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Abstract: Due to the existence of time-varying chaotic disturbances in complex applications,
the chaotic synchronization of sensor systems becomes a tough issue in industry electronics
fields. To accelerate the synchronization process of chaotic sensor systems, this paper proposes
a super-exponential-zeroing neurodynamic (SEZN) approach and its associated controller. Unlike the
conventional zeroing neurodynamic (CZN) approach with exponential convergence property,
the controller designed by the proposed SEZN approach inherently possesses the advantage of
super-exponential convergence property, which makes the synchronization process faster and
more accurate. Theoretical analyses on the stability and convergence advantages in terms of both
faster convergence speed and lower error bound within the task duration are rigorously presented.
Moreover, three synchronization examples substantiate the validity of the SEZN approach and the
related controller for synchronization of chaotic sensor systems. Comparisons with other approaches
such as the CZN approach, show the convergence superiority of the proposed SEZN approach.
Finally, extensive tests further investigate the impact on convergence performance by choosing
different values of design parameter and initial state.

Keywords: zeroing neurodynamic; recurrent neural networks; chaos; sensors; chaotic disturbance
rejection; fast synchronization
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1. Introduction

In 1963, Edward Lorenz [1] started to introduce and report the research on chaotic attractor.
Since this inspiring work, extensive research on the chaos handle and synchronization of sensors has
been investigated and developed for industrial electronics [2–6]. The technology of chaotic sensor
includes two significant parts, i.e., information acquiring as well as information processing. Due to the
complexity and nonlinearity, the investigation of chaos synchronization of advanced sensor systems for
rejecting chaotic disturbances is a tough issue [7–10]. Specifically, as one of the attractive phenomena
in the sensor processing, the chaotic synchronization of sensor systems has been a heated issue that
researchers have focused on recently [11–13]. For the real-time chaotic synchronization of sensor
systems, the procedure is that two chaotic systems adapt the provided properties of the motions to
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usual behavior by converging in real-time t [14]. In other words, starting from random or different
initial states, all the real-time states of the response, i.e., slave chaotic sensor systems are forced to track
all the real-time states of the drive, i.e., master chaotic sensor systems. The synchronization of chaotic
sensor systems has numerous practical applications, such as secure communications [15,16], sensor
systems [17], finance systems [18] and electronic systems [19], ecological systems [20], and many other
engineering systems [21]. Moreover, various feasible real sensing applications in the fields of sensing
and chaotic sensor systems have been reported [22–29]. For example, a novel circuit implementation
of the chaotic Lorenz system was introduced in [22]. Note that the corresponding chaotic behavior
of the circuit systems closely conforms to those results predicted by the numerical experiments.
The synchronized chaotic systems were finally utilized in the communications. Teodorescu [23]
detailedly investigated a mechanism that describes the high sensitivity and selectivity in a sensor
neural network system. In [23], several new sensor concepts were proposed and introduced by
the measurement on the basis of chaos. By utilizing the nonlinear dynamic chaotic sensor system,
the high sensitivity measurement was effectively obtained. In [24], a novel detection system of a
metal detector was developed by utilizing a chaotic system-duffing oscillator. Karimov et al. [25]
presented the analysis of two kinds of signals, which illustrated that chaotic signals show high
resistance to crosstalk, and were less influenced by the transmission loss compared to chirp signals.
Tlelo-Cuautle et al. [26] novelly proposed an elegant system with the open curve of equilibrium points,
of which the chaotic oscillator was implemented via the field-programmable-gate-array (FPGA). In [27],
the authors developed a new multilayer perceptron (MLP), which was implemented by effectively
utilizing an FPGA to forecast experimental-chaotic time-series. In [15], Yang and Zhang novelly
introduced a global chaotic synchronization approach for identical systems, and successfully applied
it to secure communication. In addition, Naderi and Kheiri [16] investigated the exponential-chaotic
synchronization of the system together with the successful application in secure communication.
A novel synaptic weight update learning-rule of Hermite-neural-network was introduced in [21].
Chen et al. [30] novelly investigated the hybrid synchronization feature in the array of coupled-chaotic
systems. Moreover, numerical, analog and digital circuit models were detailedly investigated and
presented in [19] with the 3-dimensional, continuous and autonomous new chaotic system.

Extensive research has been done for chaotic synchronization of sensor systems by employing
and utilizing the effective approaches up to now, such as the neurodynamic approach [31,32],
the active control approach [14,33], the sliding mode control approach [2], the model predictive
control approach [34], and the adaptive backstepping control approach [35]. For instance, Li et al. [31]
presented a simple controller designed by the conventional zeroing neurodynamic (CZN) approach
for synchronization of chaotic systems. Moreover, Ahmad et al. [14] studied and investigated
the global-chaotic synchronization issue for two identical as well as nonidentical chaotic systems
via novelly utilizing a linear-active-control (LAC) approach. In addition, Zhang and Liu [34]
novelly proposed a robust model predictive control approach to address synchronization of the
discrete-time-chaotic systems with polytopic-model-uncertainties. Lin et al. [35] proposed a systematic
approach for developing, as well as neural-adaptive backstepping-control of the chaotic system with
uncertainties. Li et al. [36] novelly developed a method for the impulsive lag synchronization of
chaotic systems.

Due to the advantages in terms of distributed storage, parallelism and easy implementation
by the hardware, the neurodynamic approach has been served as a prior alternative for chaotic
synchronization of sensor systems by researchers as well as engineers [37–45]. As the new branch
of recurrent-neural-networks (RNNs) [46–49], various neural network models designed by the CZN
approach have been developed as effective tools for the online engineering issues handling, as well
as real-time synchronization of chaotic systems [50–56]. For instance, Zhang et al. [53] detailedly
investigated the control issues of three kinds of chaotic systems by combining the CZN approach as
well as the gradient neurodynamic approach to design an effective controller. Moreover, an effective
stabilization control method of the hyper-chaotic system with only-one control-input was investigated
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in [55] by using a neurodynamic approach. Jin et al. [56] novelly proposed a controller-design approach,
for tracking-control of a modified Lorenz chaotic system with the division by zero problem conquered.

By utilizing the information of the time derivative, extensive works for different real-time
engineering problems as well as control and synchronization of chaotic sensor systems were developed
by leveraging the CZN approach. It was theoretically proved that the associated models or controllers
designed by the CZN approach can find the theoretical online solutions with global-and-exponential
convergence property. However, such a convergence property may still not be sufficient for a strict
real-time requirement in a complex environment, such as real-time secure communication systems
and radar communication systems [57,58]. In addition, as the complexity of systems increases,
the computational scale would become intensively large, and the synchronization accuracy would
become particularly low while the real-time capability of chaotic systems needs to be considered in
some practical applications. For instance, in [31], the authors developed a simple controller on the
basis of the CZN approach. It was proven in [31] that resultant synchronization-error exponentially
converges towards zero without considering disturbances by using such a controller. However, the
low synchronization accuracy may occur if such a controller is applied in the real-time synchronization
of chaotic systems within a short synchronization duration, which finally leads to the failure of
synchronization process and chaos behavior.

Being superior to the above-mentioned works on the basis of the CZN approach, this paper
introduces and develops a novel super-exponential-zeroing neurodynamic (SEZN) approach and
its associated controller. Quite different from the CZN approach with exponential convergence
property, the controller designed by the proposed SEZN approach inherently possesses the advantage
of super-exponential convergence, which makes the synchronization process faster and more accurate.
Theoretical analyses rigorously prove the stability and convergence superiorities in both faster
convergence rate as well as lower error bound within the synchronization duration. To the best
of the authors’ knowledge, the SEZN approach as well as its associated controller with the outstanding
super-exponential convergence property for the chaotic synchronization of sensor systems have not
been investigated in the existing research. This work considers the chaotic issue related to sensor
systems. It is a critical issue and some sensors fail exactly due to the chaotic disturbances. This is the
motivation for us to develop a theoretical model to harness this issue. The zeroing neurodynamic
architecture for designing the controller of chaotic sensor systems is presented in Figure 1 for better
understanding the main principle.

t

Figure 1. Zeroing neurodynamic architecture for designing the controller of chaotic sensor systems.
Note that the control signals u(t) are transmitted to the system effectors (i.e., the slave chaotic
sensor systems).
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The remaining part is structured as follows. The formulation of synchronization between two
chaotic systems is presented as preliminaries, and the corresponding controllers designed by the
SEZN approach as well as the CZN approach are presented in Section 2. In Section 3, rigorous
theoretical analyses on the controller designed by the proposed SEZN approach are presented. Section 4
shows simulation studies including three synchronization examples, comprehensive comparisons and
extensive tests. Section 5 concludes this paper with future directions. Before ending the introductory
section, the contributions of the paper are highlighted as follows.

• By making progress along the direction of the CZN approach, the paper proposes an effective
SEZN approach and its associated controller to promote the convergence properties, and accelerate
the synchronization process of chaotic sensor systems.

• The controller designed by the proposed SEZN approach distinctively and inherently possesses
the advantage of super-exponential convergence, which makes the synchronization process faster
and more accurate. It is a breakthrough in the convergence research of the neurodynamic approach
and real-time chaotic synchronization of sensor systems.

• Theoretical analyses on the stability and convergence advantages in terms of both faster
convergence speed and lower error bound within the synchronization duration are shown in
detail to guarantee the validity and advantage of the SEZN approach and its associated controller.

• Simulation studies including three synchronization examples, comparisons with other methods
as well as extensive tests all verify the effectiveness as well as superiority of the SEZN approach
and the related controller in practice.

2. Preliminaries and Neurodynamic Approaches

The formulation of real-time synchronization between two chaotic sensor systems is presented as
preliminaries in this section. Then, the SEZN approach is proposed for the design of the controller.
For comparative purposes, the CZN approach is also presented accordingly.

2.1. Synchronization of Chaotic Systems

Let us consider a master chaotic system with a general form as follows:

ẋm(t) = fm(xm(t)), (1)

where xm(t) = [xm1(t), xm2(t), · · · , xmn(t)]T ∈ Rn is a state vector of master chaotic system, and fm(·) :
Rn → Rn is a nonlinear mapping vector of a specific master chaotic sensor system. Correspondingly,
a slave chaotic system with a general form is presented:

ẋs(t) = fs(xs(t)) + u(t), (2)

where vector xs(t) = [xs1(t), xs2(t), · · · , xsn(t)]T ∈ Rn is a state vector of slave chaotic system, and
mapping fs(·) : Rn → Rn is a nonlinear mapping vector of a specific slave chaotic system. In addition,
vector u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ Rn is a control-input vector transmitted to a slave chaotic
system for synchronization.

If the initial state vectors xm(0) and xs(0) of both master as well as slave chaotic systems differ
from each other, the state trajectories of such systems differ quite a lot. The objective for synchronization
between master chaotic system (1) and slave chaotic system (2) is to develop a control-input vector
u(t) so that the slave system is forced to track the master system with the synthesized state error
e(t) = xm(t)− xs(t) converging to zero. Extensive research for real-time chaotic synchronization
of sensor systems has been proposed by leveraging the CZN approach for fully exploiting the
time-derivative information. The associated models and controllers designed by the CZN approach
have been proven to possess the global as well as exponential convergence property. However, such a
convergence property may not be sufficient for a strict real-time requirement in a complex environment,
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such as real-time secure communication systems and radar communication systems [57,58]. In addition,
as the complexity of systems increases, the computational scale would become intensively large, and
the synchronization accuracy would become particularly low when the real-time capability of chaotic
systems needs to be considered in practical applications. To tackle the tough issue in the above
discussion, we make progress along the direction of CZN research, and further propose a new SEZN
approach with super-exponential convergence property.

Remark 1. Note that most of the specific chaotic systems could be formulated as the master chaotic system (1)
with a general form of nonlinear differential equations, such as Lu chaotic systems [53], Chen chaotic systems [55],
and Lorenz chaotic systems [56], which covers most common chaotic systems [31].

2.2. Neurodynamic Approaches

The formulation for chaotic synchronization of sensor systems is presented. In this section,
we propose the SEZN approach for designing the controller of chaotic sensor systems. For further
investigation and better comparison, the controller designed by the CZN approach is also presented.
To achieve the real-time synchronization of slave chaotic system (2) and master chaotic system (1)
under the influence of external disturbances, a controller is designed by the following SEZN approach.

First, to monitor as well as to control the synchronization procedure of chaotic systems (2) and (1),
a vector valued error-function (for the real-time measurement of difference between states of master
and slave chaotic sensor systems) is defined as follows:

e(t) = xm(t)− xs(t), (3)

To make each element ei(t), with i = 1, 2, · · · , n, of the synthesized error (3) converge towards
zero with respect to time t, the SEZN approach is utilized with the following dynamic equation:

ė(t) = −λ exp(t)Υ(e(t)), (4)

where design parameter λ ∈ R+ is set for the stability and convergence of neurodynamic model.
Besides, Υ(·) : Rn → Rn is an alternative activation function vector mapping with each element being
a monotonically-increasing-odd-function, which could be used to accelerate convergence speed of
the neurodynamic model. Without loss of generality and for simplicity, a linear activation function
Υ(e(t)) = e(t) is used and investigated in the paper.

By substituting chaotic systems (2) and (1) into dynamic Equation (4), the corresponding
neurodynamic model for the chaotic synchronization of sensor systems is depicted as follows:

fm(xm(t))− fs(xs(t))− u(t) = −λ exp(t)Υ(xm(t)− xs(t)) (5)

with ė(t) = ẋm(t)− ẋs(t). Due to the unavoidable existence of unexpected external time-varying
disturbances in the complex environment, the synchronization of chaotic systems would be a knotty
time-varying problem. As readily founded in the neurodynamic model (5), the proposed SEZN
approach can effectively handle the disturbance rejection issue in a relatively simple manner via
exploiting the time-derivative information as well as the super-exponential properties of the involved
chaotic systems.

According to neurodynamic model (5), the associated controller with explicit control-input vector
u(t) is thus designed:

u(t) = fm(xm(t))− fs(xs(t)) + λ exp(t)Υ(xm(t)− xs(t)). (6)

Note that the associated controller (6) designed by the proposed SEZN approach does not
require any information of external disturbances which is thus applicable in practical applications.
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The neuron-connection architecture of the RNN model for designing the controller of chaotic systems
via the proposed SEZN approach is presented in Figure 2. As one can readily find from the figure, the
RNN model in the paper is a typical kind of Hopfield-type RNN [51] with each layer having n neurons.
Unlike the traditional feed-forward neural networks (FNNs), the RNNs are the neural networks that
possess the feedback connections of each network layers [59]. The related structure of RNNs is more
complicated than the one of FNNs. More specifically, each neuron in the RNNs exports outputs to other
neurons via the connected synapses. At the same time, each neuron in the RNNs receives inputs from
other neurons via the connected synapses. The input information depends on the initial states of the
RNNs. Then, the real-time states vary adaptively. Finally, the RNNs converge to the equilibrium states
(or termed steady states), and the steady states are the outputs of the RNNs. The output signals of the
RNN model are transmitted to the effectors, e.g., the slave chaotic sensor systems. For superiorities of
parallelism and easy implementation by hardware, the RNN model can be implemented by utilizing
embedded systems such as field-programmable gate arrays (FPGAs) [26,27,60]. Many state-of-the-art
studies [27,61,62] have been reported for the effective implementation of the neural network model
such as the MLP. In [27], the MLP was effectively implemented by utilizing the FPGA Ciclone IV
GX FPGA DE2i-150 from Altera. Such an MLP is interfaced with a computer by utilizing the serial
communication protocol to feed the input data, which was introduced in detail in [60]. The extensions
of the above RNN model to the real implementations on FPGAs could be interesting and open future
research directions.

X1 x4x3x2

Figure 2. Neuron-connection architecture of the associated RNN model for designing the controller of
chaotic sensor systems with xsi denoting the ith neuron.

To lay a basis for further investigation and comparison, the controller designed by the CZN
approach for the chaotic synchronization of sensor systems is also presented as followed [31]:

u(t) = fm(xm(t))− fs(xs(t)) + γΨ(xm(t)− xs(t)), (7)

where design parameter γ ∈ R+ is set for the stability and convergence of the above controller, and
Ψ(·) : Rn → Rn is an alternative activation-function vector mapping for the CZN approach. For fair
comparisons, design parameters are selected to be γ = λ, and activation-function vector mappings
Υ(·) and Ψ(·) are both set to be linear activation function.

3. Theoretical Analyses

To confirm the validity and superiority of the proposed SEZN approach and the related
controller (6) for the synchronization of chaotic systems, the theoretical analyses are presented in
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detail. In addition, the corresponding theoretical results of the CZN approach are also presented for
better comparison.

Definition 1. [63] For chaotic synchronization of sensor systems (1) and (2), starting with a random initial
state xs(0), a vector valued error function e(t) at time t ≥ 0 synthesized by a control system is said to be
globally and exponentially convergent to zero if it satisfies

‖e(t)‖E ≤ α‖e(0)‖E exp(−βt), ∀t ≥ 0,

where symbol ‖ · ‖E denotes the Euclidean norm of a vector, and constants α and β exist with β being the
exponential convergence rate of ‖e(t)‖E.

Definition 2. [63] For the chaotic synchronization of sensor systems (1) and (2), starting with a random initial
state xs(0), a state trajectory xs(t) of slave chaotic system (2) at time t ≥ 0 synthesized by a control system is
said to be globally and exponentially convergent to the state xm(t) of master chaotic system (1) if it satisfies

‖xm(t)− xs(t)‖E ≤ α‖xm(0)− xs(0)‖E exp(−βt). ∀t ≥ 0.

Definition 3. [64] For the chaotic synchronization of sensor systems (1) and (2), starting with a random initial
state xs(0), a vector-valued error function e(t) at time t ≥ 0 synthesized by a control system is said to be
globally and super-exponentially convergent to zero if it satisfies

‖e(t)‖E ≤ α‖e(0)‖E exp(−β exp(t)), ∀t ≥ 0,

where constants α and β exist with β exp(t)/t being the super-exponential convergence rate of ‖e(t)‖E.

Definition 4. [64] For the chaotic synchronization of sensor systems (1) and (2), starting with a random initial
state xs(0), a state trajectory xs(t) of slave chaotic system (2) at time t ≥ 0 synthesized by a control system is
said to be globally and super-exponentially convergent to the state xm(t) of master chaotic system (1) if it satisfies

‖xm(t)− xs(t)‖E ≤ α‖xm(0)− xs(0)‖E exp(−β exp(t)). ∀t ≥ 0.

Theorem 1. [65,66] For the chaotic synchronization of sensor systems (1) and (2), starting with a random
initial state xs(0), the control system equipped with controller (6) is globally stable in the sense of Lyapunov.

Proof of Theorem 1. For handling the synchronization of chaotic sensor systems (1) and (2),
the dynamical equation of the closed-loop control system designed by the proposed SEZN approach is
depicted as follows:

ė(t) = −λ exp(t)Υ(e(t)), (8)

where e(t) = xm(t)− xs(t). If a linear activation-function processing-array Υ(·) is utilized, Equation (8)
can be rewritten as

ė(t) = −γ exp(t)e(t).

Let us define a Lyapunov function candidate:

L(t) =
‖e(t)‖2

E
2

=
eT(t)e(t)

2
.

Note that L(t) is positive-definite in view of L(t) > 0 for e(t) 6= 0, and L(t) = 0 for e(t) = 0 only.
Afterwards, one can have the time-derivative of L(t) as

L̇(t) =
dL(t)

dt
= eT(t)

de(t)
dt

= −λ exp(t)eT(t)e(t).
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Therefore, one can obtain the result that L̇(t) is negative-definite for time t ∈ [0,+∞) with design
parameter λ > 0. Based on the Lyapunov stability theory [66], the control system equipped with
controller (6) is globally stable. The proof is thus completed.

Theorem 2. [64,65] For the synchronization of chaotic sensor systems (1) and (2), starting with a random
initial state xs(0), the vector-valued error function e(t) at time t ≥ 0 synthesized by control system equipped
with controller (6) globally and super-exponentially converges to zero with the super-exponential convergence
rate being λ exp(t)/t.

Proof of Theorem 2. Note that the ith dynamical subsystem corresponding to error function e(t) in
neurodynamic model (5) is depicted as

ėi(t) = −λ exp(t)ei(t) (9)

with i = 1, 2, · · ·m. Based on the differential equation theory [67], the solution to (9) is

ei(t) =
ei(0)

exp(−λ)
exp(−λ exp(t)). (10)

The vector-formed of (10) is thus as

e(t) =
e(0)

exp(−λ)
exp(−λ exp(t)). (11)

Therefore, the residue error is obtained as

‖e(t)‖E =

√√√√ m

∑
i=1

e2
i (0)

exp(−2λ)
exp(−λ exp(t)). (12)

Equation (12) means that the residue error of the neurodynamic model (5) globally and converges
to zero with super-exponential convergence rate as λ exp(t)/t.

According to Definition 3, we have the result that the vector-valued error function e(t) synthesized
by the control system equipped with controller (6) globally and super-exponentially converges to zero
with the super-exponential convergence rate being λ exp(t)/t. The proof is thus completed.

Corollary 1. [64,65] For the synchronization of chaotic senor systems (1) and (2), starting with a random
initial state xs(0), the state trajectory xs(t) of slave chaotic system (2) at time t ≥ 0 synthesized by a control
system equipped with controller (6) globally and super-exponentially converges to the state xm(t) of master
chaotic system (1).

Proof of Corollary 1. It can be generalized from Definition 4 and the proof of Theorem 2.

For better comparison, corresponding theoretical results of the controller (7) designed by the CZN
approach for chaotic synchronization of sensor systems (1) and (2) are also provided as the following
lemma [31].

Lemma 1. [63] For the synchronization of chaotic sensor systems (1) and (2), starting with a random initial
state xs(0), the vector-valued error function e(t) at time t ≥ 0 synthesized by control system equipped with
controller (7) exponentially converges to zero with the exponential convergence rate being γ.

Proof of Lemma 1. The ith dynamical subsystem corresponding to error function e(t) of control
system equipped with controller (7) is depicted as
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ėi(t) = −γei(t) (13)

with i = 1, 2, · · ·m. On the basis of the differential equation theory [67], the solution to (13) is

ei(t) = ei(0) exp(−γt). (14)

The vector-formed of (14) can be obtained:

e(t) = e(0) exp(−γt). (15)

The residue error is obtained as follows:

‖e(t)‖E = ‖ei(0)‖E exp(−γt). (16)

Equation (16) means that the residue error of the control system globally and exponentially
converges to zero with exponential convergence rate being λ.

According to Definition 1, we have the result that the vector-valued error function e(t) synthesized
by the control system equipped with controller (7) globally and exponentially converges to zero with
the exponential convergence rate being λ. The proof is thus completed.

Corollary 2. [63] For the synchronization of chaotic sensor systems (1) and (2), starting with a random initial
state xs(0), the state trajectory xs(t) of slave chaotic system (2) at time t ≥ 0 synthesized by a control system
equipped with controller (7) globally and exponentially converges to the state xm(t) of master chaotic system (1).

Proof of Corollary 2. It can be generalized from Definition 2 and the proof of Lemma 1.

To confirm the fast convergence property of the control system equipped with controller (6),
the following theorem is presented in terms of convergence performance of the bound of residual error.

Theorem 3. [64,65] For the synchronization of chaotic sensor systems (1) and (2), starting with the same
random initial state xs(0), the upper bound of residual error ‖eSEZN(t)‖E synthesized by a control system
equipped with controller (6) is lower than residual error ‖eCZN(t)‖E synthesized by a control system equipped
with controller (7) at the same instance t∗ ∈ (0,+∞), i.e., ‖eSEZN(t∗)‖E < ‖eCZN(t∗)‖E, with the same
design parameters λ = γ.

Proof of Theorem 3. According to residual errors of control systems equipped with controllers (6)
and (7), define two function candidates to measure the real-time residual errors via the SEZN approach
and the CZN approach respectively as follows:

LSEZN(t) =
‖eSEZN(t)‖2

E
2

,

LCZN(t) =
‖eCZN(t)‖2

E
2

.

Both LSEZN(t) and LCZN(t) are positive-definite in view of LSEZN(t) > 0 and LCZN(t) > 0 for
eSEZN(t) 6= 0 and eCZN(t) 6= 0, and LSEZN(t) = 0 and LCZN(t) = 0 for both eSEZN(t) = 0 and
eCZN(t) = 0 only. Then, we can obtain the time-derivatives of LSEZN(t) and LCZN(t) respectively
as follows:

L̇SEZN(t) = −λ exp(t)eT
SEZN(t)eSEZN(t), (17)

L̇CZN(t) = −γeT
CZN(t)eCZN(t). (18)
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Compared (17) with (18), for the same parameters λ = γ and the same initial states eSEZN(tini) =

eCZN(tini) at time tini ∈ [0,+∞), we have

L̇SEZN(tini) < L̇CZN(tini). (19)

In the next moment, i.e., tini = tini +4t with4t→ 0, for t ∈ (0,+∞), we can obtain

LSEZN(tini +4t) = LSEZN(tini) +4tL̇SEZN(tini), (20)

and
LCZN(tini +4t) = LCZN(tini) +4tL̇CZN(tini). (21)

According to (19), with the same initial states, i.e., eSEZN(tini) = eCZN(tini) 6= 0, we have

LSEZN(tini +4t) < LCZN(tini +4t).

Therefore, we have the conclusion that

‖eSEZN(t∗)‖E < ‖eCZN(t∗)‖E, (22)

where t∗ = tini + 4t ∈ (0,+∞). Equation (22) means that the upper bound of residual error
synthesized by a control system equipped with controller (6) is lower than residual error ‖eCZN(t)‖E

synthesized by a control system equipped with controller (7) at the same instance t∗ ∈ (0,+∞) with
the same parameters λ = γ. The proof is thus completed.

4. Verifications, Comparisons and Tests

Simulation verifications including three synchronization examples, comparisons with other
approaches, and extensive tests are provided to substantiate the validity, fast convergence performance
as well as superiority of the proposed SEZN approach and the associated controller (6) for the chaotic
synchronization of sensor systems.

4.1. Synchronization Examples

In the examples, the synchronization of two identical Lu chaotic systems, two identical
autonomous chaotic systems, and two nonidentical chaotic systems are successively considered
and presented. Without losing generality, the initial value of each state of chaotic sensor systems is
set to be xm(0) = [1, 1, 1]T and xs(0) = [3, 3, 3]T. The numerical studies are conducted on MATLAB
R2014a environment implemented by a personal digital computer with a CPU of Inter(R) Core(TM)
i5-7400U @ 3.00 GHz, 4.00 GB memory as well as a Windows 10 Ultimate operating system.

4.1.1. Synchronization of Two Identical Lu Chaotic Systems

Let us investigate the following Lu chaotic system [31]:
ẋ1(t) = a(x2(t)− x1(t)),

ẋ2(t) = −x1x3(t) + cx2(t),

ẋ3(t) = x1(t)x2(t)− bx3(t),

(23)

where a = 36, b = 3 and c = 20. For the synchronization of identical Lu chaotic systems, the real-time
master chaotic system can be depicted in

ẋm(t) =

 a(xm2(t)− xm1(t))
−xm1xm3(t) + cxm2(t)
xm1(t)xm2(t)− bxm3(t)

 , (24)
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and the real-time slave chaotic system with control input vector can be depicted in

ẋs(t) =

 a(xs2(t)− xs1(t))
−xs1xs3(t) + cxs2(t)
xs1(t)xs2(t)− bxs3(t)

+ u(t). (25)

The synchronization duration of this example is set to be Td = 3 s. In addition, design parameter
is λ = 1. The corresponding simulation results of synchronization of two identical Lu chaotic
systems (24) and (25) equipped with controller (6) using the proposed SEZN approach are illustrated
in Figures 3 and 4. Specifically, Figure 3a shows real-time synchronization of two such identical
Lu chaotic systems (24) and (25) in three-dimensional space. With different values of initial states,
the slave Lu chaotic systems (25) quickly synchronize toward the master Lu chaotic systems (24).
In addition, Figure 3b–d respectively illustrate each state, i.e., xs1, xs2 and xs3 of the slave system, which
coincides well with each state, i.e., xm1, xm2 and xm3, of the master system. As shown in Figure 4,
the absolute values of synchronization errors of all states are relatively small (or say, ignorable),
and quickly converge to zero. Moreover, the supremum of each error keeps showing the convergence
tendency during the synchronization process, which is consistent with the theoretical result presented
in Theorem 2, i.e., with the error function being super-exponentially convergent to zero. The above
results illustrate the fast convergence performance of the proposed SEZN approach as well as the
associated controller (6) for the synchronization of two identical Lu chaotic systems.
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Figure 3. Synchronization performance between two identical Lu chaotic systems (24) and (25)
equipped with controller (6) via the proposed super-exponential-zeroing neurodynamic
(SEZN) approach.

It is worth pointing out here that the works in [68,69] implemented on CMOS integrated circuits
and FPGA embedded systems possess outstanding synchronization performance between two chaotic
systems, and the associated errors are accomplished very fast, i.e., in the very minimum number
of iterations. In the illustrative examples of the numerical simulations, the chaotic systems are
synchronized within 2.4 s (the synchronization task duration Td = 3 s) with the design parameter
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being λ = 1. Note that the selection of design parameter λ can be predefined by practitioners.
Theoretically, arbitrary value satisfying λ > 0 can be set. In practical applications, for the purpose of
acceleration of the convergence rate, the value of design parameter λ can be set as appropriately large
as the hardware would permit [70]. To further show the fast synchronization of chaotic systems, the
tests have been conducted by using a larger value of design parameter λ. The graphical results are
shown in Figure 5. As one can readily see in this figure, two identical Lu chaotic systems (24) and (25)
can be synchronized within 0.5 ms (the same synchronization task duration being Td = 3 s) when
the design parameter is set to be λ = 104. As proved in Theorem 2, the control system presents the
super-exponential convergence and synchronization property with convergence rate being λ exp(t)/t.
Therefore, by choosing appropriately large values of design parameter λ, controller (6) designed via
the proposed SEZN approach possesses desirable convergence speed, i.e., within milliseconds, for the
fast chaotic synchronization of sensor systems in practice.
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Figure 4. Absolute errors between two identical Lu chaotic systems (24) and (25) equipped with
controller (6) via the proposed SEZN approach.
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Figure 5. Absolute errors between two identical Lu chaotic systems (24) and (25) equipped with
controller (6) via the proposed SEZN approach by choosing design parameter λ = 104.

4.1.2. Synchronization of Two Identical Autonomous Chaotic Systems

Let us investigate the following new autonomous chaotic system proposed in [14]:
ẋ1(t) = p(x2(t)− x1(t)) + x2(t)x3(t),

ẋ2(t) = (r− p)x1 − x1x3(t) + rx2(t),

ẋ3(t) = −qx3(t)− sx2(t)x2(t),

(26)

where p = 40, q = 5, r = 30 and s ∈ [0, 10]. For synchronization of identical autonomous chaotic
systems with the above form, the real-time master chaotic system is described as

ẋm(t) =

p(xm2(t)− xm1(t)) + xm2(t)xm3(t)
(r− p)xm1 − xm1xm3(t) + rxm2(t)
−qxm3(t)− sxm2(t)xm2(t)

 , (27)

and the slave chaotic system with control input vector is described as
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ẋs(t) =

p(xs2(t)− xs1(t)) + xs2(t)xs3(t)
(r− p)xs1 − xs1xs3(t) + rxs2(t)
−qxs3(t)− sxs2(t)xs2(t)

+ u(t). (28)

The synchronization duration of this example is set to be Td = 3 s. In addition, design parameter
is still set to be λ = 1. The corresponding simulation results of synchronization of two identical
autonomous chaotic systems (27) and (28) equipped with controller (6) using the proposed SEZN
approach are illustrated in Figures 6 and 7. Specifically, Figure 6a shows real-time synchronization of
two such identical autonomous chaotic systems (27) and (28) in three-dimensional space. With different
values of initial states, the slave autonomous chaotic systems (28) also quickly synchronize toward
the master autonomous chaotic systems (27). In addition, Figure 6b–d respectively show each state,
i.e., xs1, xs2 and xs3 of the slave system, coincides well with each state, i.e., xm1, xm2 and xm3, of the
master system within the synchronization duration. As we can see in Figure 7, the absolute values of
synchronization errors of all states are also relatively small (or say, ignorable), and quickly converge to
zero. Moreover, the supremum of each error shows super-exponential convergence property. The error
function is super-exponentially convergent toward zero. The above results also illustrate the fast
convergence performance of the proposed SEZN approach as well as the associated controller (6) for
the synchronization of two identical autonomous chaotic systems.
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Figure 6. Synchronization performance between two identical autonomous chaotic systems (27) and (28)
equipped with controller (6) via the proposed SEZN approach.
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Figure 7. Absolute errors between two identical autonomous chaotic systems (27) and (28) equipped
with controller (6) via the proposed SEZN approach.

To further show the performance details (i.e., quantifying) of the rejection of chaotic disturbances,
the absolute values of position errors, i.e., |ei(t)|, synthesized by the proposed SEZN approach and
its associated controller at different time instants, i.e., t = 0.6 s, 1.2 s, 1.8 s, 2.4 s and 3 s, in three
synchronization examples are presented in Tables 1–3, respectively. As one can readily find in the
graphical results, the absolute values of errors show similar convergence properties for rejection of
chaotic disturbances. The errors show fast decreasing tendency, and rapidly converge towards zero
with the global and super-exponential properties. Such graphical results are also consistent with
theoretical analyses in Section 3.

Moreover, we have summarized number of iterations and estimation time for synchronization of
chaotic systems in the above three synchronization examples (i.e., two identical Lu chaotic systems,
two identical autonomous chaotic systems, and two nonidentical chaotic systems), and presented the
associated graphical results in Table 4. As shown in Table 4, if the step size is selected to be h = 0.001
and the design parameter is set to be λ = 1, each estimation time for synchronization in three examples
is less then 2.4 s with the number of iterations being less than 2400.

Table 1. Absolute values of errors between two identical Lu chaotic systems (24) and (25) equipped
with controller (6) via the proposed SEZN approach at different time instants during the rejection of
chaotic disturbances.

State of Chaotic Systems |ei(0.6)| |ei(1.2)| |ei(1.8)| |ei(2.4)| |ei(3)|

Element 1 of (24) and (25) 1.417 s 0.469 s 0.047 s 8.830× 10−4 s 1.013× 10−8 s
Element 2 of (24) and (25) 1.417 s 0.469 s 0.051 s 9.791× 10−4 s 1.013× 10−8 s
Element 3 of (24) and (25) 1.417 s 0.469 s 0.047 s 8.830× 10−4 s 1.013× 10−8 s

Table 2. Absolute values of errors between two identical autonomous chaotic systems (27) and (28)
equipped with controller (6) via the proposed SEZN approach at different time instants during the
rejection of chaotic disturbances.

State of Chaotic Systems |ei(0.6)| |ei(1.2)| |ei(1.8)| |ei(2.4)| |ei(3)|

Element 1 of (27) and (28) 1.242 s 0.269 s 0.016 s 9.082× 10−5 s 1.027× 10−8 s
Element 2 of (27) and (28) 1.242 s 0.269 s 0.016 s 9.082× 10−5 s 1.033× 10−8 s
Element 3 of (27) and (28) 1.227 s 0.258 s 0.014 s 7.811× 10−5 s 1.028× 10−8 s
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Table 3. Absolute values of errors between two nonidentical chaotic systems (24) and (28) equipped
with controller (6) via the proposed SEZN approach at different time instants during the rejection of
chaotic disturbances.

State of Chaotic Systems |ei(0.6)| |ei(1.2)| |ei(1.8)| |ei(2.4)| |ei(3)|

Element 1 of (24) and (28) 1.417 s 0.469 s 0.051 s 9.791× 10−4 s 1.014× 10−8 s
Element 2 of (24) and (28) 1.417 s 0.469 s 0.051 s 9.791× 10−4 s 1.013× 10−8 s
Element 3 of (24) and (28) 1.417 s 0.469 s 0.051 s 9.791× 10−4 s 1.013× 10−8 s

Table 4. Number of iterations and estimation time for synchronization of chaotic systems in three
synchronization examples.

State of Chaotic Systems Number of Iterations Estimation Time for Synchronization ♦
Element 1 of (24) and (25) 2377 2.377 s
Element 2 of (24) and (25) 2378 2.378 s
Element 3 of (24) and (25) 2377 2.377 s

Element 1 of (27) and (28) 2191 2.191 s
Element 2 of (27) and (28) 2191 2.191 s
Element 3 of (27) and (28) 2190 2.190 s

Element 1 of (24) and (28) 2377 2.377 s
Element 2 of (24) and (28) 2377 2.377 s
Element 3 of (24) and (28) 2377 2.377 s

Note of ♦: Estimation time for synchronization denotes the time required for absolute value of
synchronization error of each element |ei(t)| synthesized by the proposed controller being less than 10−3.

4.1.3. Synchronization of Two Nonidentical Chaotic Systems

We further investigate and achieve synchronization of nonidentical chaotic systems, i.e., with
the maser chaotic system being the Lu chaotic system (24) and the slave chaotic system being the
autonomous chaotic system (28).

The synchronization duration of this example is set to be Td = 3 s. In addition, design parameter
is set to be λ = 1. The corresponding simulation results of synchronization of two nonidentical
chaotic systems (24) and (28) equipped with controller (6) using the proposed SEZN approach are
illustrated in Figures 8 and 9. Specifically, the real-time synchronization of two such nonidentical
chaotic systems (24) and (28) is shown in Figure 8a in three-dimensional space. With different initial
states, the slave autonomous chaotic system (28) still quickly synchronizes toward the master Lu
chaotic system (24). In addition, Figure 8b–d respectively show each state, i.e., xs1, xs2 and xs3 of
the slave autonomous chaotic system (28), almost overlaps each state, i.e., xm1, xm2 and xm3, of the
master Lu chaotic system (24) within the synchronization duration. As shown in Figure 9, the absolute
values of synchronization errors of all states are also relatively small (or say, ignorable), and quickly
converge to zero. Moreover, the supremum of each error shows super-exponential convergence
property. The error function is super-exponentially convergent to zero, for the case of synchronization
of two nonidentical chaotic systems. The above results also illustrate the fast convergence performance
of the proposed SEZN approach as well as the associated controller (6) for the synchronization of two
nonidentical chaotic systems.
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Figure 8. Synchronization performance between two nonidentical chaotic systems (24) and (28)
equipped with controller (6) via the proposed SEZN approach.
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Figure 9. Absolute errors between two nonidentical chaotic systems (24) and (28) equipped with
controller (6) via the proposed SEZN approach.

4.2. Comparisons with Other Approaches

In this subsection, to substantiate the fast convergence property and superiority of the proposed
SEZN approach, we conduct and show the detailed comparisons by using other approaches, e.g., the
CZN approach, for the synchronization of chaotic systems under the same conditions.

Originally derived from Zhang et al. [31] to design the neurodynamic models, the CZN approach
is able to handle different time-varying problems including the synchronization of chaotic systems.
Specifically, for synchronization of chaotic systems, the associated controller designed by the CZN
approach is depicted as (7). For better comparison, the design parameter of the CZN approach is
set to be γ = λ = 1 in this simulation. In addition, other simulation conditions are set the same as
those in Section 4.1. The comparative simulation results of synchronization performance between two
identical Lu chaotic systems (24) and (25), two identical autonomous chaotic systems (27) and (28)
and two nonidentical chaotic systems (24) and (28) equipped with controllers (6) and (7) via the
proposed SEZN and CZN approaches are presented in Figures 10–12. Specifically, in three comparative
synchronization examples, the residual errors synthesized by two controllers designed by SEZN and
CZN approach, possess different convergence properties, i.e., super-exponential convergence and
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exponential convergence properties. As shown in these figures, the residual error synthesized by
controller (6) designed by the proposed SEZN approach present faster convergence speed in transient
state and lower error bound in steady state compared with that of synthesized by controller (7)
designed by the CZN approach. The above comparative results are consistent with the theoretical
results presented in Theorem 3.

Moreover, to further show the advantages of the controller (6) designed by the proposed SEZN
approach, comprehensive comparisons among different approaches for the synchronization of chaotic
systems are summarized in Table 5. As seen and compared from the table, the SEZN proposed in
this paper possesses the fast convergence speed, i.e., the super-exponential convergence, and global
convergence property, which is substantiated via three examples in Section 4.1. In addition, there is no
parameter selection limitation during the design process of the control system. Compared with other
approaches [14,31,53–56,71], the above-mentioned advantages make the controller (6) designed by the
proposed SEZN approach more suitable for practical applications of the real-time synchronization of
chaotic systems with the requirement of fast computational speed.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

t

 

 

CZN approach

SEZN approach

With faster comvergence speed

(a) |xm1(t)− xs1(t)|
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

t

 

 

CZN approach

SEZN approach

With faster comvergence speed

(b) |xm2(t)− xs2(t)|
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

t

 

 

CZN approach

SEZN approach

With faster comvergence speed

(c) |xm3(t)− xs3(t)|

Figure 10. Absolute errors between two identical Lu chaotic systems (24) and (25) equipped with
controller (7) via the CZN approach in comparison with controller (6) via the proposed SEZN approach.
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Figure 11. Absolute errors between two identical autonomous chaotic systems (27) and (28) equipped
with controller (7) via the CZN approach in comparison with controller (6) via the proposed
SEZN approach.
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Figure 12. Absolute errors between two nonidentical chaotic systems (24) and (28) equipped with
controller (7) via the CZN approach in comparison with controller (6) via the proposed SEZN approach.
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Table 5. Comparisons among different approaches for synchronization of chaotic systems.

Approach Synchronization Speed Convergence Property Parameter Limitation

Proposed SEZN Super-exponential Global No
CZN Exponential Global No
[14] Asymptotic Global Yes
[53] Exponential Global No
[55] Exponential Global No
[56] Exponential Global No
[71] Exponential Global No

4.3. Extensive Tests

To investigate the synchronization and convergence performance of the controller (6) designed
by the proposed SEZN approach, extensive tests in terms of residual error under the conditions of
different values of design parameter λ and different values of initial states xm(0) and xs(0) of master
and slave chaotic systems are conducted respectively. The corresponding test results are shown in
Figures 13 and 14. Firstly, we investigate the impact on the convergence performance of the selection
of design parameter λ. As shown in Figure 13, starting from the same initial states, the residual errors
present faster convergence tendency as the values of design parameter λ gradually increase from 1 to 5.
In other words, the convergence speed of residual errors synthesized by controller (6) designed via the
proposed SEZN approach can further be improved by increasing the design parameter appropriately.
Such graphical results are also consistent with the theoretical results presented in Theorem 2. That is to
say, the control system presents the super-exponential convergence and synchronization property with
convergence rate being λ exp(t)/t. In practical applications, by choosing appropriate values of design
parameter λ, controller (6) designed via the proposed SEZN approach possesses desirable convergence
speed for the real-time synchronization of chaotic systems.
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Figure 13. Absolute errors between two identical Lu chaotic systems (24) and (25) equipped with
controller (6) via the proposed SEZN approach using different values of design parameter λ.
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Figure 14. Absolute errors between two identical Lu chaotic systems (27) and (28) equipped with
controller (6) via the proposed SEZN approach using randomly generated initial states.
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Then, we investigate the impact of initial states xm(0) and xs(0) of master and slave chaotic
systems on the convergence performance. As shown in Figure 14, from five different randomly
generated initial states xm(0) and xs(0), the residual errors synthesized by controller (6) designed via
the proposed SEZN approach present similar convergence property, i.e., similar convergence speed
in transient state and similar error bound in steady state. Such graphical results are also consistent
with the theoretical results presented in Theorem 2. That is to say, the residual errors synthesized by
controller (6) designed via the proposed SEZN approach converge to zero globally.

All results verify that the SEZN approach possesses the outstanding and fast convergence
properties for the real-time synchronization of chaotic systems, and thus is more suitable for practical
applications with the requirement of fast computational speed.

Remark 2. Note that the extensive tests in the above are conducted in terms of synchronization performance and
residual error under the conditions of different values of design parameter λ (related to step sizes) and different
values of initial states xm(0) and xs(0) of master and slave chaotic systems. The tests have been justified to
guarantee chaotic regime, i.e., the synchronization performance and residual error. If bad initial conditions or
step sizes are chosen, the chaotic behavior would be suppressed in the very short time when the chaotic oscillators
or systems are implemented into an FPGA in engineering applications [68,72,73]. Note that many effective
remedial strategies, e.g., the trigonometric polynomial method [73], for handling this issue have been proposed
and developed. The investigations on the limitation of numerical simulation and possible extension to the real
implementation could be interesting and open future research directions.

5. Conclusions and Future Work

In this paper, a novel SEZN approach together with its associated controller (6) has been proposed
to improve the convergence performance and accelerate the synchronization process of chaotic sensor
systems by rejecting the chaotic disturbances. Superior to the CZN approach with exponential
convergence property, the controller designed by the proposed SEZN approach has inherently shown
the advantage of super-exponential convergence, which has made the synchronization process faster
and more accurate. Theoretical analyses on the stability and convergence advantages in terms of
both the faster convergence speed and lower error bound within the duration have been rigorously
presented. Three synchronization examples have verified the effectiveness of the proposed SEZN
approach and its associated controller for the synchronization of chaotic systems. Comparisons
with other approaches, e.g., the CZN approach, have illustrated the convergence superiorities of
the proposed SEZN approach. Extensive tests have shown in detail the impact on convergence
performance by choosing different values of design parameter and initial state.

Note that the RNN model equipped with a linear activation function thus constitutes a linear
controller. Therefore, the theoretical analyses are presented in the framework of the proposed SEZN
approach as well as its linear controller. Actually, a nonlinear activation function, such as bi-exponential
activation function [74] and Li activation function [40], can also be applied to the design of the
controller. The detailed investigation of the theory of the proposed SEZN approach as well as its
associated controller in the nonlinear case is generally considered to be a challenging issue. Moreover,
many state-of-the-art applications on security applying chaotic systems were implemented on the
analog integrated circuits, e.g., the complementary-metal-oxide-semiconductor (CMOS) integrated
circuits [69] and digital integrated circuits, e.g., the FPGA embedded systems [68]. Therefore, future
work lies in the following facts: (i) detailed investigation of the theory of the proposed SEZN approach
and the corresponding controller in nonlinear case; (ii) extension of the proposed controller to the
real circuits and systems such as CMOS and FPGA; As a final remark of this paper, to the best of
the authors’ knowledge, this is the first work in the framework of zeroing neurodynamic that is able
to elegantly accelerate the synchronization process of chaotic systems with the super-exponential
convergence property (a fast convergence speed).
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