating process; (2) PrefixSpan+,
an improvement of the original PrefixSpan is proposed to improve the mining efficiency; and (3) a
novel structure called a reticular sequence tree is designed to count the support number quickly. The
rest of this paper is organized with the following contents. In Section 2, the related definitions are
explained. In Section 3, the integrity proof, the suggested PrefixSpan+, and fast counting algorithm
are discussed in detail. In Section 4, the experiments are conducted on real sensor datasets with their
analysis results. In the final section, we conclude this paper.
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2. Definitions

An original sequence database SDB is the set of a two-tuple < sid, α >, α denotes sequence and
sid is the corresponding serial number. supSDB(α) denotes the support of sequence α and countSDB(α)

(shortened to cSDB(α)) is the number of two-tuples that contains α, such that cSDB(α) = supSDB(α)×
|SDB|. If supSDB(α) ≥ min_sup, then α is called a sequential pattern in SDB. Correspondingly, the
incremental sequence database sdb is also the set of < sid, α >, where supsdb(α) and csdb(α) are the
support of α and the number of two-tuples that contain α, respectively. UD is the updated database
that involves all the sequences in SDB and sdb. supUD(α) denotes the support of α in UD and cUD(α)

denotes the support number. The incremental mining algorithm is to discover the set of frequent
sequences in UD.

The updated database UD is the combination of SDB and sdb. The subset “old” is a subset of sdb
in which the sid of each sequence is same with a certain sid appears in SDB, and “new” is another
subset of sdb in which the sid of each sequence does not appear in SDB. Thus, the number of sequences
in UD is equal to |UD| = |SDB|+ |sdb| − |old|, such that if old = φ, then |UD| = |SDB|+ |sdb|; if all
the sids in sdb have appeared in SDB, that is, the set of “new” is empty, then |UD| = |SDB|. Figure 1
shows an updated database UD that is the combination of the sets SDB and sdb.
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Figure 1. The updated database UD which is the combination of SDB and sdb.

OD is a subset of SDB, of which the set of sid is the same as that used in old. cOD(α) denotes the
support number of α in OD. The combination of OD and old is called DD, and cDD(α) denotes the
support number of α in DD.

All the symbols used in this paper are listed in Table 1.
Table 2 displays a sequence database (SDB) containing six sequences. Suppose the minimum

support is min_sup = 33%, then the support number of a frequent sequence must be no less than 2, so
the set of frequent sequences in SDB is {a, b, c, d, ad, ac, bb, ca}.

An increment database sdb is shown in Table 3, and the sequence database of the updated SDB
named UD is shown Table 4. There are nine sequences in UD, so the support of frequent sequence
in UD must be no less than 3, according to the minimum support; therefore, some of the frequent
sequences in SDB are no longer frequent sequences in UD, such as {c, ad, ca}, and {e, be, bd} becomes
a frequent sequence in UD.
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Table 1. Symbol Table.

sdb Increment sequence database
UD Updated database
OD Sequences contained in dotted line area
DD Combination of OD and old
|M| The number of element in set M

supSDB(α) Support of α in SDB
cSDB(α) Support number of α in SDB

supsdb(α) Support of α in sdb
csdb(α) Support number of α in sdb

supUD(α) Support of α in UD
cUD(α) Support number of α in UD

old The sequences contained in both SDB and sdb
new The sequences contained in sdb that are different from SDB

cOD(α) Support number of α in OD
cDD(α) Support number of α in DD
cold(α) Support number of α in old
cnew(α) Support number of α in new

Table 2. Sequence Database SDB.

SID Sequence

1 < ad >
2 < b(ce)(ab) >
3 < (ab)(be) >
4 < dca >
5 < a >
6 < f (b f g) >

Table 3. Incremental Sequence Database sdb.

SID Sequence

7 < (bd) >
8 < (bd)e >
9 < (ab)e(b f ) >

Table 4. Updated Database UD.

SID Sequence

1 < ad >
2 < b(ce)(ab) >
3 < (ab)(be) >
4 < dca >
5 < a >
6 < f (b f g) >
7 < (bd) >
8 < (bd)e >
9 < (ab)e(b f ) >

Table 5 displays an incremental database sdb of UD with the sequences (SID = 2, 4, 5, 8) that are
from the original UD, and the sequences (SID = 10, 11, 12) are the new ones. The updated sequence
database, the new UD, is shown in Table 6. The elements with underline denote the elements added to
the original sequences. For the same min_sup, the frequent sequences in UD are {a, b, d, f , bd, b f , ad}.
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Table 5. An Incremental Database of UD (sdb).

SID Sequence

2 < d >
4 < h >
5 < (ad) >
8 < h >
10 < (bd f h) >
11 < ag >
12 < (b f )g >

Table 6. The New UD.

SID Sequence

1 < ad >
2 < b(ce)(ab)d >
3 < (ab)(be) >
4 < dcah >
5 < a(ad) >
6 < f (b f g) >
7 < (bd) >
8 < (bd)eh >
9 < (ab)e(b f ) >
10 < (bd f h) >
11 < ag >
12 < (b f )g >

Table 7 displays a sequence database OD, in which the sequences are from SDB and their SID are
same with that in sdb.

Table 7. OD (in which the sid is same as that used in old).

SID Sequence

2 < b(ce)(ab) >
4 < dca >
5 < a >
8 < (bd)e >

Table 8 shows a sequence database DD, which is a combination of the sequence databases of old
and OD.

Table 8. DD (which is the combination of OD and old).

SID Sequence

2 < b(ce)(ab)d >
4 < dcah >
5 < a(ad) >
8 < (bd)eh >

3. An Efficient Incremental Mining Algorithm for Discovering Sequential Pattern in a
WSN Environment

In order to maintain the set of frequent sequences and reduce the searching cost on the original
database, a novel incremental mining algorithm for discovering sequential patterns (NIA) is proposed.
First, the changes of the potential frequent sequence are discussed regarding when the database is
updated, then an algorithm named PrefixSpan+ is suggested to mine the required spaces, that is, the
incremental database sdb and the projection database on OD, to obtain complete potential frequent



Sensors 2019, 19, 29 7 of 29

sequences. Finally, the sequence support degree is computed. A data structure, named reticular
sequence tree, is introduced in this process. The sequence tree is generated using the corresponding
potential frequent sequence, then each support degree can be computed from the root. This method
greatly reduces the time to scan the original database during computing the sequence support.

3.1. PrefixSpan+

PrefixSpan (Prefix-Projected Pattern Growth) [17] is a classic SPM algorithm. Its general ideal is
to examine only the prefix subsequences and project only their corresponding postfix subsequences
into projected databases. In each projected database, sequential patterns are grown by exploring only
local frequent patterns. There is no candidate sequence produced during the mining process and
the projected database keep shrinking; however, PrefixSpan still involves a high computation cost
owing to constructing the projection database recursively, so it is unsuitable for large-scale sequence
datasets with various items. In this section, an improvement of the original PrefixSpan algorithm,
called PrefixSpan+, is suggested with the use of a structure named CMAP (Co-occurrence MAP) [27]
in order to enhance the efficiency of the recursive process mentioned above. CMAP is a structure
for storing co-occurrence information, and it was originally used to candidate pruning for vertical
sequential pattern mining. Here, it is used to extend the prefixes to frequent sequential patterns instead
of constructing projection databases recursively. The definition of CMAP is given below.

Definition 1. An item k is said to succeed by i-extension to an item j in a sequence 〈I1, I2, · · · , In〉 iff j, k ∈ Ix

for an integer x such that 1 ≤ x ≤ n and k � lex j, where �lex means lexicographical order.

Definition 2. An item k is said to succeed by s-extension to an item j in a sequence 〈I1, I2, · · · , In〉 iff j ∈ Iv

and k ∈ Iw for some integers v and w such that 1 ≤ v < w ≤ n.

Definition 3. A Co-occurrence map (CMAP) is a structure mapping each item k ∈ I to a set of items
succeeding it. We define two CMAPs named CMAPi and CMAPs. CMAPi maps each item k to the set cmi(k)
of all items j ∈ I succeeding k by i-extension in no less than minsup sequences of SDB. CMAPs maps each
item k to the set cms(k) of all items j ∈ I succeeding k by s-extension in no less than minsup sequences of SDB.

The CMAP structure can be used for pruning candidates generated by sequential pattern mining
algorithms based on the following properties.

Property 1 (pruning an i-extension). Let there be a frequent sequential pattern A and an item k. If
there exists an item j in the last itemset of A such that k belongs to cmi(j), then the i-extension of A with
k is frequent.

Property 2 (pruning an i-extension). Let there be a frequent sequential pattern A and an item k. If
there exists an item j ∈ A such that the item k belongs to cms(j), then the s-extension of A with k
is frequent.

Property 3 (pruning a prefix). The previous properties can be generalized to prune all patterns
starting with a given prefix. Let there be a frequent sequential pattern A and an item k. If there
exists an item j ∈ A (equivalently j in the last itemset of A) such that there is an item k ∈ cms(j)
(equivalently in cmi(j)), then all supersequences B having A as prefix and where k succeeds j by
s-extension (equivalently i-extension to the last itemset) in A in B are frequent.

PrefixSpan+ and the original PrefixSpan are based on the same principle to obtain frequent
sequential patterns. The difference is that in PrefixSpan+, all the patterns are extended by i-extension
and s-extension of the prefixes, and the completeness is guaranteed by the properties stated above.
Then, the whole recursive process is more efficient.
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We refer readers to Reference [27] for more details on CMAP. Now the ideal of PrefixSpan+ and
the mining process are illustrated with an example. Given a sequence database (Table 9), suppose
minsup = 25%, then the threshold of the support number is 2. The aim of the algorithm is to find out
all the frequent sequential patterns satisfied with the support requirement.

Table 9. An Example of Sequence Database.

SID Sequence

1 < (30)(90) >
2 < (10, 20)(30)(10, 40, 60, 70) >
3 < (30, 50, 70, 80) >
4 < (30)(30, 40, 70, 80)(90) >
5 < (90) >

First, calculate support number of the prefixes with length = 1. The results are listed in Table 10.
Apparently, (10), (20), (50), and (60) are not frequent sequences under the required minsup, and all the
sequences prefixed with them are infrequent, therefore they are deleted from the original database
(Table 11). Meanwhile, length-1 sequential patterns are obtained, which are (30), (40), (70), (80),
and (90).

Table 10. The Support Number of the Prefixes with length = 1.

Prefix (10) (20) (30) (40) (50) (60) (70) (80) (90)

Support Number 1 1 4 2 1 1 3 2 3

Table 11. The Modified Sequence Database.

SID Sequence

1 < (30)(90) >
2 < (30)(40, 70) >
3 < (30, 70, 80) >
4 < (30)(30, 40, 70, 80)(90) >
5 < (90) >

Second, construct a CMAP for length-1 sequential patterns from the modified sequence database
according to Definition 1–3 (see Table 12). Item j is in the last itemset of a frequent sequential pattern
(i-extension) or it is a part of a frequent sequential pattern (s-extension). In length-1 sequential patterns,
j = 30, 40, 70, 80, 90.

Table 12. CMAP of Length-1 Sequential Patterns.

Pattern cmi(j) cms(j)

30 70, 80 40, 70, 90
40 70 -
70 80 -
80 - -
90 - -

The extensions that are frequent are demonstrated in Property 1–3. We can infer from the
properties that if an item k belongs to a certain cmi(j) or cms(j), then the i-extension/s-extension of the
corresponding pattern with k is frequent. That is to say, all the frequent sequential patterns can be
obtained through proper extensions. Taking length-1 sequential pattern (30) as example, the length-2
sequential patterns prefixed with (30) can be generated from cmi(30) and cms(30). The results of
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i-extension of (30) with the items in cmi(30) are (30, 70) and (30, 80), which is the extension in the
itemset; the results of the s-extension of (30) with the items in cms(30) are (30)(40), (30)(70), and (30)(90),
which is the extension between the itemsets. In the same way, the length-2 sequential patterns prefixed
with (40) and (70) can be obtained, that is, (40, 70) and (70, 80). We can notice that it just needs an
i-extension since cms(40) = cms(70) = φ, and there is no need to carry out any extension on (80) and
(90), since both of the cmi(j) and cms(j) are empty. Then, all the length-2 sequential patterns are
obtained, which are (30, 70), (30, 80), (30)(40), (30)(70), (30)(90), (40, 70), and (70, 80).

Next, by constructing the CMAP for length-2 sequential patterns, it can be found that only
structure CMAPi exists on (30)(40) and (30, 70) as shown in Table 13. Therefore, all the length-3
sequential patterns can be obtained through i-extension, which are (30)(40, 70) and (30, 70, 80). The
CMAP for length-3 sequential patterns are constructed recursively; however, there is no CMAPi or
CMAPs that exists, which means no length-4 sequential patterns exist. Then, the mining process is
completed, and all the frequent sequential patterns are listed in Table 14.

Table 13. CMAP of Length-2 Sequential Patterns.

Pattern cmi(j) cms(j)

(30)(40) 70 -
(30, 70) 80 -

Table 14. Frequent Sequential Patterns with minsup = 25%.

Frequent Sequential Pattern

length-1 sequential pattern < (30) >,< (40) >,< (70) >,< (80) >,< (90) >

length-2 sequential pattern < (30, 70) >,< (30, 80) >,< (30)(40) >,< (30)(70) >,< (30)(90) >
< (40, 70) >,< (70, 80) >

length-3 sequential pattern < (30)(40, 70) >,< (30, 70, 80) >

Through two kinds of extensions, PrefixSpan+ can effectively discover all the frequent sequential
patterns without constructing the projection database recursively. The core code of PrefixSpan+ is as
shown in Algorithm 1.

Algorithm 1 The core code of PrefixSpan+

Input: Sequence dataset S, Threshold of support degree min_sup
Output: The set of frequent sequential pattern FS
1: Scan S, count the support number of all the items with length = 1, and delete the items from S, of which

the support degree is less than min_sup, then obtain S’. The set of length-1 sequential pattern P contains
all the items that are satisfied with the required support degree.

2: FS = P
3: Extension(S’, P)
4: For each Pj ∈ P, construct CMAP for Pj from S’
5: if CMAPi = CMAPs = φ

6: return FS
7: else
8: if CMAPi 6= φ, traverse CMAPi
9: extend all the items in cmi(j) to Pj by i-extension, and obtain Pi

j
10: if CMAPs 6= φ, traverse CMAPs

11: extend all the items in cms(j) to Pj by s-extension, and obtain Ps
j

12: Pj
′ = Pi

j ∪ Ps
j // Property 3

13: P′ = ∑j Pj
′, FS = FS ∪ P′

14: Extension(S’, P’)
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3.2. Obtain Potential Frequent Sequence

In this section, the sequence-related properties in the updating process are analyzed in depth,
then the constitution of the set of potential frequent sequence is confirmed; furthermore, an algorithm
named GetPFS is designed to obtain the potential frequent sequences.

Theorem 1. The new frequent sequences in UD come from the following three parts:

1. Frequent sequences in the original SDB;
2. The sequences in sdb of which the support number are no less than min_sup× |new|;
3. The sequences discovered from the prefix projection database of potential frequent sequence of sdb in DD,

and cDD(α) + cnew(α) ≥ min_sup× |new|.

The proof of theorem 1 is based on the following eight lemmas.

Lemma 1. The frequent sequences of original database must be contained in the set of potential
frequent sequences.

Proof. To the frequent sequences in original database, the support degree of these sequences in UD
cannot be decreased. Owing to cSDB(α) ≥ min_sup× |SDB|, the value of cSDB(α) is probably more
than min_sup× (|SDB|+ |new|) such that even the degree of the sequences is not increased in the
updated database. Therefore, the potential sequences must contain the frequent sequences in the
original database. �

Lemma 2. Only the sequences, of which the support number is increased after updating of database, can be the
frequent sequences.

Proof. For the infrequent sequences in the original database, because of cSDB(α) < min_sup× |SDB|,
cSDB(α) cannot be more than min_sup× (|SDB|+ |new|) if the support degree is not increased. �

Lemma 3. The change of support number will only happen in two kinds of sequences as follows after updating
the database.

1. The sequences emerged in sdb, including the sequences existing in SDB and the new sequences produced
from sdb;

2. The new sequences produced from the combination of OD and old.

Proof. Once the updating of SDB is completed, the sequence, of which the support degree has been
changed, must be related with sdb; that is, either it is from database new or from database old. If the
sequence is related with database new, then it is condition 1; if the sequence is related with database
old, then it is entirely or partly from old, which fall into condition 1 and 2 respectively. �

Lemma 4. For each sequence in UD, the inequality cUD(α) ≤ cSDB(α) + csdb(α) holds.

Proof. For some sequences in UD, the first half part emerges in SDB, and the latter part emerges in
sdb. Besides, some certain sequences may appear in both the SDB part and the sdb part of a certain
sequence. However, the sequences in UD can contribute one to the support number at most, therefore,
the inequality cUD(α) ≤ cSDB(α) + csdb(α) holds. �

Lemma 5. For the sequences in sdb that are infrequent in SDB, the inequation csdb(α) ≥ min_sup× |new|
holds if the sequences are frequent in UD.
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Proof. Suppose α is frequent in UD, then cUD(α) ≥ min_sup× (|SDB|+ |new|). Therefore:

cUD(α) ≥ min_sup× (|SDB|+ |new|)
⇒ cSDB(α) + csdb(α) ≥ min_sup× (|SDB|+ |new|)
⇒ csdb(α) ≥ min_sup× |SDB| − cSDB(α) + min_sup× |new|

and α is infrequent in SDB, then cSDB(α) < min_sup× |SDB|, therefore:

⇒ csdb(α) ≥ min_sup× |SDB| − cSDB(α) + min_sup× |new|
⇒ csdb(α) ≥ min_sup× |new|

�

Therefore, if the support number of sequence in sdb is no less than min_sup× |new|, the sequence
may become frequent; thus, it should be included in the set of potential frequent sequence.

Lemma 6. If the new sequences produced from the combination of OD and old are frequent, then, for the part
from old, it must be included in the set of potential frequent sequences of sdb derived from Lemma 5.

Proof. If sequence α is frequent, the part from old is also frequent, according to Lemma 5, where the
part of α that exists in old is contained in potential frequent sequences. �

Lemma 7. For the new sequences generated from the combination of OD and old, the support number is
cSDB(α)− cOD(α) + cDD(α) + cnew(α).

Proof. There are new sequences that emerge after combination, and the new ones may emerge in new
or the original database SDB. Owing to the support number of a same sequence, from DD and OD, it
may calculate twice or even more times, for instance, in the case of < adad >; thus, the contribution
from OD should be subtracted from the sum of the support number in SDB, DD, and new during the
calculation. �

Definition 4. Suppose sequences α, β, λ, with β ⊆ α, λ ⊆ α. λ is a postfix projection of α to β if the
following requirements are satisfied: (1) β is the postfix of λ; (2) there does not exist a sequence λ′ that satisfies
λ 6= λ′, λ′ ⊆ α, λ ⊆ λ′, and β is the postfix of λ′.

The attribute of postfix projection is described in Definition 4, which means a postfix projection
λ to β is the maximum subsequence of α postfixed with β. For instance, given a sequence α =<

a(abc)(ac)d(c f ) >, if β =< (c f ) >, then the postfix projection λ =< a(abc)(ac)d(c f ) >; if β =<

(ac) >, then λ =< a(abc)(ac) >.

Definition 5. Suppose there exist sequences α =< X1X2 . . . Xi . . . Xn >, β =< X′ iXi+1 . . . Xj >, with
Xi = X′ i + X′′ i 1 ≤ i ≤ j ≤ n, then the postfix projection λ is < X1X2 . . . Xi . . . Xj > according to Definition
4. Sequence γ =< X1X2 . . . X′′ i > which is the rest of λ except < X′ iXi+1 . . . Xj >, and is called a prefix of α

to β, and denoted as γ = λ/β. Let SDB be a sequence database, and α is a sequence in SDB, then the set of
prefixes from projections of all the sequences in SDB to β, is called a prefix database of the projection of SDB to
β, and denoted as su f f ix-SDB |β.

For instance, there are two sequences in SDB, which are α1 =< a(abc)(ac)d(c f ) > and α2 =<

(bd)(c f ) >, and β =< (c f ) >. For α1, λ1 =< a(abc)(ac)d(c f ) > and γ1 =< a(abc)(ac)d >; for α2,
λ2 =< (bd)(c f ) > and γ2 =< (bd) >. Then, the su f f ix-SDB |β is {< a(abc)(ac)d >,< (bd) >}.

Based on the ideal of PrefixSpan+, a “PostfixSpan+” algorithm can be obtained through reversing
the direction of i-extension and s-extension during the extending process; for instance, for a sequence
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< (30)(40, 70) >, the i-extension of item 40 is 70, and the s-extension is φ in PrefixSpan+. In PostfixSpan+,
the i-extension of item 40 is φ, and the s-extension is 30. In the following, the Postfix algorithm is utilized
to process the new sequences produced from the combination of OD and old.

Lemma 8. Construct su f f ix-SDB to the potential frequent sequences of sdb in DD. If the new sequences
produced from the combination of OD and old are frequent, then they must be included in the sequences generated
from the su f f ix-SDB; also, the inequation cDD(α) + cnew(α) ≥ min_sup× |new| holds.

Explanation. All the sequences from old are already involved in potential frequent sequences of sdb,
therefore they do not need to be the elements of the prefix projection database. For instance, sequence
< abaa > and potential frequent sequence a; then, the prefix of projection is not < aba >, but < ab >.

Proof. The sequences generated from the combination of OD and old are frequent, thus the part
of them, which are from sdb, must be potential sequences; meanwhile, to the prefix projection
database constructed by all the potential frequent sequences, the frequent sequences generated from
the combination of OD and old are involved in it. Then, the following inequation holds:

cUD(α) ≥ min_sup× (|SDB|+ |new|)
⇒ cSDB(α)− cOD(α) + cDD(α) + cnew(α) ≥ min_sup× (|SDB|+ |new|)
⇒ cDD(α) + cnew(α) ≥ min_sup× |SDB| − cSDB(α) + cOD(α) + min_sup× |new|
⇒ cDD(α) + cnew(α) ≥ cOD(α) + min_sup× |new|
⇒ cDD(α) + cnew(α) ≥ min_sup× |new|

�

Therefore, if the sum of the support numbers, in DD and new, of the sequences produced by
the combination OD and old is no less than min_sup× |new|, they might become frequent sequences,
which means they should be involved in the set of potential frequent sequence.

Therefore, we conclude from the above lemmas that if a sequence is frequent in UD, then it must
be satisfied by one of the conditions mentioned above, which means it will be added into the set of
potential frequent sequence. It just needs two steps to obtain a potential frequent sequence:

Step one: Implement sequence mining on sdb by using PrefixSpan+, setting the threshold of the
support number as min_sup× |new|;

Step two: Construct the prefix projection database under DD to potential frequent sequences in
sdb, then implement sequence mining on the constructed databases by using PostfixSpan+, setting the
threshold of the support number as min_sup× |new|.

Suppose the FS (frequent sequence) is the set of frequent sequences in SDB, PFS (potential frequent
sequence) as the set of potential frequent sequence, and NFS (new frequent sequence) is the set of
frequent sequence in updated database. The core code of algorithm GetPFS, which is used to obtain
the potential frequent sequences, is described in Algorithm 2:

Algorithm 2 GetPFS (OD, DD, FS, old, new)

Input: OD, DD, FS, old, new
Output: PFS
1: Put FS into PFS
2: Set s1 = Pre f ixSpan + ({}, old + new, min_sup× |new|)
3: Put s1 into PFS
4: For b in PFS
5: Construct projection database S of DD to the part of b that belongs to OD
6: Set s2 = Post f ixSpan + (b, S, min_sup× |new|)
7: Put s2 into PFS
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3.3. Fast Support Number-Counting Algorithm

In order to calculate the support degree once the potential sets of frequent sequence (PFS) are
obtained, a fast counting algorithm is proposed in this section. To level up the efficiency of calculating, a
reticular structure is designed to store the PFS, making the speed of counting faster than the traditional
methods such as a hash function-based algorithm. Figure 2 shows a reticular sequence tree structure,
with PFS = {abcd, abc, bcd, ce f , ab, ad, bc, ce, e f , a, b, d, c, e, f }.
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In this tree structure, abcd and ce f are the root nodes, and each child node is the subsequence
of the parent node; also, if a sequence is the subsequence of another, then it must be in the reticular
sequence tree with the parent sequence as root node.

The concrete process for constructing a reticular sequence tree is as follows. Each layer is
comprised of the sequences with the same length. The first layer is the set of the longest sequences,
and each node is a root node. Then, check the rest of the sequences in decreasing order to determine if
they are the subsequence of the node in the higher layer; if so, add them as the corresponding child
node, and if not, set them as the root node. Figure 3 shows the detailed construction process.

The support number of each node can be obtained through two steps. First, count the elementary
support number. Check whether the sequence contains a root node traversing all the sequences in
the updated database; if so, the support number of the root node adds one. If not, check if it contains
the sequence of the child node; if so, the support number of the child node adds one, and if not,
check recursively. For instance, if there is a sequence < (abcde) > in the database, for root node abcd,
which is contained in the sequence, then its support number adds one; if the sequence is < (abc) >, it
does not contain root node abcd, but for its child node abc, the support number should add one. We
can notice that the child nodes do not need to be checked if there is any father node included in the
sequence. Supposing there is a set of results counted from step one, as shown in Figure 4, the number
on the right side of each node is the elementary support number.

In step two, the real support number of each node is obtained by calculating the sum of elementary
support number of itself and all the father nodes. For instance, as shown in Figure 4, the elementary
support number of node ab is 2, and the numbers of its father nodes abc and abcd are 2 and 3,
respectively; therefore, the real support number of ab is 7. However, for node bc, it has three father
nodes—abc, bcd, and abcd—where abcd is the common father node of abc and bcd; then, its elementary
support number can just be counted once, so the real support number of bc is 9. That is to say, in a
diamond structure like Figure 5, the elementary support number of all the common father nodes can
only be added one time when counting the real support number.
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In the real programming process, counting the real support number and determining whether the
sequence is frequent or not could be carried out simultaneously. First, the support number is calculated
from a leaf node: if it is equal or greater than the minimum support number, then determine whether
its father node is frequent; if the support number is less than the minimum support number, it can be
confirmed that all the father nodes are not in the frequent sequence.

To sum up, the fast support number-counting algorithm is comprised of three steps:

1. Construct a reticular sequence tree;
2. Count the support number on the constructed reticular sequence tree by traversing the updated

sequence database;
3. Count the real support number and determine the frequent sequences.

4. Experimental Analysis

The experiments were carried out on the following configurations, using Java (jdk 1.7): CPU
(Dual-Core CPU E5300 2.60 GHZ); Memory (4 GB); 64-bit Windows 8. The experiments are conducted
on two benchmarking datasets from real-life (BMSWebView-1 and Kosarak) [28], two synthetic
datasets [28], and real monitoring datasets. The monitoring data, that is, horizontal displacement
of a dam and water level of a reservoir, was collected from a huge hydropower plant in China.
The horizontal displacement was detected by a specific kind of capacitive sensor embedded in the
dam. It reported the capacitance ratio to a DAU (data access unit) periodically, and the horizontal
displacement could be obtained using a piecewise function based on the ratio. The water level was
measured using a water level sensor. It transformed the perceived signals into electrical signals in real
time, and forwards them to the DAU, then the value of water level can be calculated. More specifically,
the original electrical signals were first transmitted to the DAU and then the electrical measuring
values (frequency, voltage, or current) were calculated by MCU (microcontroller unit) based on the
relevant model. Finally, by using the measuring values, the results that represent the corresponding
states, called produced value, could be obtained through resolving system. The data flow is illustrated
in Figure 6.Sensors 2018, 18, x FOR PEER REVIEW  16 of 30 
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A sequence was comprised of the value of horizontal displacement and water level, as well
as other related information, such as time, position, and pressure. The original sequence database
SDB was constructed by selecting appropriate amounts of historical monitoring data from “Produced
Database,” which is an SQL server in practical use. The correlation between horizontal displacement
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and water level can be discovered through mining sequential patterns on SDB. The sequences were
formatted in accordance with the data generated in a standard procedure [17]. The experimental
parameters are listed in Table 15.

Table 15. Experimental Parameters.

Parameter Definition

|SDB| Amount of sequences in SDB, unit: 1000
C Average amount of items
T Average amount of elements
S Length of potential frequent sequence
I Number of items in potential frequent itemset
N Number of different elements in sequence database
NI Number of potential frequent itemsets
Ns Number of potential frequent sequences
|UD| Amount of sequences in UD, unit: 1000
Rsdb Ratio of incremental database sdb to updated database UD
Rnew Ratio of new sequences to incremental database sdb

4.1. Generation of Incremental Database

The updated database UD is comprised of original database SDB and incremental database sdb,
which can be created in the following way. First, set the corresponding parameters |UD|, Rsdb, and
Rnew. Rsdb is the ratio of incremental database sdb to the updated database UD; that is to say, it defines
the size of sdb: |sdb| = |UD| × Rsdb. Generate |sdb| sequences from historical monitoring data in a
standard format to form sdb, and SDB is constructed in the same way. Rnew is the ratio of the new
sequences to the incremental database sdb; then, randomly select |sdb| × Rnew sequences from sdb as
new sequences, and split the rest of sequences into two parts, for instance, < X1X2 . . . Xl > is split into
< X1X2 . . . Xm > and < Xm+1Xm+2 . . . Xl >. Finally, the first parts of all the split sequences are added
into sdb, and the latter parts are inserted into SDB.

4.2. Comparisons

We conducted substantial experiments on the real monitoring datasets in different sizes, two
benchmarking datasets and two synthetic datasets, to compare the time cost, the sensitivity of Rsdb
and Rnew, and the space cost with various kinds of existing approaches.

4.2.1. Time Cost on Real Monitoring Datasets

The time cost was first compared with some typical methods on monitoring datasets, including
PrefixSpan [17], PFT (Pre-large FUSP-Tree) [20], IncSpan [29], and STISPM (Sequence Tree-based
Incremental Sequential Pattern Mining) [30]. The parameters were set to be C = 10, T = 4, S = 12,
I = 4, and the number of different elements N = 100K, 10K, and Rsdb = 5%, Rnew = 50%. The
experiment was carried out on two sets of data (N = 100K, N = 10K) with different support degrees
(minsup= 3%,2%,1%, and 0.75%).

In Figures 7 and 8, it shows that all the incremental mining algorithms, Incspan, PFT, STISPM,
and the proposed NIA, performed better on efficiency than PrefixSpan, which needed to re-mine
the whole database after updating. Furthermore, NIA, which reduced the time cost by 85.9% and
88.4% at most, compared to PrefixSpan, had the best performance on efficiency for all incremental
algorithms generally.
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Figure 8. The Runtimes on the Dataset of |UD| = 100K with N = 10K.

In Figure 7, NIA had a lower time cost than Incspan, PFT, and STISPM as
minsup= 2%,1%, and 0.75%; on average, it reduced the time cost by 49.4% compared to Incspan,
45.6% compared to PFT, and 27.1% compared to STISPM. In Figure 8, NIA still performed the best
in all the incremental algorithms; more specific, there were 75.1%, 41.9%, and 49.4% decreases on
average compared to Incspan, PFT, and STISPM, respectively. Furthermore, the growth rate of NIA’s
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time cost was still the lowest during minsup changes from 2% to 1%, both in Figures 7 and 8, but in
the process of 1% to 0.75%, although NIA is more efficient, its growth rate was slightly faster than
PFT. This was owed to the amount of potential frequent sequences obtained by NIA that was greatly
increased with the decrease of minsup, resulting in a heavier computation burden on constructing the
reticular sequence tree and counting the support number. Nevertheless, the minsup was commonly
not too small in real applications to avoid obtaining so many useless frequent sequences.

Through the comparison between Figures 7 and 8, it could be found that the runtimes of all
the algorithms were reduced when N = 100K. The reason was the amount of frequent sequences
being cut down with the augment of different elements in the database, making the execution process
faster. For instance, NIA discovered 313 frequent sequences in one hundred thousand sequences when
N = 100K, minsup = 1%, but there were 714 sequences in one hundred thousand sequences when
N = 10K, minsup = 1%. It also indicates that NIA was more sensitive to the amount of frequent
sequences than other three algorithms. That is why NIA performed more efficiently when N = 100K.

In order to further evaluate the performance of the proposed scheme, we enlarged the scale of
UD to 200K, and tested the time cost with the settings of C = 10, T = 4, S = 12, I = 4, Rsdb = 5%,
Rnew = 50%, and N = 10K.

From Figure 9, we found that the runtime of original PrefixSpan was intolerable as the mining
space doubled, and the time consumption of NIA was 15.0875 mins on average, which grew
sub-linearly with the augment of the amount of sequences in UD; also, compared to the runtimes of
IncSpan, PFT, and STISPM, which were respectively 143.1125, 31.625, and 38.6875 mins on average,
NIA reduced the time cost by 89.5%, 52.3%, and 61%.
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Figure 9. The Runtimes on the Dataset of |UD| = 200K with N = 10K.

In addition, there were several up to date SPM algorithms that achieved favorable performance
based on novel ideals and good design, and three of them, MSPIC-DBV (Mining Sequential Patterns
with the Itemset Constraints using Dynamic Bit Vector) [31], e-NSP (Efficient Negative Sequential
Pattern mining) [32], and F-NSP+ (Fast Negative Sequential Patterns mining) [33], were selected
for further comparisons (See Figure 10) on the monitoring dataset. The parameter settings were
C = 10, T = 4, S = 12, I = 4, |UD| = 200K, N = 10K, Rsdb = 5%, Rnew = 50%.
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Figure 10. The Runtime Comparison with Three Novel SPM Algorithms.

MSPIC-DBV uses a dynamic bit vector to represent the sequences containing the candidate
patterns and proposes a tree structure named DBVS (Dynamic Bit Vector for Sequential patterns)
prefix-tree for mining sequential patterns efficiently; however, it needs to rescan the whole database
for updating the discovered patterns. It can be found that MSPIC- DBV performed the worst in the
comparison, and the time cost was 25.6125 mins on average, which was 70.75% more than NIA. e-NSP
is an efficient SPM algorithm that does not rely on database rescans, and F-NSP+ is an improved version
of e-NSP. e-NSP uses an array to store the information of sequential patterns and uses a hash method
to obtain the support. e-NSP is good at handling sparse datasets, but it is inefficient when datasets
become dense, owing to the key process requiring a much greater time consumption. Therefore, in
Figure 10, it can be seen that the runtime of e-NSP grew faster when minsup was decreased. The
average time cost of e-NSP was 21.225 mins, which was 41.5% more than NIA. F-NSP+ uses a novel
data structure named bitmap to store the information of sequential patterns, and the support can be
obtained using bitwise operations, and although it is much faster than the hash method used in e-NSP,
the support number-counting algorithm designed in NIA is more efficient. The average time cost of
F-NSP+ was 17.675 mins, which was 17.8% more than NIA.

Furthermore, the historical monitoring data for two years was collected to construct a large-scale
dataset with |UD| = 10000K for testing the NIA’s performance under a big data environment; that
is, there are 10 million sequences in the searching area. The comparing objects included the practical
algorithms, T-CSpan [34], IncWTP [35], IncSPADE [36], and PreFUSP-TREE-INS [21] (see Figure 11).
The parameter settings were C = 10, T = 4, S = 12, I = 4, |UD| = 10000K, N = 10K and Rsdb = 5%,
Rnew = 50%.
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Figure 11. The Runtime Comparison with the Practical SPM Algorithms.

T-CSpan was proposed for finding optimal clinical pathways by using an improvement of
PrefixSpan. It utilizes an occurrence check to reduce the mining space; however, the checking procedure
needs to be executed repeatedly once the database is updated. From Figure 11, it can be seen that
T-CSpan performed the worst of all the compared algorithms, and the runtime was over 3.5× 103 mins
when minsup = 0.75%. In NIA, the mining space was greatly narrowed based on the proof of
completeness without any checking or other procedures. IncSPADE is a tree structure-based algorithm,
and the information of frequent/infrequent sequences is saved in a tree map; then, dynamic databases
can be handled incrementally through maintaining the tree structure. However, the algorithm is
not succinct, which contains many checking and determining processes. Furthermore, the phase
of scanning the updated database depends on the size of the database, which may lead to high
computation complexity. Therefore, we found that its performance was unfavorable, and the time
cost was over 1.5× 103 mins when minsup ≤ 1%. IncWTP also uses a grid structure to save previous
mining outcomes attached with supported counting information, and different from NIA, it updates
the grid structure with deletion and insertion when the corresponding changes happened in the
database, and the previously found information is utilized to discover updated sequence access mode,
without re-excavation of the entire database. However, IncWTP is designed for a web log database,
and it does not achieve preferable performance in the constructed database.

PreFUSP-TREE-INS is a recognized algorithm in incremental mining, which achieves better time
performance than other well-known algorithms with a proper space cost. In the mining process, the
database is scanned only when the cumulative number of newly added customer sequences exceeds a
safety bound by using the pre-large concept; then, the number of database rescans is reduced greatly.
Particularly, the PreFUSP-tree structure, which is proposed for efficiently maintaining discovered large
sequences, can be easily updated without a re-mining process when the database is changed. We found
that the average time cost of PreFUSP-TREE-INS was close to that of NIA, and PreFUSP-TREE-INS
performed slightly better than NIA when minsup ≤ 1%.
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4.2.2. Time Cost on Benchmarking Datasets and Synthetic Datasets

The time efficiency was also tested on the datasets that are commonly used in the pattern mining
field. First, we ran NIA on two benchmarking datasets BMSWebView-1 [28] and Kosarak [28],
and the time costs were compared between PrefixSpan [17], T-CSpan [34], IncWTP [35], and
PreFUSP-TREE-INS [21] (see Figures 12 and 13). BMSWebView-1 contained several months of
click-stream sequences from an e-commerce website. There were 59,601 sequential transactions
and 497 distinct items. The average number of distinct items was 2.51 and the maximum size of
transactions was 267. Kosarak is a public database that contained 990,000 click-stream sequences from
the logs of an online news portal. Only the first 70,000 sequences were used in the experiments, with
21,144 distinct items and 7.97 items on average. In the experiments, the total insertion ratio (TIR) was
fixed and the minimum support thresholds were varied. For BMSWebView-1, the support threshold
was changed from 0.3% to 0.5%. The TIR was set at 0.1% of the original database (=60 sequences), and
the partial insertion ratio (PIR) was set at 1/10 of the TIR (=6 sequences). For Kosarak, the minimum
support threshold was changed from 0.8% to 1.6%. The TIR was set at 0.1% of the original database
(=70 sequences), and the PIR was set at 1/10 of the TIR (=7 sequences).

From Figures 12 and 13, it can be observed that NIA performed the best in the comparison
since it reduced the mining space and improves the mining algorithm. PrefixSpan and T-CSpan have
longer runtimes than the others since they both needed some repeated operations to mine the updated
sequential patterns. IncWTP and PreFUSP-TREE-INS utilized different structures to maintain the
discovered knowledge in order to enhance the mining efficiency, and they all perform relatively well
in the benchmarking test.

The time costs were also evaluated on two synthetic datasets [37,38] (see Figures 14 and 15).
The average sequence length slen was 10 and the average length of pattern seq.patlen was 2 in the
synthetic dataset 1, which contains 50,350 sequences. The slen was 8 and seq.patlen was 4 in synthetic
dataset 2, which contained 46,130 sequences. We also used the way specified in Section 4.1 to generate
the incremental database, and set Rsdb = 5%, Rnew = 50%. In the experiments, the minimum support
threshold was changed from 3% to 0.75%.
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Figure 12. The Runtimes on BMSWebView-1 with TIR = 0.1% and PIR = 0.01%.
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From Figures 14 and 15, it can be seen that NIA still performed better than the other algorithms,
but the average time cost was increased by 46 seconds compared to the results on synthetic dataset 1.
The reason lies in the average sequence length and the average length of pattern that were all changed
in the new dataset, making the times of the extensions (i-extension and s-extension) implemented
during the mining process of NIA longer. IncWTP and PreFUSP-TREE-INS also performed better than
PrefixSpan and T-CSpan. Especially, PreFUSP-TREE-INS was suitable for synthetic dataset 2. The
average time cost was just 6 s more than that of NIA, and it cost less time than NIA when minsup = 1%.

In the following, the sensitivity of Rsdb, Rnew, and the space cost were evaluated on the real
monitoring data.

4.2.3. Sensitivity of Rsdb and Rnew

In order to observe the sensitivity of Rsdb and Rnew, the time performances of NIA and other
compared methods, including IncSpan, PFT, and STISPM, were tested with the changing of these
two factors.

Figure 16 shows the variation of runtimes as Rsdb changes from 1% to 20%. The parameter settings
were C = 10, T = 4, S = 12, I = 4, |UD| = 100K, N = 100K, and Rnew = 50%, minsup = 0.75%.

The runtimes of four algorithms all rose, along with the growing of Rsdb, and the proposed
algorithm NIA performed better than the other three algorithms; compared to them (IncSpan, PFT, and
STISPM), the time cost was reduced by 30.9%, 26.8%, and 19.2%. For the growth rate of the time cost,
NIA was not faster than the other algorithms generally when Rsdb changed from 1% to 20%; it was
even sensitive to the amount of frequent sequences. This is because the efficiency of mining process on
sdb was enhanced by utilizing the designed PrefixSpan+, making the whole runtime reduced.
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Figure 17 shows the variation of runtimes as Rnew changes from 35% to 65%. The parameter
settings were C = 10, T = 4, S = 12, I = 4, |UD| = 100K, N = 100K, and Rsdb = 10%, minsup = 2%.Sensors 2018, 18, x FOR PEER REVIEW  26 of 30 
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It is apparent that NIA’s runtime was longer than IncSpan and PFT when Rnew < 40%; however,
its efficiency was sharply enhanced since Rnew > 40%, so Rnew brought a greater effect on the proposed
NIA. This was because the setting of the threshold value during obtaining the potential frequent
sequences heavily relied on Rnew. If Rnew was too small, a large number of potential frequent sequences
will be obtained, resulting in a heavy computation burden on constructing the reticular tree and
counting support number; correspondingly, when Rnew became larger, massive infrequent sequences
were filtered during discovering frequent sequences, therefore the efficiency was lifted up quickly.
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STISPM performed the worst in all algorithms when Rnew < 45%, owing to having to consider so
many infrequent and irregular patterns produced by a large number of potential frequent sequences.
When Rnew > 45%, it performed more efficiently, but NIA had the advantage on mining potential
frequent sequences and counting the support number by suggesting corresponding methods; thus,
NIA had the best performance since Rnew > 40%.

Extracting frequent sequences from the set of potential frequent sequences consumed most of the
computation cost, so the amount of potential frequent sequences was closely related to the performance
of the mining algorithms.

Figure 18 shows the amounts of potential frequent sequences obtained in a two-steps phase
(Section 3.2.) with the change of minsup. The parameter settings were C = 10, T = 4, S = 12, I = 4,
|UD| = 100K, N = 100K, and Rsdb = 10%, Rnew = 50%. The numbers of potential frequent sequences
were increased linearly in each step with the minsup changes from 3% to 0.75%, and more sequences
were obtained in step one with a higher growth rate.

Sensors 2018, 18, x FOR PEER REVIEW  26 of 30 

 

 651 
Figure 17. The Runtimes with the Different Settings of newR . 652 

Extracting frequent sequences from the set of potential frequent sequences consumed most of 653 
the computation cost, so the amount of potential frequent sequences was closely related to the 654 
performance of the mining algorithms. 655 

 656 

Figure 18. The Amounts of Potential Frequent Sequences on the Different minsups. 657 

Figure 18 shows the amounts of potential frequent sequences obtained in a two-steps phase 658 
(Section 3.2.) with the change of minsup. The parameter settings were 659 

10, T 4, 12, 4, 100 , 100C S I UD K N K= = = = = = , and 10%, 50%sdb newR R= = . The numbers of 660 
potential frequent sequences were increased linearly in each step with the minsup changes from 3% 661 
to 0.75%, and more sequences were obtained in step one with a higher growth rate. 662 
 663 

0
50

100
150
200
250
300
350
400
450

35% 40% 45% 50% 55% 60% 65%

tim
e（

m
in
）

Rnew

IncSpan PFT STISPM NIA

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

3% 2% 1% 0.75%N
um

be
r o

f P
ot

en
tia

l F
re

qu
en

t S
eq

ue
nc

es

minsup

Step one Step two Total

Figure 18. The Amounts of Potential Frequent Sequences on the Different minsups.

4.2.4. Space Cost

The space cost of NIA was evaluated on real monitoring datasets, and the results were compared
with three incremental algorithms (IncSpan, PFT, and STISPM; see Figure 19), and three novel SPM
algorithms (MSPIC-DBV, e-NSP, and F-NSP+; see Figure 20).

Figure 19 shows the memory consumption of four incremental algorithms. The parameter settings
were C = 10, T = 4, S = 12, I = 4, |UD| = 100K, N = 100K, and Rsdb = 10%, Rnew = 50%. NIA used
less memory than all the other algorithms. This was because in the process of sequence mining, the
execution of NIA was just put on part of sequences, such that there was no need to pass the original
database SDB and the incremental database sdb into memory at the same time. Furthermore, NIA is
based on PrefixSpan+, which has a steady memory consumption of storing the structure CMAP and
the obtained potential frequent sequences.
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Regarding STISPM, it needs to access the set of sequences frequently in order to realize precise
pruning, and a sequence tree needs to be stored during the execution process; thus, it has a greater
memory use than NIA. However, when the minsup is too small, massive obtained potential frequent
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sequences need to be stored in the memory, making the growth rate of NIA’s memory cost faster than
PFT and STISPM.

Figure 20 shows the memory usage comparison between NIA and three novel SPM algorithms.
The parameter settings were C = 10, T = 4, S = 12, I = 4, |UD| = 200K, N = 10K, and Rsdb = 10%,
Rnew = 50%. MSPIC-DBV uses a prefix-tree structure to arrange the candidate patterns, which is
similar to NIA, but some key information about the original database must be pre-stored into the
memory to carry out the pruning process once the dataset is updated. Therefore, it can be found that
MSPIC-DBV performed the worst in the comparison. e-NSP stores all the IDs of sequences in the
patterns in an array, and the number of sequence IDs was large, even when the minsup was high.
Thus, when the minsup was reduced, a large number of sequential patterns were generated, making
e-NSP consume larger amounts of storage space. F-NSP+ is incorporated with a self-adaptive storage
strategy, which automatically chooses a bitmap or an array to store the sequential patterns’ information
according to the minsup, and the space efficiency is improved compared to e-NSP. Also, it performed
slightly better than NIA in general, but not steadily. For instance, it cost 276.35 MB memory space
when minsup = 2%, which was less than the 287.64 MB cost by NIA; however, when minsup = 1%,
F-NSP+ cost 359.72 MB memory space, which was more than the 354.23 MB cost of NIA, and when
minsup changed to 0.75%, the space cost was less than NIA again. This was because the storage
strategy of F-NSP+ is chosen in accordance with the varying minsup.

5. Conclusions

Based on the analysis of the current research condition of incremental sequence mining, an efficient
incremental mining algorithm for discovering a sequential pattern in a WSN environment was
proposed. The algorithm is comprised of two steps: obtain potential frequent sequence and count the
support number, which is the same as the common mining algorithms. In the first step, the mining
algorithm just needs to be carried out on the incremental database and the corresponding prefix
projection database, avoiding mining on the original database repeatedly. In the second step, a data
structure called a reticular sequence tree is designed to realize the fast-counting of the support number,
reducing the times of scanning the original database greatly. Then, the whole efficiency of the proposed
algorithm was increased dramatically. Intensive experiments were conducted on benchmarking
datasets, synthetic datasets, and real monitoring datasets to analyze the NIA’s performances regarding
time cost, sensitivity of factors, and space cost, which showed that the proposed algorithm is more
efficient than the other methods.

Sensor data mining has become more and more important in real applications, for instance, in
dam safety monitoring, where various kinds of sensing data are fed back in real time. If the key
factors and inherent patterns related to the dam safety can be discovered from the data, this would
be very meaningful for decision-making and management. The proposed algorithm NIA has been
implemented on real monitoring data from a huge hydropower plant, and the discovered sequential
patterns reflects the correlations between horizontal displacement and water level, which is quite
useful for predicting the horizontal displacement of dam and analyzing the key positions that need to
be paid more attention. Also, we are trying to use NIA to find out the relations between other different
kinds of monitoring data.

For the future work, we will study how to use other technologies or theories to further improve
PrefixSpan for more extensive sequence mining, and how to save the memory usage is worthy to be
focused on as well.
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