
sensors

Article

Adaptive Linear Quadratic Attitude Tracking
Control of a Quadrotor UAV Based on IMU
Sensor Data Fusion

N. Koksal , M. Jalalmaab and B. Fidan *

Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada; nkoksal@uwaterloo.ca (N.K.); mjalalma@uwaterloo.ca (M.J.)
* Correspondence: fidan@uwaterloo.ca

Received: 28 October 2018; Accepted: 19 December 2018; Published: 22 December 2018
����������
�������

Abstract: In this paper, an infinite-horizon adaptive linear quadratic tracking (ALQT) control scheme
is designed for optimal attitude tracking of a quadrotor unmanned aerial vehicle (UAV). The proposed
control scheme is experimentally validated in the presence of real-world uncertainties in quadrotor
system parameters and sensor measurement. The designed control scheme guarantees asymptotic
stability of the close-loop system with the help of complete controllability of the attitude dynamics in
applying optimal control signals. To achieve robustness against parametric uncertainties, the optimal
tracking solution is combined with an online least squares based parameter identification scheme to
estimate the instantaneous inertia of the quadrotor. Sensor measurement noises are also taken into
account for the on-board Inertia Measurement Unit (IMU) sensors. To improve controller performance
in the presence of sensor measurement noises, two sensor fusion techniques are employed, one
based on Kalman filtering and the other based on complementary filtering. The ALQT controller
performance is compared for the use of these two sensor fusion techniques, and it is concluded
that the Kalman filter based approach provides less mean-square estimation error, better attitude
estimation, and better attitude control performance.

Keywords: quadrotor UAV; adaptive linear quadratic tracking; indirect estimation; least squares
estimation; sensor fusion; Kalman filter

1. Introduction

Unmanned aerial vehicle (UAV) systems, particularly quadrotor UAV systems, have been popular
in various autonomous surveillance and transportation applications in recent years. Robotics and
control researchers have been interested in improving quadrotor UAV systems with regard to path
planning, tracking, stability and autonomous motion capability in simultaneous localization and
mapping (SLAM) tasks for difficult missions such as defense patrol duties, agricultural activities,
surveillance, and rescue [1–6].

In the literature, various control approaches have been proposed for quadrotor UAV systems.
For attitude tracking control and stabilization, researchers have developed solutions such as
quaternion-based feedback control for exponential attitude stabilization [5], robust adaptive attitude
tracking control [7], robust attitude control for uncertain quadrotors with proportional-derivative (PD)
controller combined with a robust compensator [8], robust nonlinear design under uncertainties and
delays [9], and fractional sliding modes based attitude control [10].

One of the main control interests for quadrotors UAV is optimization of time and energy (battery)
consumption by designing optimal path planning and optimal tracking control. For such optimal
attitude tracking, Ref. [1] has designed a linear quadratic regulation (LQR) based attitude stabilization.
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For solving a more general form of the same problem under wind gust disturbances, a switching
model predictive attitude controller is developed in [11]. Ref. [12] presents L1 optimal robust tracking
control to compensate persistent disturbances in translational and rotational (attitude) dynamics.

Linear-quadratic (LQ) based optimal control frameworks constitute a systematic toolset for
calculating ideal control gains with guaranteed system stability under LQ design conditions. LQ-based
control schemes provide robust and precise steady-state tracking while the performance index
(quadratic cost function) adjusts optimality trade-off between tracking/regulator performance and
battery consumption. A particular the LQ-based control approach is infinite-horizon optimal regulation
based on linear time-invariant (LTI) models. This approach is widely used in real-time applications
since its solution does not have computational complexities for obtaining constant state-feedback
control (Kalman) gains by solving the algebraic Riccati Equation (ARE). The infinite-horizon LQR has
been mostly used in many earlier works as studied for the quadrotor UAV in [1] for attitude state
regulation and stability.

On the other hand, linear-quadratic tracking (LQT) problems have gained less attention compared
to LQR problems, since time-varying reference trajectories lead to further analysis and computational
complexities. LQT control schemes typically consist of two state-feedback and feed-forward terms.
The state-feedback terms guarantee system stability by state-feedback (Kalman) gains which are
calculated offline solving differential Riccati equation (DRE). The feed-forward terms provide optimal
tracking of time-varying bounded reference trajectories utilizing the differential auxiliary vector
signal equation. In practice, computational complexities arise because of the time variations in the
feed-forward terms. Accordingly, the literature on LQT control design and applications on real-time
systems is limited. Ref. [13] presents an offline solution to the infinite-horizon LQT problem by
solving the feed-forward term based on calculating the initial condition of the auxiliary vector signal.
The authors present a real-time implementation of this solution on flexible beams system in [14].
Other than the classical solution, Ref. [15] presents an online reinforcement learning algorithm to
solve LQT problem without requiring the knowledge of the system drift dynamics or the command
generator dynamics.

Regarding LQT of quadrotor UAV systems, Ref. [16] presents a finite-horizon LQT control design
with time-varying control gains which are calculated solving offline discrete time matrix Riccati
equations for the linearized full dynamics of the quadrotor UAV. Consideration of finite-horizon LQT
with known boundary conditions at the initial and final time instants prevents the computational
complexity issues with implementation of this design. However, in many practical cases, including
the cases considered in this paper, since the boundary conditions are unknown, infinite-horizon LQT
needs to be considered for designing an alternative optimal linear tracking controller.

In this paper, by the motivations of LQ-based optimal control advantages as stated above and
lack of infinite-horizon LQT control schemes with their applications on real-time systems in literature,
we present an infinite-horizon LQT control design, its practical solution and its experimental validation
on the real-time quadrotor UAV with inertial parametric uncertainties and Inertial Measurement
Unit (IMU) sensor noises. Furthermore, to improve robustness against parametric uncertainties,
the presented LQT control design is combined with an adaptive parameter identification (PI) scheme
based on least-squares (LS) estimation. Combining the LQT control design and the PI scheme,
an adaptive LQT (ALQT) control scheme is developed for optimal attitude tracking of quadrotor
UAVs, with reduced tracking error and battery consumption.

Reliable attitude estimation is one of the main challenges for quadrotor UAV tracking control.
Euler angles (ϑ, φ, and ψ) and Quaternions are two common types of attitude representation for UAV
systems. IMUs, formed by 3-axis inertial sensors of gyroscopes, accelerometers and magnetometers,
measures angular velocities, linear accelerations and the Earth’s magnetic field. Ideally, accelerometer
measurements or numerical integration of angular velocities of gyroscopes should be enough for ideal
sensors to determine attitude angles. However, in real-world conditions, individual usage of these
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sensors is not sufficient to determine attitude angles due to large amounts of system noise, drift errors
and vibrations.

To obtain fast and accurate attitude states, sensor fusion techniques have been applied
to IMU measurements, including wide ranges of complementary filters [5,17–24] and Kalman
filters [23–35]. A complementary filter typically combines accelerometer output for low-frequency
attitude estimation with integrated gyroscope output for high-frequency estimation. Complementary
filters are computationally less demanding, and, due to their simplicity and efficiency, these filters are
still used for attitude estimation. A variety of complementary filters has been used to estimate attitude
quaternions [19–21] or Euler angles for relatively small roll and pitch aerial vehicle angles [5,22–24].
Complex rotations of simultaneous roll, pitch and yaw angles require nonlinear complementary filter
fusion techniques [36].

Kalman filter is an optimal recursive estimation scheme that uses a system’s dynamic model,
known control inputs, and multiple sequential measurements from sensors to form an estimate of
the system states fusing prediction and measurement online [25–28]. The extended Kalman filter
(EKF) is developed for nonlinear system state estimation and has been widely used for real-time UAV
systems for Euler angle based attitude estimation [23,24,29,30] as well as quaternion based attitude
estimation [31–35]. Unscented Kalman filter (UKF) [37–39] and adaptive Kalman filter (AKF) [40] are
other widely used sensor fusion algorithms. In [30], a novel Kalman filter algorithm is proposed, which
consists of an EKF and an inverse Φ-algorithm in a master–slave configuration to estimate reliable
angular acceleration signals by fusing IMU sensor data. In [35], it is shown that, even for applications
with strong real-time constraints, EKF can properly estimate the UAV attitudes, even in the presence
of data loss.

As studied in earlier work [4], we consider the quadrotor UAV control structure in two levels:
high-level and low-level. High-level is mainly about guidance and position controlling in the
autonomous motion tasks and generating the trajectories to be tracked by the low-level controller.
Provided the trajectory from high-level, the low-level control is responsible for the quadrotor UAV’s
attitude and altitude tracking performance and stability. In this study, we focus on the low-level
control design, following a decentralized approach, considering the three motion dynamics modes
separately: adaptive LQT control for the attitude dynamics, proportional (P) control for the yaw
dynamics, and proportional-integral-derivative (PID) control for the altitude dynamics, as shown in
Figure 1. In the overall structure, the attitude measurement noises, which come from IMU sensors, are
compensated using a Kalman filter to obtain more reliable attitude estimation. The effectiveness of the
employed Kalman filter is investigated over the experiments that compare the Kalman filter results
with a complementary filter. In the next step, we developed an infinite-horizon ALQT controller and
validated its effectiveness by performing two sets of experiments.

The rest of the paper is organized as follows: the quadrotor UAV system and the UAV attitude
tracking problem are presented in Section 2. The filters are designed to fuse IMU data for reliable
attitude parameter estimation are presented in Section 3. In Sections 4 and 5, the ALQT, P and PID
control designs (for attitude, yaw and altitude control, respectively) are developed. In Section 6,
the proposed control schemes are tested on the experimental testbed and the test results are discussed.
In Section 7, concluding remarks are given.

2. System Dynamics and Problem Definition

2.1. Quadrotor UAV Dynamics

A nonlinear dynamic model of quadrotor UAV motion dynamics is presented in [4]. In this paper,
we have simplified and partitioned this nonlinear dynamic model to obtain separate linear models for
each of attitude, yaw, and altitude dynamics.
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2.1.1. Attitude Model

Ignoring inertial and drag effects, we obtain a linearized attitude (roll/pitch) dynamics from the
nonlinear dynamic model in [4]. Hence, we write the attitude model in the state-space form as

ẋϕ(t) = Aϕxϕ(t) + Bϕuϕ(t), ϕ ∈ {ϑ, φ}, (1)

ϕ(t) = Cϕxϕ(t),

where Aϕ =

0 1 0
0 0 2lK

Jϕ

0 0 −b

, Bϕ =

0
0
b

, Cϕ =

1
0
0


T

and xϕ =

 ϕ

ϕ̇

Tϕ

. xϕ, uϕ, ϕ, ϕ̇, Tϕ, Jϕ, K, b and

l represent states, control inputs, Euler angles, angular velocities, thrust forces, rotational inertias,
positive armature gain, the actuator bandwidth in attitude (roll/pitch) dynamics and the distance
between the center of gravity Ob and each propeller, respectively.

Remark 1. Attitude (ϕ) dynamics represent roll (ϑ) and pitch (φ) dynamics, and yaw (ψ) is separated from
attitude dynamics for the proposed control design.

2.1.2. Yaw Model

We obtain linearized yaw dynamic as

ψ̈ =
4KψK

Jψ

b
(s + b)

uψ, (2)

where uψ is the yaw control input, Kψ is thrust-to-moment gain and Jψ is the rotational inertia in yaw
motion. Finally, we write the linearized yaw model in form of an input–output transfer function as:

ψ =
4KψKb

s2(s + b)Jψ
uψ. (3)

2.1.3. Altitude Model

We have linearized the nonlinear altitude model [4] by the use of small angle approximation and
take the effect of gravity as an offset in the linearized model. Accordingly, we obtain the simplified
linear altitude model as

p̈z =
4K
m

b
(s + b)

uz, (4)

where pz is z-position of Ob, uz is the altitude control input and m is the total mass of the quadrotor
UAV system. Finally, we obtain the linearized altitude model in the form of an input–output transfer
function as

pz =
4Kb

s2(s + b)m
uz. (5)

2.2. Problem Statement

Considering a quadrotor UAV with attitude (roll/pitch) dynamics (1), yaw dynamics (3), and
altitude dynamics (5), as illustrated in Figure 1, the objectives of the paper are threefold:

1. Given the IMU sensor measurements of the attitude angles, design a data fusion algorithm based
on (i) Kalman filtering and, for comparative analysis purposes, (ii) complementary filtering,
in order to cancel the IMU sensor noise effects and produce accurate attitude state estimates;



Sensors 2019, 19, 46 5 of 23

2. Design the control units to generate the command signals uz, uψ, uϑ, uφ for feeding the pulse
width modulation (PWM) generator that generates the motor control input signal vr, per the
diagram in Figure 1: (a) design an infinite-horizon ALQT controller to generate the optimal
attitude control signal uϕ(t) = u∗ϕ(t) so that ϕ(t) tracks its desired trajectory ϕd(t), minimizing
the predefined quadratic performance optimal tracking and energy consumption cost function

J =
1
2

∫ ∞

0
(Qe2

ϕ(t) + Ru2
ϕ(t))dt, (6)

where Q and R are positive constant weighting terms and

eϕ(t) = ϕ(t)− ϕd(t) (7)

is the attitude tracking error; (b) design a P yaw controller to generate uψ(t) and a PID altitude
controller to generate uz(t);

3. Combining the designs in 1 and 2, above, real-time implement and experimentally validate the
overall control scheme.
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Figure 1. The overall quadrotor UAV control block diagram.

2.3. Control Approach

In our infinite-horizon ALQT control design, the optimal control law consists of two terms:
the state-feedback and the feed-forward. The state-feedback term maintains stability of the attitude
dynamics. This term is obtained solving an algebraic Riccati equation (ARE). The feed-forward term
depends on the desired trajectory and is used for establishing trajectory tracking performances. The
above optimal control law is combined with an LS based adaptive PI algorithm to make it robust,
adaptive and avoid inertial uncertainties in the attitude dynamics. After this combination, because of
the uncertainties, the ARE needs to be solved online as well. In implementation, by comparing
the online estimates of the uncertain parameters with some critical parameters calculated and
stored in a look-up table, the time-varying state-feedback (from the PI) and then the time-varying
feed-forward (from slowly-varying desired attitude and the PI) terms are calculated online. In real-time
implementation of the designed ALQT scheme, we utilize a practical real-time computation technique
based on parameterized analytical solutions of the state-feedback and the feed-forward terms.
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3. IMU Sensor Data Fusion

The quadrotor UAV needs a robust estimation scheme for denoising the attitude angle
measurements to provide reliable feedback to the proposed ALQT control scheme. The attitude
angles are measured using an ADIS16405 IMU as shown in Figure 2. Then, a Kalman filter is employed
to attenuate the effect of measurement noises. The IMU contains a 3-axis gyroscope to measure angular
velocities (ϑ̇, φ̇, ψ̇), a 3-axis accelerometer to measure accelerations due to Earth’s gravity (ax, ay, az)

and a 3-axis magnetometer to measure the magnetic field intensities (mx, my, mz). The specifications
are listed in Table 1.

Table 1. The ADIS16405 IMU Specifications [41].

Gyroscope Accelerometer Magnetometer

Range ±305 (deg/s) ±18 (g) ± 3.5 (gauss)
Sensitivity 0.05 (deg/s/LSB) 3.33 (mg/LSB) 0.5 (mgauss/LSB)

Figure 2. The ADIS16405 IMU module on the Qball-X4 quadrotor UAV.

3.1. Attitude Determination from IMU Sensors

Roll and pitch angles are obtained based on accelerometer and gravity vector relation. The rotation
matrix from the body frame to the inertial frame is defined with the Euler angles as:

Rb2i =

cosψcosϑ −sinψcosφ + cosψsinϑsinφ sinψsinφ + cosψsinϑcosφ

sinψcosϑ cosψcosφ + sinψsinϑsinφ −cosψsinφ + sinψsinϑcosφ

−sinϑ cosϑsinφ cosϑcosφ

 . (8)

Assuming constant translational velocities [30,42], i.e., ignoring translational accelerations, we
obtain the following relation between the accelerometer output, rotation matrix and earth gravity:ax

ay

az

 = Ri2b

0
0
g

 =

 −sinϑ

cosϑsinφ

cosϑcosφ

 g, (9)

where Ri2b = RT
b2i. From Equation (9), attitude angles are calculated as

ϕacc =

[
ϑacc

φacc

]
=

[
atan2(−ax,

√
a2

y + a2
z)

atan2(ay, az)

]
, (10)
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where atan2(ay, az) denotes arc tangent of ax and ay while it uses the signs of both arguments to
determine the quadrant of the result. By determining the roll and pith angles, the rotation matrix from
the body frame to the magnetometer local (NED:North-East-Down) frame is rearranged asmx

my

mz

 =

 cosϑ sinϑsinφ sinϑcosφ

0 cosφ −sinφ

−sinϑ cosϑsinφ cosϑcosφ


mxb

myb
mzb

 . (11)

Hence, yaw (heading) is calculated as

ψc =
[
atan2(my, mx)

]
. (12)

In practice, the yaw (heading) is updated by gyroscope data integration instead of a Kalman filter
or a complementary filter since the laboratory environment has magnetic (metallic) disturbances on
the heading calculation (12). Solution methods of magnetic disturbances on heading calculation are
discussed with the details in [43].

3.2. Attitude Estimation Using a Kalman Filter

To filter IMU accelerometer noises, a linear Kalman filter is employed in this paper. At each
time step k, this Kalman filter first predicts the state propagation using the dynamic model of the
quadrotor UAV, the control inputs applied at step k− 1 and the state measurement at step k− 1. Then,
it incorporates new measurement data of step k, to determine the state estimate.

Consider the following discrete-time linear time-invariant model of the attitude dynamics,
with additive Gaussian measurement noise and disturbance, based on Equation (1):

x[k + 1] = Adx[k] + Bdu[k] + w, (13)

y[k] = Cdx[k] + v, (14)

where w is zero mean Gaussian disturbance noise with covariance QK, v is zero mean Gaussian
measurement noise with covariance RK, and

Ad =

1 Ts 0
0 1 2lK

Jϕ
Ts

0 0 1− bTs

 , Bd =

 0
0

bTs

 , Cd =

[
1 0 0
0 1 0

]
, (15)

with sampling time Ts. Note that, in implementation of Equation (15), since the value of the rotational
inertia Jϕ is uncertain, the nominal value of this parameter is used, as detailed in Remark 2 in
Section 4.1. For this system model, the Kalman filter prediction and update equations are as follows:

Prediction:

x̂[k + 1|k] = Adx[k|k] + Bdu[k], (16)

P[k + 1|k] = AdP[k|k]AT
d + QK, (17)

Update:

ȳ[k] = y[k]− Cd x̂[k|k− 1], (18)

M[k] = P[k|k− 1]CT
d (CdP[k|k− 1]CT

d + RK)
−1, (19)

x̂[k|k] = x̂[k|k− 1] + M[k]ȳ[k], (20)

P[k|k] = (I −M[k]Cd)P[k|k− 1], (21)
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where P[k + 1|k] and M[k] are the predicted error covariance and the optimal Kalman gain, respectively.

3.3. Attitude Estimation by a Complementary Filter

As an alternative to Kalman filtering, we also study utilization of complementary filter
in denoising and fusion of measurement data from accelerometers and gyroscopes. Typically,
an accelerometer based orientation estimation works better in static conditions, and, on the other hand,
a gyroscope based orientation estimation gives better results in dynamic conditions. A complementary
filter passes the accelerometer signals through a low-pass filter and the gyroscope signals integral
through a high-pass filter. Then, the resulting signals are summed up to estimate the attitude angles
more reliably in both dynamic and static condition cases. The schematic complementary filter block
diagram is depicted in Figure 3.

 

Low-Pass Filter

High-Pass Filter

Complementary Filter

Integrator

Figure 3. Complementary filter.

4. Adaptive Optimal Attitude Tracking Control Design

In this section, the proposed ALQT control scheme for attitude tracking of a quadrotor
UAV is presented.

4.1. Adaptive Parameter Identification Scheme

We employ an LS based PI scheme to estimate the uncertain inertial parameters. From the attitude
dynamics Equation (1), following the procedure in [44,45], we first define a linear parametric model
avoiding need for signal differentiation and the associated noise sensitivity issue by use of the stable
filter 1

(s+λ)
, λ > 0, as follows:

zϕ = θ∗ϕΦϕ,

zϕ =
s

(s + λ)
ϕ̇, θ∗ϕ =

1
Jϕ

, Φϕ =
2lKb

(s + λ)(s + b)
uϕ,

(22)

noting that the Euler rate ϕ̇ (obtained using the IMU and the filters in Section 3) and the control signal
uϕ are measurable, and l, K, b are known constant parameters.

Assumption 1. The upper and lower limits of θ∗ϕ(t) are known, i.e., 0 < θϕ ≤ θ∗ϕ(t) ≤ θ̄ϕ for some known
θϕ, θ̄ϕ > 0.

Remark 2. For the setup used in this paper, the limits of θ̂ϕ(t) are taken 10 ≤ θ̂ϕ(t) ≤ 49. Accordingly,
the nominal value of Jϕ is calculated as Jϕ0 = 2

θϕ+θ̄ϕ
≈ 0.03.

To generate the estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ, we apply the following recursive
LS algorithm [45] based on the parametric model (22):
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˙̂θϕ(t) = Pr(p(t)ε(t)Φϕ(t)) =

{
p(t)ε(t)Φϕ(t), if θϕ < θ̂ϕ < θϕ

0, otherwise,
, θ̂ϕ(0) = θ̂ϕ0,

ṗ(t) =

 βp(t)− Φ2
ϕ(t)

m2
n(t)

p2(t), if θϕ < θ̂ϕ < θϕ

0, otherwise,
,

ε(t) =
zϕ(t)− θ̂ϕ(t)Φϕ(t)

m2
n(t)

, m2
n(t) = 1 + αnΦ2

ϕ(t), 1� αn > 0,

(23)

where p(t) is the positive covariance (time varying gain) term with p(0) = p0 > 0, mn is the
normalizing signal, and ε is the estimation error. Pr(.) is projection operator that maintains
θ̂ϕ ∈ [θϕ, θϕ].

Lemma 1 (Stability and Convergence). Consider the LS based PI scheme (23), applied to the attitude
dynamics (1). It is guaranteed that all the signals in the PI scheme (23), including p and p−1, are bounded and
θ̂ϕ ∈ [θϕ, θϕ]. Furthermore, if Φϕn =

Φϕ

mn
is persistently exciting, i.e., if 1

T
∫ t+T

t Φ2
ϕndτ ≥ α0 for all t ≥ 0 and

some T, α0 > 0; then the PI scheme (23) ensures that θϕ(t)→ θ∗ϕ as t→ ∞. The convergence of θϕ(t)→ θ∗ϕ is
exponential for β > 0.

Proof. The result is a direct corollary of the more general Theorem 3.7.4 and 3.10.1 in [45].

4.2. Generic Linear Quadratic Tracking Control Design

To construct the base optimal control law of the proposed ALQT scheme, we follow an
infinite-horizon LQT control design approach [46], explained in the sequel for a linear system in
the generic state-space form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(24)

where x ∈ <n, u ∈ <r and y ∈ <m are state, control input and output vectors. A ∈ <n×n, B ∈ <n×r

and C ∈ <m×n are state, input and output matrices. m, n, and r are generic system dimensions.
The objective is to generate u(t) so that y(t) tracks a given desired continuous and differentiable
output trajectory z(t) ∈ <m as close as possible with minimum consumption of control effort for all t.
Thus, let us define the error vector

e(t) = z(t)− y(t), (25)

and the cost function

J =
1
2

∫ ∞

0
(eT(t)Qe(t) + uT(t)Ru(t))dt, (26)

where Q ∈ <m×m and R ∈ <r×r are symmetric, positive definite weighting matrices.
In order to generate the optimal control signal u(t) = u∗(t) that minimizes the cost function (26),

following Hamiltonian calculation [46], at first, the following DRE is formed:

Ṗ = −PA− AT P + PBR−1BT P− CTQC, (27)
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where P ∈ <n×n is a symmetric, positive definite matrix. Since the infinite-horizon LQT design [46] is
studied, there is no terminal F(t f ) = 0 in cost function (26). Therefore, P(t) tends to its steady-state
value limt f→∞(P(t f )) = P̄ as the solution of the following ARE:

−P̄A− AT P̄ + P̄BR−1BT P̄− CTQC = 0, (28)

where P̄ ∈ <n×n is a symmetric, positive definite matrix calculated by analytical solution of the ARE (28).
Then, as the next step in the LQT design steps with a Hamiltonian approach, a vector signal

g(t) ∈ <n is generated via the differential equation

ġ(t) = −[AT − PBR−1BT ]g(t)− CTQz(t). (29)

The final optimal control signal is generated as

u∗(t) = −R−1BT P̄x(t) + R−1BT g(t), (30)

where −R−1BT P̄x(t) is the state feedback term and R−1BT g(t) is the feed-forward term. Note that the
control law (30) is established in [46] to bear the following optimal tracking property:

Proposition 1. Ref. [46]: The control law (30) guarantees that the system (24) is closed loop stable and the cost
function (26) is minimized, for any given slowly-varying desired output trajectory z(t).

To simplify and ease the calculation of the vector signal g(t), we use an approximation [47] as follows:
Approximate vector signal ḡ(t): It is established in [47] that, if z(·) is slowly varying, then ġ(t) in

Equation (29) can be approximated as ġ(t) ≈ 0 leading to the approximate solution

g(t) ≈ ḡ(t) = [AT − P̄BR−1BT ]−1[−CTQz(t)]. (31)

4.3. Adaptive Linear Quadratic Tracking (ALQT) Control Design

For attitude control, our approach is to apply the control law (28), (30), (31) to system (1). Note
that implementation of the control law (30) requires P̄ from Equation (28) and ḡ(t) from Equation (31),
and hence requires knowledge of the system matrices A, B, C. In our case, in Equation (1), although
Bϕ, Cϕ are known, Aϕ is unknown. Hence, following the certainty equivalence approach [45,46],
the following adaptive version of the LQT control law (28), (30), (31) for the cost function (6) and the
attitude tracking error (7) is designed.

The time-varying adaptive ARE, the approximate vector signal ḡ(t) and the adaptive optimal
control signal are obtained, respectively, as

−P̄Âϕ(t)− ÂT
ϕ(t)P̄ + P̄BϕR−1BT

ϕ P̄− CT
ϕ QCϕ = 0, (32)

ḡ(t) = [ÂT
ϕ(t)− P̄BϕR−1BT

ϕ ]
−1[−CT

ϕ Qz(t)], (33)

û∗ϕ(t) = −R−1BT
ϕ P̄xϕ(t) + R−1BT

ϕ ḡ(t), (34)
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where Âϕ(t) =

0 1 0
0 0 2lKθ̂ϕ(t)
0 0 −b

, Bϕ =

0
0
b

, Cϕ =

1
0
0


T

. Solving (32) for P̄ =

P̄1 P̄2 P̄3

P̄2 P̄4 P̄5

P̄3 P̄5 P̄6

 ∈
<3×3, we obtain

0 = −(P̄2
3 b2/R) + Q, (35a)

0 = −P̄1 + ((P̄3P̄5b2)/R), (35b)

0 = −(2lKθ̂ϕ P̄2) + P̄3b + (P̄3P̄6b2/R), (35c)

0 = −2P̄2 + (P̄2
5 b2/R), (35d)

0 = −(2lKθ̂ϕ P̄4) + P̄5b− P̄3 + (P̄5P̄6b2/R), (35e)

0 = −(4lKθ̂ϕ P̄5)− 2P̄6b + (P̄2
6 b2/R). (35f)

Solving Equation (33) for ḡ(t) = [ḡ1(t) ḡ2(t) ḡ3(t)]T ∈ <3, we obtain

ḡ1(t) = [(P̄5Q)/(P̄3R)]ϕd(t), (36a)

ḡ2(t) = [(P̄6bQ + RQ)/(2lKθ̂ϕ P̄3)]ϕd(t), (36b)

ḡ3(t) = [(RQ)/(P̄3b2)]ϕd(t). (36c)

Remark 3. There is also no constraint on the control signal ûϕ(t) considered in the control design. However,
we consider a limit −0.025 6 uϕ(t) 6 0.025 to prevent damages on the quadrotor motors due to high
torque commands.

5. Yaw and Altitude Control

To provide the overall motion in experiments, P and PID controllers are designed, respectively,
for yaw and altitude dynamics as follows.

5.1. Yaw Control

Since yaw dynamics are not directly affecting the lateral motion of the quadrotor UAV system,
the yaw motion control is considered independently. Therefore, the following P control law is used
based on the dynamic model (3):

uψ = Kpψeψ, (37)

where eψ = (ψd − ψ).

5.2. Altitude Control

Altitude controller is derived for keeping the quadrotor UAV system in its desired altitude and
providing stability at the longitudinal motion. The following PID control law is used based on the
dynamic model (5):

uz = Kpz(ez) + Kiz

∫ t

0
(ez)dt + Kdz(ėz), (38)

where ez = (pzd − pz).

Remark 4. With the attitude, yaw and altitude control schemes as designed above, the control inputs û∗ϕ, uψ

and uz are generated. Then, we combine these inputs [4] to generate each motor PWM inputs vr. for flight
control of the Qball-X4 quadrotor UAV system (Quanser, Markham, ON, Canada).
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6. Experimental Tests and Comparative Simulations

6.1. Test Platform

The test platform consists of a Qball-X4 quadrotor UAV and a ground control and communication
station (host computer) as illustrated in Figure 4. The Qball-X4 is equipped with a sonar sensor and
an IMU to provide altitude, acceleration, angular rate and magnetometer measurements [48]. It has an
on-board avionics data acquisition card (DAQ) and a Gumstix embedded computer (Gumstix Inc.,
Redwood City, CA, USA) for interfacing with on-board sensors and driving the four rotor motors. Each
motor is linked to one of the four PWM servo output channels on the DAQ. The Qball-X4 dynamic
parameters as specified in [48] are presented in Table 2. The ground station computer is used for coding
the designed control algorithms, and embedding on the Qball-X4 on-board computers before tests as
well as generating the high-level control inputs in the form of desired attitude and altitude trajectories
online during the tests. For control algorithm coding and embedding, Quarc, a MATLAB/Simulink R©

based interface software developed by Quanser Inc., is used.

IMU/ Sonar/ Embedded Computer

 

Ground Control and 
Communication Station

Qball-X4 UAV

Desired roll ϑd,(t), 
pitch ϕd,(t),
yaw ψd =0, 

and altitude pzd(t)
via WLAN 

Host computer
(High level control and 
trajectory generation)

Figure 4. The Qball-X4 quadrotor UAV test platform.

Table 2. The Qball-X4 quadrotor UAV dynamic parameters [48].

m (kg) l (m) K (N) Kψ (Nm) b (rad/s) Jϕ0 (kg m2) Jψ (kg m2)

1.4 0.2 120 4 15 0.03 0.04

6.2. Control Design Specifications and Online Calculation of Control Parameters

In implementation of the ALQT control design explained in detail in Section 4.3, the error and
the control weighting parameters are chosen as Q = 100 and R = 30, 000. Following Equation (35a),
the constant entry P̄3 of P̄(t) is calculated as P̄3 =

√
(QR)/b = 115.4701. The other entries of P̄(t) are

calculated solving Equation (35) online, noting the dependence of these entries to each other and the
parameter estimate θ̂ϕ. From Equation (35d), the entry P̄2 is found in form of the entries P̄5 and written
in Equation (35c). Then, the Equations (35c) and (35f) are obtained in form of the entries P̄5 and P̄6

as follows:

0 = −(lKθ̂ϕ P̄2
5 b2/R) + P̄3b + (P̄3P̄6b2/R), (39a)

0 = −(4lKθ̂ϕ P̄5)− 2P̄6b + (P̄2
6 b2/R). (39b)
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Solving the Equations (39a) and (39b) by using Maple R© and MATLAB R© software, P̄6, which is
chosen as a critical parameter, is offline calculated for the estimate θ̂ϕ ∈ [θϕ, θϕ] of θ∗ϕ. Then, a lookup
table is prepared as plotted in Figure 5. The remaining entries of P̄ are simultaneously calculated using
P̄6 and the estimate θ̂ϕ as follows:

P̄5 = ((2P̄6b) + ((P̄2
6 b2)/R))/(4lKθ̂ϕ), (40a)

P̄2 = (P̄2
5 b2)/(2R), (40b)

P̄1 = (P̄3P̄5b2)/R, (40c)

P̄4 = ((−P̄3)/2lKθ̂ϕ) + ((P̄5b)/2lKθ̂ϕ) + ((P̄5P̄6b2)/2lKθ̂ϕR). (40d)

After obtaining P̄, by Equation (36) and the reference input ϕd(t), the vector signal ḡ(t) is found at
each time instant as well. For example, for the nominal value θ̂ϕ0 = 33 [1/kgm2], the Riccati coefficient
matrix P̄ is obtained using Equations (39a), (39b), (40a), (40b), (40c) and (40d) as follows:

P̄ =

20.0886934 2.0177780 115.4700538
2.01777802 480969.75 23.19642512
115.470053 23.196425 1727.886987

 . (41)

After that, the vector signal ḡ(t) is found by Equations (41) and (36) as follows:

ḡ(t) =

20.08869343750145 ϕd(t)
2.017798199381859 ϕd(t)
115.4700538758503 ϕd(t)

 . (42)

10 15 20 25 30 35 40 45 50
800

1000

1200

1400

1600

1800

2000

2200

Figure 5. Offline calculation of P̄6 for the estimate θ̂ϕ ∈ [θϕ, θϕ].

The ALQT control design with specifications above is used for pitch and roll control. For yaw
tracking, a P controller is used with gain Kpψ = 0.015, and, for altitude tracking, a PID controller is
used with gains Kpz = 0.006, Kiz = 0.008 and Kdz = 0.002.

In implementation of the adaptive PI scheme (23), the forgetting factor, the initial covariance,
and the initial parameter estimate, are selected as, respectively, β = 0.001, p0 = 105 and θ0 =

10 [1/kg m2]. In the Kalman filter implementation, QK and RK matrices are taken as QK = 10−3 I3

and RK = 2× 10−4 I2. Ad, Bd and Cd matrices are numerically obtained for the nominal value of
Jϕ0 = 0.03 [kg m2] and the sampling time Ts = 0.005 as

Ad =

1 0.005 0
0 1 8
0 0 0.925

 , Bd =

 0
0

0.075

 , Cd =

[
1 0 0
0 1 0

]
.
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For the complementary filter, ϕacc is passed through a low pass filter with transfer function
Ga(s) = (20s + 1)/(100s2 + 20s + 1), and ϕ̇ is passed through a high pass filter with transfer function
Gg(s) = (100s)/(100s2 + 20s + 1).

6.3. Experimental Results

After setting all control parameters with the sampling rate 200 [Hz] by using MATLAB/Simulink R©

and Quarc interface in the host computer, as explained in Sections 6.1 and 6.2, we have implemented the
proposed control scheme on the Qball-X4 as seen in Figure 6 for the following two cases:

Test 1. ALQT with complementary filter: The video of the experiment is presented in URL [49].
Test 2. ALQT with Kalman filter: The video of the experiment is presented in URL [50].

Figure 6. The Qball-X4 quadrotor during the experiment.

In both tests, the Qball-X4 starts to perform the tracking control task after hovering for 15 s.
The real-time IMU data measurements in Test-2 from the gyroscope, the accelerometer and the
magnetometer are presented in Figure 7a–c, respectively.
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(a)
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0

(b)
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0
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(c)
Figure 7. IMU data measurements from (a) gyroscope; (b) accelerometer; (c) magnetometer.

Applying the methodology explained in Section 3.1, the IMU measurements shown in Figure 6
are used to obtain the raw calculation of the roll and pitch parameters (yellow plots), and then to
generate the estimates by complementary filter (blue plots) and Kalman filter (red plots) shown
in Figures 8 and 9. Kalman filter provides more reliable data less sensitive to noise. For the yaw
estimation, gyroscope data integration is used instead, due to distortion effects by metallic objects of
the test environment, as explained in Section 3.1.
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Figure 8. Attitude estimation of the Qball-X4.
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Figure 9. Attitude angle estimation of the Qball-X4 from 50 to 100 [s].

The tracking error performances of both tests verify that the control objective is satisfied as seen
in Figures 10 and 11. In both tests, the controllers maintain attitude angles close to their desired angles
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with small attitude tracking errors ±0.1 [rad]. However, as seen in Figure 11, ALQT control with
Kalman filter is more robust to sensor noises and uncertainties, and results in smaller tracking errors.

0 50 100 150
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Roll tracking error
Pitch tracking error

Figure 10. Attitude tracking error of the Qball-X4 using a Complementary filter.

0 50 100 150
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Roll tracking error
Pitch tracking error

Figure 11. Attitude tracking error of the Qball-X4 using a Kalman filter.



Sensors 2019, 19, 46 17 of 23

As seen in Tables 3 and 4, ALQT control with Kalman filter gives significantly smaller mean-square
error and consumes less battery (energy). It is also observed in additional simulations that the proposed
controller consumes less battery energy with more robust control action compared to other classical
controllers such as PID.

Table 3. Mean square error of eϕ.

ALQT Roll [rad] Pitch [rad]

with Kalman filter 0.0012 0.0012
with comp. filter 0.0027 0.0029

Table 4. Average battery consumption by û∗ϕ.

ALQT Roll [voltage/s] Pitch [voltage/s]

with Kalman filter 0.00071 0.00066
with comp. filter 0.00086 0.00140

In real time, the motor PWM control inputs have the constraint −0.1 6 vr(t) 6 0.1 since they
work with limited voltage to prevent damages due to high torque commands. Hence, a limit is applied
for the optimal attitude control inputs as mentioned in Remark 3 even though LQT design procedure
does not have any constraints. As seen in Figures 12–14, the proposed controller satisfies admissible
and optimal control actions for all t > 0 during the tests. Figures 12–14 show that the motor PWM
and the optimal attitude control inputs are kept within the allowed limits.

The LS based estimation of the uncertain inertia parameters θ̂ϑ and θ̂φ is presented in Figure 15.
The estimates, which are purposely initialized at values away from the nominal values (to test the
expected convergence), successfully converge to the vicinity of the nominal value 33 [1/kg m2]
in around 40 [s]. Convergence rate of the estimation can be adjusted easily adjusting the design
parameters of the LS based adaptive law.

0 50 100 150
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Optimal roll control input
Optimal pitch control input

Figure 12. Optimal attitude control inputs for the complementary filter.
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Figure 13. Optimal attitude control inputs for the Kalman filter.
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Figure 14. Motor PWM control inputs vr.
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Figure 15. LS based estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ.

6.4. Comparative Simulations and Observations

For optimal performance comparison with the existing literature, in ideal simulation conditions
without noises, we simulate the ALQT control design and compare with a classical PID controller
with control gains Kp = 0.0017; Ki = 8.98; Kd = 0.005. As seen in Figure 16, the ALQT controller
gives smaller tracking errors with less control action. Therefore, in the actual settings with noises, it is
expected that the ALQT with a reliable filter will give us better tracking and control input performances
compared to a PID controller. Figure 17 presents the estimates of the simulation. It is also observed
from literature that the proposed controller gives a good control performance in terms of optimal
attitude tracking compared to the attitude tracking errors of [11,12].

0 5 10 15 20 25 30 35 40 45 50
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0.2

0.4

PID pitch tracking error
ALQT pitch tracking error

0 5 10 15 20 25 30 35 40 45 50
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ALQT roll tracking error

(a)
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ALQT pitch control input

0 5 10 15 20 25 30 35 40 45 50

-0.02

-0.01

0

0.01

0.02 PID roll control input
ALQT roll control input

(b)

Figure 16. PID vs. ALQT performance comparison: (a) attitude tracking error; (b) attitude control input.
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Figure 17. LS based estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ for the simulation.

7. Conclusions

In this paper, the adaptive linear quadratic tracking (ALQT) scheme has been developed to control
and stabilize the attitude of the Qball-X4 quadrotor UAV system in an optimal sense. The proposed
adaptive controller is designed by an indirect approach and combined with the LS based parameter
identification (PI) to eliminate the influences of inertial uncertainties. Additionally, the Kalman
filter has been designed for canceling noise effects on the attitude estimation data to provide more
reliable feedback to the controller and it is compared with the Complementary filter. All analytical
analyses and designs are verified by the two experimental tests. We witness that the ALQT design in
experiments work satisfactorily in terms of the optimal tracking performance. In the Kalman filter
vs. Complementary filter, although both filter designs are good at canceling noise effects on the
estimated attitude data, the Kalman filter gives a better accuracy and reliable attitude estimation. Thus,
the experimental results show that the quadrotor UAV has more robust behavior and better tracking
error with the estimated attitude data by the Kalman filter compared to the Complementary filter.

A potential future study is developing heading (yaw) estimation methods under magnetic
disturbances. Another future direction is to extend optimal linear quadratic tracking control design for
altitude and yaw dynamics.
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