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Abstract: Object tracking is a fundamental problem in computer vision since it is required in many
practical applications including video-based surveillance and autonomous vehicles. One of the most
challenging scenarios in the problem is when the target object is partially or even fully occluded by
other objects. In such cases, most of existing trackers can fail in their task while the object is invisible.
Recently, a few techniques have been proposed to tackle the occlusion problem by performing the
tracking on plenoptic image sequences. Although they have shown promising results based on
the refocusing capability of plenoptic images, there is still room for improvement. In this paper,
we propose a novel focus index selection algorithm to identify an optimal focal plane where the
tracking should be performed. To determine an optimal focus index, we use a focus measure to
find maximally focused plane and a visual similarity to capture the plane where the target object is
visible, and its appearance is distinguishably clear. We further use the selected focus index to generate
proposals. Since the optimal focus index allows us to estimate the distance between the camera and
the target object, we can more accurately guess the scale changes of the object in the image plane.
Our proposal algorithm also takes the trajectory of the target object into account. We extensively
evaluate our proposed techniques on three plenoptic image sequences by comparing them against
the prior tracking methods specialized to the plenoptic image sequences. In experiments, our method
provides higher accuracy and robustness over the prior art, and those results confirm that the merits
of our proposed algorithms.

Keywords: plenoptic imaging technique; object tracking; bounding box proposal; content-based
image matching

1. Introduction

Object tracking is one of the most active research topics in computer vision, since it is a core
technique in various industrial applications such as video-based surveillance systems and autonomous
vehicles. The goal of the object-tracking problem is to estimate the trajectory of target object in
a sequence of images. Given an initial bounding box containing the target object at the beginning of
the tracking task (i.e., frame index t = 1), the object tracker is asked to compute bounding boxes of
the target object in subsequent frames (i.e., frame index t > 1). Although there are numerous trackers
for multiple-object tracking, we restrict our discussion in this paper on the problem of single object
tracking since our proposed techniques are orthogonal to such problem configurations.

There are various factors that make object tracking difficult such as the change of appearance
of the object due to the rotation, translation, or illumination. Among those factors, one of the most
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difficult cases is when the target object becomes partially or even fully occluded. The traditional
tracking algorithm designed for 2D image sequences are highly likely to be missing the target object
while it is being invisible. A few tracking techniques [1–3] have used the refocusing capability of
plenoptic images to overcome the occlusion problem. Even though the object is occluded, changing the
focus to the plane where the target object is maximally focused makes the target object visible while the
occluders are being blurred out. Cho and Javidi [1] have reduced the occlusion problem using integral
imaging technique to discover the occluded target object based on plane-by-plane reconstruction.
Kim et al. [2] have presented a focus index selection method based on a focus measure [4] that
identifies the maximally focused focal plane and perform the object tracking on the selected images.
A follow-up work [3] has validated that applying image sharpening filters and a simple proposal
technique can enhance the accuracy and robustness of [2]. Aforementioned methods have proposed
solutions for the occlusion problem by using plenoptic imaging techniques and shown noticeable
tracking results; however, none of them completely solved the problem. Specifically, focal plane
selection algorithm in [2] can miss the optimal focal plane since their method is only relied on the
focus measure, and the proposal technique of [3] does not fully use the advantage of plenoptic images.

In this paper, we propose a novel focal plane selection algorithm that takes both focus measure
and visual similarity into account for the object tracking on plenoptic image sequences and design
a bounding box proposal method tailored to our selected focus index. The main contributions of this
paper are summarized as follows:

• We propose a novel focus index selection algorithm, content-aware focal plane selection, that identifies
the maximally focused and visually consistent focal plane. While the prior techniques [2,3] have
only used the focus measure, our selection method additionally consider whether the target object
is clearly appeared in the image plane (Section 4).

• We propose a novel bounding box proposal scheme based on the optimal focus index computed
by our content-aware focal plane selection algorithm. Since the focus index is directly related to
the distance between the camera and object, we use the change of the focus index to accurately
estimate the scale of the object in the image plane. We also design an algorithm to propose the
location of candidate bounding boxes by modeling of the trajectory of the object. We generate
several candidate bounding boxes based on the both scale and motion factors and select the best
one among them according to the visual similarity to the target object (Section 5).

Once we identify a focus index and a bounding box proposal based on our proposed techniques,
the remaining task is reduced to an ordinary object-tracking problem in 2D images. Since our method
does not have any restriction on the choice of trackers, we can use any existing tracking techniques to
estimate the location of object. In other words, we can take advantage of advanced tracking techniques.
Figure 1 illustrates the process of the object tracking task in plenoptic image sequences. Please note
that the plenoptic images can be captured by not only specialized equipment but also micro lens arrays
which can be installed to portable commodity devices such as smartphones. Once the plenoptic images
are acquired, they can be used in any computing devices including PCs, smartphones, and tablet.

We have extensively evaluated our proposed techniques on three different plenoptic image
sequences. To show the flexibility of our method in terms of choice of trackers, we have applied
three different tracking engines, Boosting [5], minimum output sum of squared error (MOSSE) [6],
and MOSSE with convolutional neural networks (CNN) features [7] trackers to our proposed scheme.
Experimental results show that our techniques provide both higher accuracy and robustness over the
recent methods [2,3] (Section 6).
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Figure 1. Procedure of our object-tracking techniques for plenoptic image sequences.

2. Related Work

Object tracking is one of the fundamental problems in computer vision. Due to its importance,
there has been numerous techniques to solve the problem. Excellent surveys for those methods are
available [8–10].

Among several challenges in the object tracking, one of the most difficult cases is dealing with the
target object partially or even fully occluded. There have been many studies that have attempted to
resolve such occlusion problem. Adam et al. [11] have proposed a representation of the target object
based on multiple image fragments which is robust to the partial occlusions or appearance changes.
A tracking method based on a sparse dictionary for modeling the appearance of the object is proposed
in [12]. They constructed a confidence map from the sparse representation, and then located the object
by voting and mean-shift. Zhang et al. [13] also reconstructed an appearance of object by sparse
measurement matrix exploiting a non-adaptive random projection. Grabner et al. [14] employed the
visual context into the object tracking task. Even if the target object becomes invisible, they can infer its
location based on the motion of correlated objects in the scene. Babenko et al. [15] proposed multiple
instance learning to train a classifier to learn an appearance of the object in robustly so that the tracker
alleviates the problem of partial occlusion. A dynamic graph-based tracker has been proposed to
address both deformation and occlusion problem in [16].

Tracking algorithms based on the correlation filters show remarkable results in recently object
tracking challenge [17]. Such trackers learn the appearance of the target object. Bolme et al. [6] have
proposed an object tracker based on a MOSSE filter. The MOSSE-based tracking algorithms compute
a response map with the correlation score based on a correlation filter and an image patch. The scores
can be computed by a simple convolution operation in Fourier Transform domain to achieve high
efficiency in terms of computational costs. A new location of the target object is then identified by
centering the peak among the correlation scores of the response map. Once the position of the target
object is estimated, the correlation filter is incrementally updated with an image patch cropped from
the location of the object.

There has been various work proposing improved algorithms based on the correlation filters by
exploiting its simplicity and efficiency. Notable examples include a kernelized correlation filters [18],
a filter trained from multiple dimensional features instead of a single channel of images [19], spatial
regularization to resolve periodic boundary effects [20], and using CNN features to training correlation
filters [7]. Lukezic et al. [21] uses spatial constraints to overcome the limitations regarding to the
assumption of shape of the target object. Shi et al. [22] have proposed a sampling technique by
considering the spatiotemporal consistency for training correlation filters. An adaptive method to
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adaptively update the kernelized correlation filters according to the scene classification is proposed
in [23]. Also, Xue et al. [24] attempted to improve tracking performance by reducing noises from
background. They adopt the concept of cellular automata to update an appearance template.

In this paper, our contribution is more focused on handling plenoptic image sequences not
concentrating on development of a new tracking algorithm working in 2D images. Our technique
is designed to accept any of existing tracking methods. We, however, mostly tested our method by
combining with MOSSE tracker and its variations to take advantage of their simplicity and efficiency.

On the other hand, the refocusing capability of plenoptic imaging technology inheritably enables
to reduce the occlusion problem in the object tracking task. Cho et al. [1] have proposed a tracking
method in the integrated image sequences. A plenoptic image sequence is consisting of focal stacks,
and each focal stack is corresponding to each frame index and containing a set of images reconstructed
in a plane-by-plane manner. Thus, it is crucial to select an appropriate focal plane where the target
object is maximally focused. By selecting a proper focus index, the object can become visible even it is
blocked by occluders. Figure 2 shows examples of plenoptic images.

Figure 2. Example of plenoptic images.

Kim et al. [2] shows promising results by using the focus measure [4,25] to select focal planes
and performing tracking on those image planes. The technique [2] is extended in Bae et al. [3] that
proposed two additional steps. They performed an image sharpening process prior to estimate the
location of the object, since the selected images determined by the focus measure still contain blurry
reasons due to the discreteness of focal planes. They also presented a heuristic to generate proposals
based on a fixed ratio from the previous frame. We found that, both techniques [2,3] can identify
an undesired focus index since their focal plane selection is strongly relied on the focus measure.
If there is an occluder that can have higher focus measure score than the target object, their algorithms
may select the focus index where the occluder is maximally focused instead of the target object.
To overcome such problem, we propose a novel focus index selection technique that considers both the
focus measure and visual consistency.

Recently deep CNNs have shown state-of-the-art performance in several computer vision
tasks including object classification [26–30] and detection [31–33]. The network trained for solving
image classification problem can produce generic features of images, the pre-trained CNN models
can be employed as image feature extractor. For instance, in the object detection problem region
proposal-based architectures [31,32] use VGG [27] to extract spatial and semantic information from
input images. Inspired from the success, deep features extracted from CNNs are actively used in the
object tracking. Wang et al. [34] have proposed an online tracker by learning generic features of natural
images based on an autoencoder trained offline. In [35], a CNN that learns relationships between the
appearances and motions of objects is proposed to predict the position of a particular object in the
next frame. Danelljan et al. [7] have used deep CNN features to train correlation filters instead of
using single gray scale image. They specifically used activations of a convolutional layer which are
multiple channels data. They have chosen the first activations of convolutional layer as CNN feature
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to preserve spatial information. The proposed method achieved remarkable results on three public
benchmark datasets [8,17,36]. On the other hand, Babenko et al. [37,38] have shown that the features
extracted from CNNs are powerful image descriptors in image matching or retrieval tasks. In this
paper, we validate our proposed technique that can take advantage of the success of deep learning in
various computer vision tasks. We specifically combine our method with the MOSSE tracker trained by
CNN features and use the features to select an appropriate focal plane based on the visual consistency.
More details are discussed in Sections 4 and 5.

3. Problem Formulation and Overview

3.1. Problem Formulation

Let us first define notations that we will use throughout this paper. A plenoptic image sequence
I consists of N frames of focal stacks, and a focal stack at the frame index t is then denoted by Ft.
The focal stack Ft of the frame t is defined as a set of images, Ft = {It

1, It
2, ..., It

M}, where M is the
number of focal planes in the stack. As a result, the plenoptic image sequence I of N time frames and
M focal planes has NM images, {It

k} where t ∈ {1, 2, ...N} and k ∈ {1, 2, ..., M}.
The object tracking on 2D image sequence is a well-defined problem that estimates a trajectory

of an object over the time. Specifically, the estimated locations of the target object at the frame index
t is generally described by a bounding box Bt centered at (xt, yt) whose width and height are wt

and ht, respectively. Given an initial bounding box B1 of the target object, the object tracking is to find
a sequence of bounding boxes B2, ..., BN containing the target object over the frames.

Object-tracking problems on a plenoptic image sequence and a simple 2D image sequence share
the same goal locating the target object over frames. However, the problem on a plenoptic sequence is
more complex than an ordinary image sequence because it requires additional consideration to identify
appropriate focal planes in the focal stacks. In conventional object-tracking problem, it is assumed
that the target object is well-focused, and its appearance is fairly clear in 2D images. On the other
hand, in the plenoptic case the region of a target object can be blurry or even occluded if we select
an inappropriate focal plane. Thus, in each frame t we need to first carefully identify an optimal
focal plane where the object region is visible and clearly presented prior to estimate the location of
the object. The visibility and clarity are directly related to the success-failure rate and accuracy of the
tracking result.

3.2. Overview

To estimate the trajectory of a target object in the plenoptic image sequence, we first select an
optimal focal plane from a focal stack Ft at each frame t. We propose a novel algorithm to identify
an optimal focal plane based on both the focus measure [25] and visual feature similarity (Section 4).
Compared to the prior attempts for the optimal image selection based on the focus measure [2],
our proposed technique exploiting visual feature similarity provides higher robustness and accuracy.
Once an optimal image is identified, we generate several candidate bounding boxes based on
two factors, the history of the object trajectory and distance between the object and camera. We then
select the best one among the candidates according to the image patch similarity to the tracking result
at the previous frame (Section 5). Finally, the selected bounding box is passed to the object-tracking
module designed for conventional 2D image sequences to obtain a refined tracking result.

4. Focus Index Selection

As discussed in Section 3.1, identifying an optimal focal plane from a focal stack is crucial in
the object tracking on plenoptic image sequences since the visibility and clarity of appearance of
the target object are highly correlated with the success-failure rate and accuracy of the tracking task.
Moreover, a correctly selected focal plane reduces the difficulty in the tracking when the target object
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is partially or even fully occluded by other environmental objects. In this section, we introduce our
novel algorithm to select an optimal image from a given focal stack.

4.1. Focus Measure Based Focus Index Selection

To select an optimal image from the focal stack, one reasonable approach is using the focus
measure. In this strategy an optimal image is defined to be the maximally focused at the region where
the target object is assumed to be located. Specifically, given a region of interest (RoI) defined as a set of
pixels Ω(x, y) where the target object highly likely to be located (e.g., the bounding box Bt−1 estimated
in the previous frame t− 1), the optimal image It

k̂
is selected among a set of images {It

1, ..., It
M} in the

focal stack Ft to have the highest focus measure on Ω(x, y). Pertuz et al. [4] have conducted extensive
evaluation of many successful focus measures and reported that Sum-Modified-Laplacian (SML)
operator [25] provided high performance and was robust to various factors such as the quality and
content of the image. The focus measure based on SML operator for an image I and RoI Ω(x, y) is
defined as follows:

φ(I, Ω(x, y)) = ∑
(i,j)∈Ω(x,y)

∆m I(i, j), (1)

where ∆m I(i, j) is a modified Laplacian with two convolution filters LX = [−1 2 − 1] and LY = LT
X as

expressed as follows (∗ is the convolution operator):

∆m I(i, j) = |I ∗ LX |+ |I ∗ LY|. (2)

Let us define an image cropping function c(I, B) that extracts an image patch corresponding to
a bounding box B(x, y, w, h) from the image I. For instance, c(I, (15, 30, 10, 20)) produces a rectangular
image patch from I whose coordinates of left upper and right lower are (10, 20) and (20, 40),
respectively. We then can define the focus score, f-score(It

k), of an image It
k in the focal stack Ft by

rewriting the focus measure (Equation (1)) by using the cropping function c(·, ·) as follows:

f-score(It
k) = ∑

(i,j)∈c(It
k ,Bt−1)

∆m It
k(i, j) (3)

The focus index selected according to the focus score can provide a reasonably accurate focal plane
as shown in [2,3]. Using only the focus score to select an index, however, can produce an undesired
focus index as the optimum in cases where the target object is occluded by environmental objects which
is maximally focused. In [2], a hill-climbing technique is proposed to resolve the issue. The heuristic
starts from the focus index k̂t−1 of the previous frame t− 1, and searching for the focus index having
a local peak of focus score by moving to higher scores. Since the algorithm prevents significant
changes in the focus index by starting from the focus index of the previous frame, it could reduce the
aforementioned problem. However, it still suffers from such incorrect index selection when there is the
occluder close to the target object but has higher focus score than the target.

4.2. Content-Based Score for Focus Index Selection

The aforementioned issue discussed in Section 4.1 is mainly because the focus index selection
only based on the focus measure (Equation (1)) which is totally unaware of the content in the RoI.
When evaluating the optimality of given focus index, it is also crucial factor whether the target object
appears or not. We, hence, propose to use visual similarities in the focus index selection to capture the
content in the RoI.

We define an image feature extractor f (I) that produces a high-dimensional feature representation
describing the content of a given image I. Notable examples of such feature extractor f (I) include the
Bag of Visual Word (BoVW) [39] and Neural Codes [37].
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Given a focal stack Ft at the frame index t, we evaluate images It
k from the focal stack by examining

image patches c(It
k, Bt−1) corresponding to the estimated bounding box Bt−1 at the previous frame.

We define a content score, c-score(It
k) of the kth image in the focal stack at frame t to be the average

similarity of c(It
k, Bt−1) to the initial bounding box at the first frame and the estimated bounding box

at the previous frame t− 1, as follows:

c-score(It
k) =

1
2

{
f-sim

(
f
(

c(I1
k̂1

, B1)
)

, f
(

c(It
k, Bt−1)

))
+f-sim

(
f
(

c(It−1
k̂t−1

, Bt−1)
)

, f
(

c(It
k, Bt−1)

))}
, (4)

where f-sim( fx, fy) defines the similarity of the features fx and fy. Please note that our content score
can be simply accepting any feature similarity measures including Euclidean distance, cosine similarity,
and even more complex metrics such as Mahalanobis distances. This implies that we can take advantage
of any advanced image feature representation since our method is orthogonal to the features or their
similarity. For instance, our content score becomes the followings if the feature similarity is defined by
dot products (i.e., cosine similarity):

c-score(It
k) =

1
2

(
f
(

c(I1
k̂1

, B1)
)
· f
(

c(It
k, Bt−1)

)
+ f
(

c(It−1
k̂t−1

, Bt−1)
)
· f
(

c(It
k, Bt−1)

))
=

f (c(It
k, Bt−1))

2
·
(

f
(

c(I1
k̂1

, B1)
)
+ f
(

c(It−1
k̂t−1

, Bt−1)
))

, (5)

In the experiments, we have used VGG-16 [27], SqeezeNet [40] and Inception-ResNet v2 [30]
networks to extract features. We crop the image patch and resize to suitable sized image for the
network. To capture the semantic similarity among image patches, the features are extracted from the
last layer except the classification layer. The extracted features are then normalized according to their
L2 norms. In this case, we can use Equation (5) to determine the similarity.

4.3. Combined Score and Focus Index Selection

Using the content similarity alone to select an optimal image from the focal stack can cause
a problem when there are occluders which have similar appearance to the target object. Suppose that
the target object which is maximally focused at focus index ktarget moves to the behind another object
which has very similar or even identical appearance to the target object. In this scenario, our content
similarity measure can be failed to identify the focus index ktarget by selecting the focus index where
the occluder is maximally focused, if the feature similarity is the highest with the occulder.

To resolve such problem, we finally combine the aforementioned two scores, focus and content
scores (Equations (3) and (4)), to examine the optimality of focal planes. Since the values computed by
those two scoring methods are in different ranges, we convert them to the relative value with respect
to the scores of the selected focus index in the previous frame It−1

k̂t−1
. As a result, our combined score for

the focus index, fi-score(It
k) is defined as follows:

fi-score(It
k) =

1
2
·
(

f-score(It
k)

f-score(It−1
k̂t−1

)
+

c-score(It
k)

c-score(It−1
k̂t−1

)

)
. (6)

To find an optimal focus index where we perform the object tracking, one straightforward
approach is taking the index having maximum fi-score(·). This strategy, however, can cause undesired
focus index selection as we discussed in Section 4.1. Moreover, the hill-climbing heuristic proposed
in [2] can be missing the optimum. We thus propose to search two peaks in terms of fi-score(·), towards
decreasing and increasing focus indices. We also start from the optimal focus index k̂t−1 of the previous
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frame, and search two focus indices kL and kR which have locally maximum fi-score. Specifically,
we search for two indices kL and kR that satisfy the follows:

fi-score(It
kL−1) ≤ fi-score(It

kL
), fi-score(It

kL
) ≥ fi-score(It

kL+1),

fi-score(It
kR−1) ≤ fi-score(It

kR
), fi-score(It

kR
) ≥ fi-score(It

kR+1), (7)

where kL ≤ k̂t−1 and kR ≥ k̂t−1. Among the indices kL satisfying the conditions, we select the largest
index which is the closest to the k̂t−1. Similarly, we pick the smallest one for kR. We then select one
of KL and KR closer to k̂t−1 as k̂t. If KL and KR have the same distance from k̂t−1, then we take one
having higher fi-score(·). Figure 3 illustrates the overall process of our focus index selection algorithm.
And Figure 4 shows a practical example of the optimal focus index selection. Once fi-score is computed
for given focal stack, the peak selection algorithm looks for two local peaks in both left and right
directions from the focus index selected in the previous frame. Among two peak indices, the one closer
to the focus index at the previous frame is then selected as an optimal focus index of the current frame.

Feature
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Focal Stack 𝐹𝑡

𝑐 𝐼𝑘
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Figure 3. Illustration of our focal plane selection method.

Please note that, extensive comparisons between the f-score and fi-score in both quantitative and
qualitative manners are available in Section 6.
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Figure 4. The left and right graphs show the fi-scores with respect to the focus index at 27th and 28th
frames of Seq #2 (Section 6), respectively. The red arrowed index is the selected focus index at the 27th
frame. In the 28th frame, fi-scores are first computed, and two local peaks are searched from the focus
index of the previous frame. The green arrowed indices are the identified two indices. We then select
closer index from the focus index of the previous frame among two peaks as an optimal focus index.
In this example, the right green arrowed index is selected.
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5. Bounding Box Proposal Based on Focus Index

To overcome the difficulty in the object-tracking task caused by the motion and size changes of the
object, many of existing tracking techniques first conduct a bounding box proposal stage. The goal of
this proposal stage is that producing a candidate bounding box which is nicely fit to the target object.

In the object tracking on plenoptic image sequences, Bae et al. [3] have presented a simple
heuristic for bounding box proposal. They suggest generating proposals based on three fixed scales
(3% smaller, the same, and 3% larger) from the selected proposal at the previous frame. They then
feed each proposal to the Boosting tracker [5] and select the best one among those boxes based on
the tracking confidence score determined by the Boosting tracker. Although this heuristic has been
reported to provide accuracy enhancement over the baseline, using fixed scaling ratio is still too ad-hoc
and their method is highly depending on the Boosting tracker. In other words, it is hard to take
advantage of other advanced trackers. One may think of alternative proposal methods that use object
detectors. In such approaches, the proposal is selected among the detected object regions according to
the similarity to the target object. We, however, observed that such proposal methods provide unstable
results on the plenoptic image sequences since the detectors often failed to find the target object even if
we have used a reliable detector such as Faster R-CNN [32]. This is mainly because such detectors are
not robust to blurs that the plenoptic images intrinsically have and are confused from the other objects.

The distance between the target object and camera is directly related to the size of the target object
in the image plane. For instance, the size of the target object in the image becomes lager as the object
approaches to the fixed camera. Since the focus index is tightly related to the distance between the
object and camera, it is a strong cue to estimate the scale of the object in the image. In this section,
we introduce a novel bounding box proposal method that takes both the optimal focus index and the
motion of the object into account.

5.1. Scaling Factors

To derive appropriately sized proposals, we explore the focal stack parameters. Among various
parameters we concentrate three variables, (µmin, µmax) and µinterval , related to the distance of the focal
planes from the camera. Specifically, µmin and µmax indicate the range of the distances between focal
planes and the camera, and µinterval is a gap between two consecutive focal planes. Let us introduce
a scaling factor st at tth frame that determines the relative size change from the selected proposal in the
previous frame t− 1, based on difference in the focus indices k̂t−1 and k̂t computed by our focus index
selection algorithm described in Section 4.

Since size of the target object is proportionally decreasing to its distance from the camera,
the relative scale between two frames t and t− 1 can be expressed as follows:

size(t) =
d0 + µinterval × k̂t−1

d0 + µinterval × k̂t
× size(t− 1), (8)

where d0 is the distance from camera to its closet focal plane. Figure 5a illustrates a geometric
interpretation of the object size changes with respect to the focus index. However, it is hard to
have the exact value of d0 in practice, so we approximate d0 as µmax − µmin. We then finally define our
scaling factor st as follows:

st =
(µmax − µmin) + µinterval × k̂t−1

(µmax − µmin) + µinterval × k̂t
. (9)

Intuitively, we produce smaller proposals when the focus index is increased from the previous
frame and larger ones when the focus index is decreased. As a result, the width w̃ and heights h̃ of our
generated proposals are shrank or enlarged as follows:

w̃ = ŵt−1 + zs(st − 1)ŵt−1 and h̃ = ĥt−1 + zs(st − 1)ĥt−1, (10)
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where ŵt−1 and ĥt−1 are the width and height of the selected proposal at the previous frame t− 1,
respectively. The parameter zs is multiplied to generate proposals in multi-scale. When we propose
a single scaled box, the zs should be 1. In evaluation (Section 6), we have proposed boxes with
three different scales, zs = 0, 1, and 2.

𝜇𝑚𝑖𝑛
𝜇𝑚𝑎𝑥

𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∗ 𝑘𝑡−1 𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∗ 𝑘
𝑡𝑑0

𝑙

𝑙′

Projection plane

(a) Scaling factor

𝐵𝑡−2 𝐵𝑡−1 Proposed Box at 𝑡𝑡ℎ frame

…

𝛿𝑡−2𝛿𝑡−3 ∆𝑡−1

(
1

2
∆𝑡−2 +

1

2
𝛿𝑡−2)

(b) Motion factor

Figure 5. (a) This figure shows the geometric relationship between the object size in the image plane
and the focus index. Since the focus index reflects the distance between the object and camera, the size
of the object can be approximated based on the focus index changes. Our detailed derivation is given
in Section 5.1. (b) This figure illustrates our motion factor formulation. Our underlying assumption is
that the motion of object is not significantly changing from past a few frames. The displacement from
the previous frame is then predicted as a linear combination of past displacements, where the weights
are exponentially decreasing with respect to frame index distance.

5.2. Motion Factors

In addition to predict the scale changes, estimating the location of the target object is also crucial
to produce more accurate proposals. To estimate the location of the target object, we take the trajectory
of target objects in the past frames into account. Specifically, we predict the 2D location ct = [x̃t, ỹt]T at
a frame t based on the center positions c1 = [x1, y1]T , ..., ct−1 = [xt−1, yt−1]T of past tracking results
B1, B2, ..., Bt−1. Let us first define the displacement δi between i and i + 1 frames as the follows:

δi = ci+1 − ci = [xi+1 − xi, yi+1 − yi]T (11)

Our assumption on this task is that motion of the target object is not significantly changed from
past few frames and highly likely to be similar to recent history of the trajectory. We design the
following model by reflecting the assumption:

ct = ct−1 + zm∆t−1, (12)

where

∆t−1 =
1
2

δt−2 +
1
4

δt−3 +
1
8

δt−4 + ... +
1

2t−2 δ1 =
t−2

∑
i=1

1
2t−i−1 δi. (13)

and zm is a parameter for generating multiple bounding box proposals as we have in the scale factor
(Section 5.1). The displacement of recent frames influences more on our prediction, and the factors are
exponentially decreasing with respect to the distance of frame index. Since our estimated displacement
is defined recursively, it can be efficiently computed as follows (Refer Figure 5b):

∆t−1 =
1
2

∆t−2 +
1
2

δt−2. (14)

Once multiple bounding box proposals are generated based on various zs and zm, we are required
to select the best one among the candidates. We evaluate the proposals according to the image patch
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similarity. Specifically, the proposal which is the most similar to the tracking result at the previous
frame c(It−1

k̂t−1
, Bt−1) is selected and feed to tracker. To compute the similarity among patches we employ

the SSIM score [41].

6. Evaluation

In this section, we evaluate our proposed techniques for the object tracking on plenoptic
image sequences.

6.1. Benchmarks

We first introduce the following benchmarks used in the experiments:

• Seq #1: The simplest one among three benchmarks. The target object is simply moving horizontally
in the image plane and partially occluded. This sequence consists of 150 frames and the size of
the focal stack is 14.

• Seq #2: The target object is moving far from the camera, so its size in the image is getting smaller.
The occlusion is more serious than Seq #1. The number of frames and the size of the focal stack
are 220 and 40, respectively.

• Seq #3: Contrary to Seq #2, the target object is approaching to the camera, so its size is getting
larger. This sequence has 230 frames and the size of the focal stack is the same with Seq #2.
The occlusion is the most serious among three sequences.

Please note that, the target objects of Seq #1, #2 and #3 are a paper box, an electric hand fan,
and a cup, respectively. The cup in Seq #3 is a simple solid colored cup which does not have rich visual
features. It is smaller than the other target objects while the Seq #3 has the most serious occlusions.
These reasons lead the Seq #3 the most difficult scenario among tested benchmarks. Table 1 describes
the parameters and Figure 6 shows several frames of benchmarks. We have used a plenoptic camera
consisting of a 5 × 5 camera array to construct our benchmarks. Details about the equipment is
described in [2,3].

Table 1. Parameters of the plenoptic image sequences used in the experiments.

Seq #1 Seq #2 Seq #3

µmin −0.9 −6.8 −6.7
µmax −0.2 0.8 0.9
µint 0.05 0.2 0.2

Focal Stack Size M 14 40 40
Frames 150 220 230

(a) Example frames of Seq #1

(b) Example frames of Seq #2

(c) Example frames of Seq #3

Figure 6. Several frames from our benchmark. Among images in the focal stack, we show the images
selected by our proposed focus index selection method described in Section 4.
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6.2. Evaluation Protocol

All the tested methods are evaluated using two accuracy measures for the object tracking.
For a sequence of estimated bounding boxes B1, ..., BN , a distance score is defined as the average
of distances between centers of estimated and ground truth bounding boxes as follows:

dist-score(B1, ..., BN) =
1
N

N

∑
t=1

√
(xt − xt

GT)
2 + (yt − yt

GT)
2, (15)

where (xt, yt) and (xt
GT , yt

GT) are the center positions of estimated and ground truth boxes at frame
index t, respectively. The second accuracy measure, an overlap score, is evaluating the intersection of
the estimated and ground truth boxes. In the experiments we used a constant-sized bounding box for
both estimation and ground truth, so the overlap score is defined as follows:

overlap score(B1, ..., BN) =
1
N

N

∑
t=1

|Bt ∩ Bt
GT |

|Bt ∪ Bt
GT |

, (16)

where | · | is the number of pixels contained in the region. Please note that the ground truth bounding
boxes are labeled by human. We conducted the experiment more than 10 times for each sequence with
varying initial bounding boxes. Specifically, the number of trials on Seq #1, #2, and #3 are 18, 12, and
14 cases, respectively. The reported accuracy and timings are the averages of such many trials.

We mainly compare the following five methods:

• Baseline #1 [2]: This method uses only the f-score to select a focus index and Boosting tracker [5].
• Baseline #2 [3]: An extension from Baseline #1. This method additionally performs image

sharpening process and generates proposals based on a fixed ratio of sizes. We set the ratio
as 3% as suggested in [3].

• Ours(B): Our method using fi-score (Section 4) to select a focus index, producing proposals based
on the scaling and motion factors (Section 5), and using Boosting tracker [5].

• Ours(M): Similar to Ours(B) but using MOSSE tracker [6].
• Ours(MC) Similar to Ours(M) but the MOSSE tracker is using CNN features [7].

All the tested methods are implemented in Python language, and all the experiments are
conducted on a machine consisting of Intel i7-8700K CPU, 16 GB main memory, and NVIDIA GTX
1080 GPU.

In our focus index selection algorithm (Section 4), we employed image features to estimate visual
similarity among image patches. We specifically used deep features extracted from the last fully
connected layer of pre-trained version of VGG-16 [27] model which is publicly available. To train
correlation filters of MOSSE tracker with CNN features, we used the activated feature map of the
first convolution layer as suggested in [7]. Our proposal technique can produce multiple candidate
boxes by applying different parameters zs and zm. In experiment we mostly used 3 values, 0, 1, and 2,
for each parameter, thus we considered 9 proposals in total.

6.3. Experimental Results

Table 2 shows the object-tracking accuracies for the tested method on three different benchmarks.
Among techniques using the Boosting tracker, Baseline #1, #2, and Ours(B), Ours(B) provided the
highest accuracy in all the tested datasets. Moreover, the second-best method, Baseline #2, is tightly
coupled with the Boosting tracker. Its proposal algorithm is designed and optimized for the Boosting
tracker, so Baseline #2 cannot accept other trackers such as MOSSE. On the other hand, our method
can use any advanced trackers since there is not any assumption on the tracker.



Sensors 2019, 19, 48 13 of 20

Table 2. Tracking accuracies (D and O indicate the distance and overlap scores, respectively.)

Seq #1 Seq #2 Seq #3

Method Focus Proposal Tracker D O D O D O

Baseline #1 [2] f-score × Boosting 44.502 0.852 59.997 0.712 142.796 0.576
Baseline #2 [3] f-score Fixed ratio Boosting 39.293 0.867 55.916 0.735 41.101 0.822

Ours(B) fi-score Ours Boosting 28.256 0.904 34.980 0.825 15.014 0.858
Ours(M) fi-score Ours MOSSE 8.400 0.959 26.584 0.882 11.394 0.889

Ours(MC) fi-score Ours MOSSE+CNN 11.978 0.946 27.469 0.879 9.148 0.915

By applying MOSSE tracker and its extension with CNN features to our technique, Ours(M) and
Ours(MC), consistently outperformed the other tested methods including Ours(B). These experimental
results verify that our method can provide even higher accuracy if we use more accurate 2D tracker.

To validate the benefits of our focus index selection technique (Section 4) we compared the
tracking results based on two different focus index scoring schemes, f-score (Section 4.1) and fi-score
(Section 4.3), and results of the experiments are given in Table 3. As reported in Table 3, our fi-score
based on both the focus measure and visual similarity provides significantly higher tracking accuracy
over the f-score used in Baseline #1 and #2. Please note that, we did not use any proposal algorithms in
this experiment for a fair comparison.

Table 3. Comparison between f-score and fi-score with various trackers in Seq #3. Each pair of
numbers denote the distance score and overlap score. Focus index selection based on our fi-score
significantly outperform the f-score used in [2,3]. Please note that, the proposal algorithms are excluded
for a fair comparison.

Boosting MOSSE MOSSE+CNN

f-score 28.665/0.853 31.630/0.829 13.601/0.873
fi-score 19.984/0.842 11.534/0.888 9.807/0.909

We also report the qualitative results corresponding to Table 3. Figure 7 shows the image patches
at the position of the target object from the focus indices selected by f-score and fi-score. Since the
f-score only relies on the focus measure, the selected focus index based on the f-score index can be
wrong once the target object got behind an occluder. As shown in Figure 7a, the f-score-based technique
identified the focus index where the occluder is maximally focused. On the other hands, our proposed
fi-score robustly found appropriate focus indices over frames, since it considers not only the focus
measure but also the visual consistency. The tracking results corresponding to this comparison is
reported in Figure 8. The tracking process based on the f-score failed to locate the target object once it
is occluded, while one with our fi-score was correctly estimating the target object. Please note that,
in those experiments the proposal algorithms are excluded and MOSSE tracker was used.

We also conducted experiments of our method with and without proposals, and its results are
shown in Table 4. As reported, our candidate box proposal algorithm consistently provided accuracy
improvements. The improvement on Seq #2 was the largest among three sequences mainly because
Seq #2 has more varied motions and object sizes compared to Seq #1, and #3. These results validate
that our proposal algorithm based on scaling and motion factors assists trackers to accurately locate
the target object.

Let us report qualitative analysis of our proposal algorithm in Figure 9 by comparing Baseline
#1 and Ours(B) in Seq #1. We mainly investigate our motion factor in the candidate box proposal
stage. Figure 9a,b shows the tracking results of Baseline #1 and Ours(B), respectively. Baseline #1 failed
to locate the target object when it is moving fast. Since most of trackers including Boosting-based
techniques incrementally learn the appearance of the object, they hardly recover the tracking capability
once they lost the object. On the other hand, our proposal algorithm considering the motion factor
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can assist the trackers to recover its tracking capability. Our tracker has lost the object between first
and second columns in Figure 9b; however, it immediately relocated the target object based on the
proposal bounding box as shown in the third columns. Please note that, the selected proposals are
illustrated in red boxes.
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(a) f-score

#40(34) #55(32) #70(33) #85(32) #100(32)

(b) fi-score

Figure 7. Qualitative comparison in Seq #3 between two scoring methods for the focus index selection,
f-score and fi-score. A pair of values for each image patch denotes the frame index and the computed
optimal focus index. Since the f-score only considers the focus measure, it can identify a wrong focus
index when the target object gets behind the occluder. As shown in (a), the focus index selection based
on f-score suggested an optimal focus index where the occluders are maximally focused. On the other
hands, our fi-score-based focus index selection algorithm stably identifies appropriate focus indices
over frames. Please note that, the quantitative results corresponding this figure is given in Table 3, and
the proposal algorithms are excluded in this experiment.

Table 4. Accuracies of our methods with/without proposals.

Seq #1 Seq #2 Seq #3

Distance Overlap Distance Overlap Distance Overlap

Ours(M) w/o Proposal 8.789 0.957 43.868 0.807 11.534 0.888
Ours(M) 8.400 0.959 26.584 0.882 11.394 0.889

Ours(MC) w/o Proposal 14.523 0.936 43.683 0.810 9.807 0.909
Ours(MC) 11.978 0.946 27.469 0.879 9.148 0.915
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(a) Tracking results of Ours(M) based on f-score in Seq #3

(b) Tracking results of Ours(M) based on fi-score in Seq #3

Figure 8. A comparison between the tracking results based on f-score and fi-score in Seq #3.
The tracking process based on the f-score missed the target object once it was occluded because
a wrong focus index is selected, while one with our fi-score was providing stable tracking performance.
Please note that, we did not perform any candidate box proposal stage and MOSSE tracker is used in
this experiment.

(a) Tracking results of Baseline #1 in Seq #1

(b) Tracking results of Ours(B) in Seq #1

Figure 9. Qualitative analysis of the motion factor in our proposal algorithm. The yellow boxes
in the first rows of (a,b) are magnified to the second rows for a clearer presentation. The green
boxes are the ground truth bounding boxes while blue boxes are the tracking results. In the second
columns, both methods lost the target object while it is moving fast. (a) Baseline #1 failed to recover
its tracking capability in the following. (b) Ours(B), however, immediately relocated the target object
by assistant of the proposal (red boxes). These qualitative results clearly validate the benefits of our
proposal algorithm.
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Another qualitative results to evaluate our proposal algorithm is given in Figure 10. Figure 10a,b
show tracking results of Ours(B) without and with our proposal algorithm in Seq #2, respectively.
When the size of the target object is getting smaller, as shown in the third column of the Figure 10a,
Ours(B) without the proposals failed to estimate a correct location. On the other hand, our proposal
algorithm generated suitable sized proposals (red boxes) and thus we could precisely locate the target
object even with the scale changes.

Since our proposed focus index selection and candidate proposal techniques use image features
to capture the content of the images, a choice of the feature extractor is fairly important. In all the
aforementioned experiments, we used the VGG-16 network [27] as the feature extractor. Specifically, we
used the last fully connected layer of VGG-16 in the focus index selection and the first convolution layer
to train MC (MOSSE+CNN) tracker. The VGG-16 provides high accuracy in the image classification;
however, it is known that its feature-extraction speed is quite slow. In order to see the performance
of our proposed techniques when using lightweight feature extractor, we conducted experiments
with SqueezeNet [40]. We also included the Inception-ResNet v2 [30] which showed one of the
state-of-the-art classification performances recently. We report the tracking results with three different
feature extractors, VGG-16, SqueezeNet and Inception-ResNet v2, in Table 5. The tracking accuracies
are not significantly different. Since we have used pre-trained models publicly available for the feature
extraction, the feature-extraction capability for particular objects can be diverse. Such diversity in
the capability causes inconsistent performance tendency; however, our method still significantly
outperformed the baseline techniques.

(a) Tracking results of Ours(B) without the proposal algorithm in Seq #2

(b) Tracking results of Ours(B) with the proposal algorithm in Seq #2

Figure 10. Qualitative evaluation of object tracking with/without the proposal algorithm in Seq #2.
As the target object is getting smaller, our proposal algorithm generates the proposals which fit to
the object. The same colors are used with Figure 9 for representing ground truth, tracking results,
and proposals.
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Table 5. Average Distance scores with three different feature extractors, VGG-16, SqueezeNet and
Inception-ResNet v2. P denotes our proposal algorithm.

Seq #1 Seq #2 Seq #3

VGG SQZ IncRes VGG SQZ IncRes VGG SQZ IncRes

Ours(M) w/o P 8.789 8.624 8.627 43.868 4.957 15.967 11.534 11.509 23.347
Ours(M) 8.400 8.322 8.271 26.584 4.653 15.954 11.394 11.358 12.485

Ours(MC) w/o P 14.523 85.041 44.089 43.683 23.516 34.385 9.807 11.956 15.021
Ours(MC) 11.978 18.765 13.939 27.469 18.566 11.685 9.148 11.828 9.450

Let us finally report the average tracking speed. Baseline #1 and #2 took 0.1 and 0.16 seconds per
frame, respectively. On the other hands, Ours(B), Ours(M), and Ours(MC) took 0.37, 0.32, and 0.70 s per
frame on average when we used VGG-16 network as the feature extractor, respectively. As reported in
Table 6, the tracking times of MOSSE tracker with VGG-16 and Inception-ResNet are similar. The MC
tracker with the Inception-ResNet v2 provides the slowest tracking speed, because it has huge sized
first convolution layer so that the longer time is consumed for updating correlation filters. On the
other hand, our proposed techniques can be accelerated if we use computationally lighter models such
as SqueezeNet. For instance, when we combined our proposed techniques with the MOSSE tracker
and SqueezeNet as the feature extractor, our method provided both higher accuracy and faster speed
compared to Baseline #2. Moreover, the fastest method among the tested combinations, our focus index
selection method combined with SqueezeNet, provided significantly higher accuracy over Baseline #1
and #2.

Table 6. Tracking times per frame with three different feature extractors, VGG-16, SqueezeNet and
Inception-ResNet v2. The timings are measured with Seq #2 and #3.

Time(s)/Frame

VGG SQZ IncRes

Ours(M) w/o Proposal 0.275 0.085 0.281
Ours(M) 0.319 0.155 0.322

Ours(MC) w/o Proposal 0.658 0.565 1.111
Ours(MC) 0.706 0.633 1.186

7. Conclusions

We have presented a novel object-tracking method for plenoptic image sequences. To find
an appropriate focal plane where the target object clearly appears, we have developed a content-aware
focus index selection technique based on the visual consistency and focus measure. In addition to the
focal plane selection, we have provided candidate box proposal scheme that considers two factors,
a scale factor based on the change of the focus index and a motion factor estimated from the past
trajectory of the target object, and selects an optimal proposal according to the content similarity.
We have extensively evaluated our technique over the prior tracking methods for the plenoptic
image sequences. Since our method is orthogonal to the choice of tracker for 2D images, we can
take advantage of any advanced tracking algorithms designed for ordinary 2D image sequences.
For the experiments, we have combined three popular trackers to our technique. According to the
experimental results, our method has provided significantly higher accuracy over the compared
methods. The performance improvements were consistent and significant. Those results clearly
confirm the benefits of our proposed algorithms.
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