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Abstract: The gyro array is a useful technique in improving the accuracy of a micro-electro-mechanical
system (MEMS) gyroscope, but the traditional estimate algorithm that plays an important role in this
technique has two problems restricting its performance: The limitation of the stochastic assumption
and the influence of the dynamic condition. To resolve these problems, a multi-model combined
filter with dual uncertainties is proposed to integrate the outputs from numerous gyroscopes. First,
to avoid the limitations of the stochastic and set-membership approaches and to better utilize the
potentials of both concepts, a dual-noise acceleration model was proposed to describe the angular
rate. On this basis, a dual uncertainties model of gyro array was established. Then the multiple model
theory was used to improve dynamic performance, and a multi-model combined filter with dual
uncertainties was designed. This algorithm could simultaneously deal with stochastic uncertainties
and set-membership uncertainties by calculating the Minkowski sum of multiple ellipsoidal sets.
The experimental results proved the effectiveness of the proposed filter in improving gyroscope
accuracy and adaptability to different kinds of uncertainties and different dynamic characteristics.
Most of all, the method gave the boundary surrounding the true value, which is of great significance
in attitude control and guidance applications.

Keywords: MEMS gyroscope; gyro array; set-membership filter; combined filter; multiple models;
data fusion

1. Introduction

The advent of micro-electro-mechanical system (MEMS) gyroscopes have added motion sensing
in consumer devices and special military applications [1–3]. This is because it has many excellent
properties, including being lightweight and having a compact size, low power consumption, low
cost, and ease of mass production. However, when compared to traditional gyroscopes, the MEMS
gyroscopes are still not sufficiently accurate for many applications, such as space vehicles.

To enlarge the application field of MEMS gyroscopes, it is necessary to improve their accuracy
further while not restricting their advantages (e.g., some effective modeling and processing methods
were proposed in References [4,5] to reduce temperature drift). Due to the large increase in cost
and time consumption of the previous methods focusing on the device itself [6,7], the gyro array
was presented with the development of multisensor information fusion technology. The gyro array
technique was first proposed by Bayard and Ploen [8], who integrated four gyroscope outputs to obtain
an optimal rate signal by data fusion. The gyro array technique made rapid progress after that [9–11].

The key to the gyro array technique is the estimate method. A Kalman filter and its variants and
extensions are always used, which have been proven effective to some extent. The fusion method
used in the works of Bayard and Pleon was the Kalman filter. Then, an extended Kalman filter to fuse
multiple gyroscopes for accuracy improvement was presented by Stubberud [12]. After that, Chang,
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Xue, and Jiang at Northwestern Polytechnical University played an important role in promoting the
development of gyro arrays. They constructed an array with six gyroscopes [13–16] and adopted
an optimal Kalman filter to process their signal. Meanwhile, the performance of the gyro array was
analyzed in detail. A 3 × 3 planar array configuration of MEMS gyroscopes was developed by Heera,
and Kalman filtering with a constant gain matrix for a minimum rate estimate was implemented in
Reference [17]. A new statistic, called the “Allan covariance” between two gyros, was introduced
by Richard, and the gyro array model could be used to obtain the Kalman filter-based (KFB) virtual
gyro [18].

The fusion methods mentioned above have been proven to improve the accuracy of data effectively.
However, some difficulties still exist.

On the one hand, the Gaussian noise assumption in these classical techniques may render them
invalid in some practical applications. When the Kalman filters are used for a gyro array, the uncertainty
of noise statistical character may lead to degeneration in accuracy. An innovative alternative is to use the
set-membership estimation approach, in which noises are assumed to be unknown but bounded [19–21].
For the set-membership approach, the estimate results are expressed as state feasible sets. Especially,
the ellipsoidal set is an important way to describe the set-membership uncertainty [22,23]. Due to the
complexity of the environment and the variation of the motion status, the stochastic uncertainty and the
set-membership uncertainty always exist simultaneously in the outputs of the gyroscopes. However,
the existence of Gaussian noise always makes the choice of the noise bounds too conservative and leads
to accuracy degeneration in the set-membership estimations. In order to take advantage of each type of
uncertainty, a combined filter with dual uncertainties is necessary.

On the other hand, the motion status of the carrier is always changing in applications, and
the dynamic characteristic cannot be well represented by a single model. This may also impact the
performance of a gyro array badly. To ensure reliable estimation results in the case of complex motion
of the carrier, several models are used to describe the various motion statuses of the carrier.

Therefore, the motivation of our research was to design an effective estimate fusion method
that could solve the above two difficulties. To achieve this goal, a dual-noise acceleration model is
presented to describe the rate signal instead of a random walk, and a multi-model combined filter with
dual uncertainties is proposed to combine the MEMS gyro array readings. The proposed method in
this paper has two advantages, which are the main contributions of this paper: (1) With two types of
uncertainty, the proposed combined filter based on sets of densities can not only capture the true mean
and error statistics, but can also obtain the guaranteed estimation bounds; and (2) the subfilters in the
proposed algorithm can adaptively switch between a known set of models at each sampling instant to
respond to the dynamic changes of the system in time.

In this paper, the gyroscope error model with dual uncertainties used in this research is established
in Section 2. A brief introduction to the ellipsoidal sets and relevant properties is given in Section 3.
Then, the multi-model combined algorithm is deduced in Section 4. Numerical experimental results
are presented in Section 5. Conclusions are drawn in Section 6.

2. The Dual Uncertainties Model of a Gyro Array

The most common model for a target maneuver is the white-noise acceleration model [24].
It assumes that the target acceleration is an independent process, which is strictly white noise. It differs
from the non-maneuver model only in the noise level: The white noise process w used to model the
effect of the control input u has a much higher intensity than the one used in a non-maneuver model.
Considering that the MEMS gyroscopes always have tiny sampling internally, this kind of model
can be used to model attitude maneuver of the gyro or the gyro-installed carrier. The magnitude
of the process noise is used to adjust the dynamic characteristics in the model. Due to the fact that
both stochastic and set-membership uncertainties always exist simultaneously in the outputs of the
gyroscopes, the angular acceleration is assumed to be an independent process with dual uncertainties.
Thus, we call it a dual-noise acceleration model.
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Assume that ω(t) is the angular velocity of the carrier in a certain coordinate direction: The
kinematic equation of the dual-noise acceleration model is then given as

.
ω(t) = w(t) + d(t), (1)

where w(t) is a zero-mean Gaussian noise (stochastic uncertainty), and d(t) is the bounded noise
(set-membership uncertainty).

In fact, the dual uncertainties can be interpreted as a set bounded uncertainty incorporated into
the prior stochastic uncertainty [25]. For the dual-noise acceleration model given in Equation (1), the
angular velocity acceleration

.
ω is the sum of the zero-mean Gaussian noise w ∼ N (0, σ2) with variance

σ2 and the bounded uncertainty d ∈ G ⊂ R. Then
.

ω can be regarded as a random variable with mean
d. The special thing is that it cannot be seen as a single distribution, but a set (i.e., {N (d, σ2)|d ∈ G }),
as illustrated in Figure 1.
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Figure 1. The model with dual uncertainties can be regarded as a set of Gaussian densities (e.g.,
the dual-noise acceleration model): (a) Stochastic model (w); (b) set-membership model (d); (c) dual
uncertainties model (

.
ω).

In the multidimensional case, it can be expressed as {N (d, C)|d ∈ G n ⊂ Rn, C ∈ Rn×n}. Then the
state estimate is characterized by a set of probability densities through the combination of stochastic
and set-membership uncertainties.

Our proposed method poses the gyroscope filtering problem as a hidden Markov model (HMM).
Assume that the state vector is x(t) = [θ(t), ω(t)]T , where θ(t) is the attitude angle. Considering the
dual uncertainties, the discrete-time state-space model for the gyroscope array in the carrier can then
be described as

xk = F(i)
k xk−1 + G(i)

k (w(i)
k + d(i)

k ), (2)

zk = H(i)
k xk + v(i)

k + e(i)k , (3)

with the mode transition governed by a Markov chain with probabilities

P(mi
k

∣∣∣mj
k−1 ) = pji, (4)

where zk is the measurement vector, and F(i)
k , G(i)

k , and H(i)
k are the state transition matrix, the noise

matrix, and the observation matrix corresponding to the active model mi
k(i = 1, 2, · · · , r) at time

k, respectively; w(i)
k ∼ N(0, Q(i)

k ) is the stochastic part of the process noise; v(i)
k ∼ N(0, R(i)

k ) is the
stochastic part of the measurement noise, which are both assumed to be white Gaussian; and dk and ek
are set-membership parts, which are assumed to be of unknown distribution, but bounded by

D(i)
k = {d(i)

k : (d(i)
k )

T
(D(i)

k )
−1

d(i)
k ≤ 1}, (5)
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E (i)k = {e(i)k : (e(i)k )
T
(E(i)

k )
−1

e(i)k ≤ 1}. (6)

In this research, six separate gyroscopes were taken to construct a gyroscope array. According to
the model shown in Equation (1), the magnitude of the process noise directly affects the ability of the
model to reproduce the dynamic characteristics of the input signal. In view of this situation, this paper
designed a combined filter using multiple models with different process noise magnitudes and making
the noise magnitude cover a certain range by interaction: Thereby the optimality of the estimation and
the stability of the filter were guaranteed. Therefore, the model set with dual uncertainties designed in
this paper is given by

F(i)
k =

[
1 ∆T
0 1

]
, G(i)

k =

[
0

∆T

]
, H(i)

k+1 =

[
0 0 0 0 0 0
1 1 1 1 1 1

]
,

Q(i)
k = Qi, R(i)

k = r2CorrM, D(i)
k = Di, E(i)

k = e2CorrM
i = 1, 2, 3 · · · , r

(7)

where CorrM is a 6× 6 correlation matrix of gyro array, r2 is the Gaussian measurement noise variance
of component gyroscopes, e2 is a coefficient in the matrix defining the shape of the measurement noise
set, and ∆T is the sampling interval. Obviously the differences between the models in Equation (7) are
the values of Qi and Di, which represent the level of the stochastic part and set-membership part of
the process noise.

3. Ellipsoidal Set and Relevant Properties

When considering the set-membership uncertainty, the set operation is involved. In order to
simplify the calculations, we confined the bounding feasible sets to the ellipsoids. Several definitions
and lemmas about ellipsoid sets are given below, which were used in the derivation of the multi-model
combined filter with dual uncertainties.

Definition 1. A bounded ellipsoid E of Rn is defined by [23]

E(a, M) = {x ∈ Rn : (x− a)TM−1(x− a) ≤ 1}, (8)

where a ∈ Rn is the center of E , and M ∈ Rn×n is a positive-definite matrix that specifies its size and orientation.
Then dk and ek in Equations (5) and (6) are actually bounded by the ellipsoids E(0, D(i)

k ) and

E(0, E(i)
k ), respectively.

Definition 2. Given an ellipsoid E(a, M)(a1 ∈ Rn) and a full rank matrix A ∈ Rn×n, then {Ax : x ∈
E(a, M)} can be expressed as AE(a, M).

Lemma 1. Given an ellipsoid E(a, M)(a1 ∈ Rn) and a matrix A ∈ Rn×n, then AE(a, M) = E(Aa, AMAT).

Proof. According to Definition 1,

AE(a, M) = {Ax : x ∈ E(a, M)}. (9)

Assume y = Ax and then x = A−1y, and thus

(A−1y− a)
T

M−1(A−1y− a) ≤ 1. (10)

After some manipulations, Equation (10) becomes

(y−Aa)T(AMAT)
−1

(y−Aa) ≤ 1. (11)
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This means y ∈ E
(

Aa, AMAT
)

. The proof is complete. �

Definition 3. The Minkowski sum Ψs of the two ellipsoids E(a1, M1) and E(a2, M2) is defined as

Ψs = {x : x = x1 + x2, x1 ∈ E(a1, M1), x2 ∈ (a2, M2)}, (12)

denoted as
Ψs = E(a1, M1)⊕ E(a2, M2). (13)

The ellipsoid satisfying E(as, Ms) ⊇ Ψs is called the outer bounding ellipsoid of the Minkowski
sum Ψs, as illustrated in Figure 2.
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The following lemma is given to calculate the outer bounding ellipsoid of the Minkowski sum of
two ellipsoids:

Lemma 2. ∀p ∈ (0,+∞), E(as, Ms) ⊇ E(a1, M1) ⊕ E(a2, M2), with as = a1 + a2 (a1, a2 ∈ Rn) and
Ms =

(
1 + p−1)M1 + (1 + p)M2 (M1, M2 ∈ Rn×n).

Proof. See the works of Maksarov and Norton [22].
For a weighted Minkowski sum of several ellipsoids, the outer bounding ellipsoid is given by the

following lemma. �

Lemma 3. Given µk ∈ R and the ellipsoids E(ak, Mk) (k = 1, 2, · · · r, r ∈ R+), ∀α ∈ Rr, with αk > 0 and
r
∑

k=1
αk = 1, the ellipsoid E(a, M) with

a =
r

∑
k=1

µkak, (14)

M =
r

∑
k=1

α−1
k µ2

kMk, (15)

contains µ1E(a1, M1)⊕ µ2E(a2, M2)⊕ · · · ⊕ µrE(ar, Mr).

Proof. According to Lemma 1, it can be easily obtained that

µkE(ak, Mk) = E(µkak, µ2
kMk). (16)
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Thus, the weighted Minkowski sum can be transformed into

E
(

µ1a1, µ2
1M1

)
⊕ E

(
µ2a2, µ2

2M2

)
⊕ · · · ⊕ E

(
µrar, µ2

r Mr

)
. (17)

On this basis and combined with relevant conclusions in Reference [23], a parametrized family of
ellipsoids given by Equations (14) and (15) is obtained. �

4. Multi-Model Combined Filtering with Dual Uncertainties (MMCF)

Following the interacting multiple model (IMM) filter [26] merging strategy, the proposed
multi-model state estimate combining dual uncertainties can be updated through 4 steps: First,
the mixing probabilities and the reinitialized estimates for the corresponding mode-matched filter
are calculated. Then the mixing estimates are used to input into the mode-matched filter new
measurements and to update the estimates. Next, the updated mode probability is calculated. Finally,
the overall estimates are found using moment matching. The main difference is that the set operation
is involved in the proposed algorithm, and the output contains the covariance matrix Pk and an
ellipsoidal set E(x̂k, Xk), which represents a set of means. The architecture of the MMCF algorithm is
illustrated in Figure 3.
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At time k, the MMCF algorithm can be given as follows.

4.1. Model-Conditioned Reinitialization

The predicted probability is given by

µ
(i)
k,k−1 , P{m(i)

k

∣∣∣Zk−1 } =
r

∑
j=1

pjiµ
(j)
k−1, (18)

where µ
(j)
k−1 is the calculated probability for model mj

k−1 at time k− 1, and Zk−1 = {z1, z2, · · · , zk−1}.
Then the mixing weight is calculated by

µ
j|i
k−1 , P{m(j)

k−1

∣∣∣m(i)
k , Zk−1 } = pjiµ

(j)
k−1/µ

(i)
k,k−1. (19)
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Let x̂(j)
k−1 be the state estimate of the subfilter for model mj

k−1, and let E(x̂(j)
k−1, X(j)

k−1) and P(j)
k−1 be

the error characteristics of the state estimate for the set-membership uncertainty and the stochastic
uncertainty, respectively.

Suppose that only the zero-mean Gaussian uncertainty exists (i.e., X(j)
k−1 = 0): Then the mixing

estimate and covariance matrix are

x̃(i)k−1 =
r

∑
j−1

µ
j|i
k−1 x̂(j)

k−1, (20)

P̃
(i)
k−1 =

r

∑
j=1

[
P(j)

k−1 + (x̃(j)
k−1 − x̂(j)

k−1)(x̃(j)
k−1 − x̂(j)

k−1)
′
]
µ

j|i
k−1. (21)

When considering the set-membership uncertainty, the mixing set of means therefore yields the
Minkowski sum

X̃ (i)
k−1 = µ

1|i
k−1E(x̂

(1)
k−1, X(1)

k−1)⊕ µ
2|i
k−1E(x̂

(2)
k−1, X(2)

k−1)⊕ · · · ⊕ µ
r|i
k−1E(x̂

(r)
k−1, X(r)

k−1). (22)

Then the object in this step is to find an optimal ellipsoid E(x̃(i)k−1, X̃
(i)
k−1) ⊇ X̃

(i)
k−1. According to

Lemma 3, there is a family of ellipsoids that meet this condition with a center x̃(i)k−1 and the matrix
defining the shape

X̃
(i)
k−1 =

r

∑
j=1

(µ
j|i
k−1)

2
X(j)

k−1/α
(i)
j , (23)

where the parameter α
(i)
j > 0 and

r
∑

j=1
α
(i)
j = 1. The parameters α

(i)
j are chosen to minimize the size

of E(x̃(i)k−1, X̃
(i)
k−1) by using the volume minimization criterion or trace minimization criterion. In this

paper, the trace of X̃
(i)
k−1 was minimized due to the explicit expression of the parameter and avoidance

of the nonlinear equation solution. Obviously, this criterion is favorable to computation efficiency.
Then the parameter optimization problem is given by

Min: tr(X̃
(i)
k−1)

S.T.


r
∑

j=1
α
(i)
j = 1, α

(i)
j > 0

X̃
(i)
k−1 =

r
∑

j=1
(µ

j|i
k−1)

2
X(j)

k−1/α
(i)
j

(24)

Based on the Lagrangian multiplier method, the optimal value of α
(i)
j is calculated by

α
(i)
j = µ

j|i
k−1

√
tr(X(j)

k−1)

(
r

∑
j=1

µ
j|i
k−1

√
tr(X(j)

k−1)

)−1

. (25)

4.2. Model-Conditioned Filtering

Then each subfilter for model mi
k updates state estimates with the new measurement zk.

From Equations (2) and (5), the prediction set of means can be given by

X (i)
k,k−1 = F(i)

k E(x̃
(i)
k−1, X̃

(i)
k−1)⊕G(i)

k D
(i)
k

= E(F(i)
k x̃(i)k−1, F(i)

k X̃
(i)
k−1(F

(i)
k )

T
)⊕ E(0, G(i)

k D(i)
k (G(i)

k )
T
)

(26)
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The ellipsoid E(x̂(i)k,k−1, X(i)
k,k−1) externally approximates the sum with

x̂(i)k,k−1 = F(i)
k x̃(i)k−1 (27)

and
X(i)

k,k−1 = (1 + p−1)F(i)
k X̃

(i)
k−1(F

(i)
k )

T
+ (1 + p)G(i)

k D(i)
k (G(i)

k )
T

. (28)

Equations (27) and (28) are obtained on the basis of Lemma 2. The parameter p that optimizes the
trace of X(i)

k,k−1 is

p =

√√√√√√ tr(F(i)
k X̃

(i)
k−1(F

(i)
k )

T
)

tr(G(i)
k D(i)

k (G(i)
k )

T
)

. (29)

The associated covariance matrix is stated by

P(i)
k,k−1 = F(i)

k P̃
(i)
k−1(F

(i)
k )

T
+ G(i)

k Q(i)
k (G(i)

k )
T

. (30)

In the case of vanishing bounded perturbations, the state estimate is updated by means of the
Kalman filter, as below:

x̂(i)k = x̂(i)k,k−1 + K(i)
k (zk −H(i)

k x̂(i)k,k−1)

= (I−K(i)
k H(i)

k )x̂(i)k,k−1 + K(i)
k zk

(31)

P(i)
k = (I−K(i)

k H(i)
k )P(i)

k,k−1, (32)

where the gain K(i)
k is given by

K(i)
k = P(i)

k,k−1(H
(i)
k )

T
(H(i)

k P(i)
k,k−1(H

(i)
k )

T
+ R(i)

k )
−1

. (33)

In the presence of set-membership uncertainty, the measurement zk combined with the ellipsoidal
error can be regarded as an ellipsoid set,

Z (i)
k = {zk − e(i)k

∣∣∣e(i)k ∈E
(i)
k } = E(zk, E(i)

k ). (34)

Then the predicted set E(x̂(i)k,k−1, X(i)
k,k−1) is updated through

X (i)
k = (I−K(i)

k H(i)
k )E(x̂(i)k,k−1, X(i)

k,k−1) + K(i)
k Z

(i)
k

= (I−K(i)
k H(i)

k )E(x̂(i)k,k−1, X(i)
k,k−1) + K(i)

k E(zk, E(i)
k )

= E((I−K(i)
k H(i)

k )x̂(i)k,k−1, (I−K(i)
k H(i)

k )X(i)
k,k−1(I−K(i)

k H(i)
k )

T
) + E(K(i)

k zk, K(i)
k E(i)

k (K(i)
k )

T
)

(35)

It is easily deduced that the shaping matrix of E(x̂(i)k , X(i)
k ), satisfying E(x̂(i)k , X(i)

k ) ⊇ X (i)
k , is

X(i)
k = (1 + q−1)(I−K(i)

k H(i)
k )X(i)

k,k−1(I−K(i)
k H(i)

k )
T
+ (1 + q)K(i)

k E(i)
k (K(i)

k )
T

, (36)

with the parameter q chosen to minimize the trace of X(i)
k : This is

q =

√√√√√√ tr((I−K(i)
k H(i)

k )X(i)
k,k−1(I−K(i)

k H(i)
k )

T
)

tr(K(i)
k E(i)

k (K(i)
k )

T
)

. (37)
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4.3. Mode Probability Update

The mode likelihood is obtained as

L(i)
k , p[z̃(i)k

∣∣∣m(i)
k , Zk−1 ]

assume
= N(z̃k; 0, S(i)

k ), (38)

where z̃k = zk −H(i)
k x̂(i)k,k−1, S(i)

k = H(i)
k P(i)

k,k−1(H
(i)
k )

T
+ R(i)

k .
On this basis, we can calculate the model probability by

µ
(i)
k =

µ
(i)
k|k−1L(i)

k

∑j µ
(j)
k|k−1L(j)

k

. (39)

4.4. Estimation Fusion

Using the matching model, the overall set of means can be expressed as

Xk = µ
(1)
k E(x̂

(i)
k , X(i)

k )⊕ µ
(2)
k E(x̂

(i)
k , X(i)

k )⊕ · · · ⊕ µ
(r)
k E(x̂

(i)
k , X(i)

k ). (40)

Obviously the problem here is similar to that in Section 4.1, and thus the minimal-trace ellipsoid
E(x̂k, Xk) containing the sum Xk is obtained based on Equations (20)–(25):

x̂k = ∑
i

x̂(i)k µ
(i)
k , (41)

Xk =

(
r

∑
j

µ
(i)
k

√
tr(X(i)

k )

)(
r

∑
j

µ
(i)
k X(i)

k /
√

tr(X(i)
k )

)
. (42)

It should be noted that this solution is optimal only in the family of ellipsoids, as in Equation (23).
The overall covariance is stated as

Pk = ∑
i

[
P(i)

k + (x̂k − x̂(i)k )(x̂k − x̂(i)k )′
]
µ
(i)
k . (43)

Remark 1. Finally, the proposed algorithm is implemented as below:
Step 1. Initialize x̂0, P0, X0, and set k← 1 .
Step 2. Model-conditioned reinitialization: Compute the mixing weight µ

j|i
k−1 using Equations (18) and (19),

and then for each sum filter, compute x̃(i)k−1, P̃
(i)
k−1, and X̃

(i)
k−1 using Equations (20), (21), and (23), respectively.

Step 3. Model-conditioned filtering: For each subfilter, update x̂(i)k , P(i)
k−1, and X(i)

k−1 using
Equations (27)–(33) and (36).

Step 4. Mode probability update: Calculate the model probability using Equation (39).
Step 5. Estimation fusion: Using the matching model, calculate the overall estimate results x̂k, Xk, and Pk

using Equations (41)–(43), respectively.
Step 6. Set k← k + 1 and return to Step 2.

5. Experiments and Results

5.1. Experimental Setup

In this section, experiments were implemented to demonstrate the performance of the proposed
filter. Six MEMS gyroscope chips (ADXRS300 [27]) with external circuits were soldered onto the
same printed circuit board (PCB) to construct an array. The prototype of the gyro array is shown in
Figure 4. The output signals of the gyroscopes were collected through the data acquisition module
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constructed by a PCI (peripheral component interconnection) extension for instrumentation (PXI)
system. The bandwidth of an individual gyroscope was 40 Hz, so the sampling rate was set to be
200 Hz to satisfy the Nyquist theorem.
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Figure 4. Prototype of the gyro array. Figure 4. Prototype of the gyro array.

In the experiment, the gyro array was put on a horizontal turntable. The experiment lasted for
180 s, during which the turntable was set to rotate as follows:

• 15–40 s: Swing with 10◦ angle amplitude and 0.5 Hz frequency;
• 45–65 s: Rotate with a 40◦/s constant rate;
• 70–90 s: Rotate with a −20◦/s constant rate;
• 100–136 s: Swing with 10◦ angle amplitude and 0.25 Hz frequency;
• 145–172 s: Swing with 20◦ angle amplitude and 0.5 Hz frequency.

During the other times, except for the above time periods, the turntable kept still. It should be
noted that it took a period of time to adjust the motion state each time for this turntable. Thus, both
the start and end phases of each motion state had transition periods, and only the middle part was in
accordance with the set conditions above. The true angular rate of the turntable is shown in Figure 5.
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Figure 5. The true angular rate.

Then the rate signals of the gyroscopes in the array were gathered and processed.
Through multiple tests, the correlation factor between the component gyroscopes was obtained

and is shown in Table 1: It played an important role in accuracy improvement of the gyro array [28].
This meant the elements in CorrM were given. The correlation factor was analyzed with static rate
signals for 1 h, and the computing method of the correlation factor followed [14].
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Table 1. Correlation factor between the component gyroscopes.

Gyro 1 Gyro 2 Gyro 3 Gyro 4 Gyro 5 Gyro 6

Gyro 1 1.0000 0.0016 −0.0047 0.0297 0.0467 0.0451
Gyro 2 0.0016 1.0000 0.0595 −0.0095 0.0591 0.0542
Gyro 3 −0.0047 0.0595 1.0000 −0.0939 −0.0381 −0.0688
Gyro 4 0.0297 −0.0095 −0.0939 1.0000 0.0169 0.0946
Gyro 5 0.0467 0.0591 −0.0381 0.0169 1.0000 0.0501
Gyro 6 0.0451 0.0542 −0.0688 0.0946 0.0501 1.0000

Four models were used in the experiment, and other parameters in the model were given as
∆T = 0.005, r = 0.6, and e = 0.6. Qi and Di for different models are shown in Table 2.

Table 2. Qi and Di for different models.

Models Model 1 Model 2 Model 3 Model 4

Parameters Q1 = 8
D1 = 6

Q2 = 80
D2 = 60

Q3 = 800
D3 = 600

Q4 = 8000
D4 = 6000

5.2. Results

For comparison purposes, the stand IMM estimator using a Kalman filter and the combined filter
in Section 4.2 using a single model were implemented. First, the output errors of one of the individual
gyroscopes were analyzed. By using a sliding window with a width of 50, the means of the error over
different time periods were calculated, as shown in Figure 6. It can be seen that the error mean value
of the gyroscope changed significantly with time due to the dynamic change of input. This indicated
that the assumption of two random variables as noise representation in this paper was reasonable,
because a set of means was the main feature distinguishing this assumption from the single stochastic
uncertainty assumption. In addition, it can be seen that the means of different time periods were all
within the hypothetical set constructed by the parameters given in Section 5.1.
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Figure 6. The error mean over different time periods.

Based on this assumption, the proposed multi-model combined filter could get an ellipsoidal
feasible set of means at each moment (i.e., E(x̂k, Xk)), while the standard IMM filter with respect to
Gaussian noise could only obtain a point estimate. In addition, the center of the ellipsoid x̂k could
be considered to be the point estimate when needed. Figure 7 shows the state ellipsoidal estimates
from 25 s to 30 s in the phase plane using the proposed algorithm. It should be noted that, for clarity,
only part of the ellipsoids were selected to be shown in the figure, and the time interval between two
adjacent ellipsoids was 0.05 s. The center of each ellipsoid is highlighted with “*”, and the true state at
the corresponding moment is highlighted with “+”. It can be seen from Figure 7 that all of the values
of the true state at every moment lay within the corresponding ellipsoid. On this basis, the upper
and lower boundaries of the estimation were acquired by using the shape matrices of ellipsoids, as
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shown in Figure 8. It can be guaranteed that the angular rate estimates are within a hard boundary
and that the bounded sets contain the true value, which is meaningful for the robustness of the system
in control and guidance applications.
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Figure 7. Phase-plane estimation using the MMCF.
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Figure 8. The estimated bounds by MMCF.

Below, the center of the ellipsoid was used as the point estimate, and the accuracy of the gyro
array was analyzed. The original rate signals of the individual gyroscopes and processing results by
different methods are given in Figure 9. The output errors and estimated errors are shown in Figure 10.
In order to demonstrate the effect of the above filters clearly, the root mean square error (RMSE) of the
estimated results was calculated and is presented in Table 3. For further tests, the errors were analyzed
through the Allan deviation method, and the results are shown in Figure 11. Besides, the angular
random walk (ARW), rate random walk (RRW), and bias instability (BI) were calculated from an Allan
deviation plot, and are also presented in Table 3. In the Allan deviation test, the measurements were
recorded for 1 h at a sampling rate of 200 Hz. Before that, the gyroscopes were powered on for 0.5 h.
The experiments were performed in a temperature control turntable, and the temperature was set to
be 25 ◦C. Other experimental configurations, such as hardware setup, were the same as described in
Section 5.1. The turntable kept still during most times, except for 1 min. The turntable was set to swing
with 10◦ angle amplitude and 0.5 Hz frequency in this minute to test the dynamic performance of the
proposed method. Then the difference between the output of the gyroscopes (array) and the actual
rotational speed of the turntable was analyzed as the output error.
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Figure 9. The overall experiment outputs: (a) The outputs of individual gyroscopes; (b) the angular
rate of the gyro array estimated by using different methods.
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Figure 10. Errors of the overall outputs: (a) The output errors of individual gyroscopes; (b) the angular
rate errors of the gyro array estimated by using different methods.
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Figure 11. The Allan deviation test results: (a) The Allan deviation of the errors from individual
gyroscopes; (b) the Allan deviation of the errors from the gyro array.

Table 3. The overall results of the gyro array. IMM: Interacting multiple model; RMSE: Root mean square
error; IF: Improve factor; ARW: Angular random walk; RRW: Rate random walk; BI: Bias instability.

Terms Single
Gyroscope Model 1 Model 2 Model 3 Model 4 IMM MMCF

RMSE (◦/s) 0.4916 8.3886 0.9663 0.1828 0.2009 0.1628 0.1478
IF 1 0.0586 0.5087 2.6893 2.4470 3.0197 3.3261

ARW (◦/h1/2) 11.4362 / / 4.8251 4.8458 4.0748 3.4395
RRW (◦/h3/2) 435.2964 / / 192.5314 198.8246 178.2495 156.2842

BI (◦/h) 63.2521 / / 41.5448 33.1668 28.9512 21.0312

In Table 3, IF is the improve factor, defined as

IF = RMSEs/RMSEa, (44)

where RMSEs refers to the RMSE of the rate signal for the single gyroscopes in the array, and RMSEa is
that of the gyro array.

It can be seen from these results that both the multi-model methods and the combined filter using
some single models (Models 3 and 4) were effective in combining numerous gyroscopes, and the
multi-model methods performed better. When using Model 1 or Model 2, the errors could be well
suppressed by the filter when the input signal was 0 or constant. However, when the turntable swung,
the filter led to amplitude attenuation, which demonstrated that this model could not accurately
reproduce the dynamic characteristics of the input signal. When using Model 3 or Model 4, the result
was the opposite: The errors were greatly reduced with sinusoidal rate input, but the filter had poor
performance with constant rate input. Through switching the models according to different situations,
the multi-model methods could reflect the dynamic characteristic of the input signal more accurately.
Table 3 shows that the RMSE was reduced from 0.4916◦/s to 0.1628◦/s and 0.1478◦/s by the IMM filter
and MMCF, respectively. It reveals that the performance of the MMCF was higher than that of the
IMM filter. From the Allan deviation plot and the results in Table 3, the ARW noise, RRW noise, and
bias instability were all reduced by using the multi-model methods and combined filter with Models 3
and 4 to fuse measurements from the gyro array. In addition, it is obvious that the reduction factor
by the MMCF was greater than that by other methods. As for the filter using Models 1 and 2, the
above three kinds of noise were difficult to calculate due to large sinusoidal errors. The reason for the
failure of Models 1–3 in Figure 11 was that these models could not accurately reproduce the dynamic
characteristics of the input signal, and the filters using these models led to amplitude attenuation when
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the turntable swung. This means large sinusoidal errors were added to the output noise, similarly to
the errors in Figure 10.

To further analyze the performance of the proposed method, the estimated errors over different
time periods are shown in Figure 12. The detailed results are illustrated in Table 4.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 17 

 

 
(a) (b) 

Figure 11. The Allan deviation test results: (a) The Allan deviation of the errors from individual 
gyroscopes; (b) the Allan deviation of the errors from the gyro array. 

It can be seen from these results that both the multi-model methods and the combined filter using 
some single models (Models 3 and 4) were effective in combining numerous gyroscopes, and the 
multi-model methods performed better. When using Model 1 or Model 2, the errors could be well 
suppressed by the filter when the input signal was 0 or constant. However, when the turntable swung, 
the filter led to amplitude attenuation, which demonstrated that this model could not accurately 
reproduce the dynamic characteristics of the input signal. When using Model 3 or Model 4, the result 
was the opposite: The errors were greatly reduced with sinusoidal rate input, but the filter had poor 
performance with constant rate input. Through switching the models according to different situations, 
the multi-model methods could reflect the dynamic characteristic of the input signal more accurately. 
Table 3 shows that the RMSE was reduced from 0.4916 s°  to 0.1628 s°  and 0.1478 s°  by the IMM 

filter and MMCF, respectively. It reveals that the performance of the MMCF was higher than that of 
the IMM filter. From the Allan deviation plot and the results in Table 3, the ARW noise, RRW noise, 
and bias instability were all reduced by using the multi-model methods and combined filter with 
Models 3 and 4 to fuse measurements from the gyro array. In addition, it is obvious that the reduction 
factor by the MMCF was greater than that by other methods. As for the filter using Models 1 and 2, 
the above three kinds of noise were difficult to calculate due to large sinusoidal errors. The reason for 
the failure of Models 1–3 in Figure 11 was that these models could not accurately reproduce the 
dynamic characteristics of the input signal, and the filters using these models led to amplitude 
attenuation when the turntable swung. This means large sinusoidal errors were added to the output 
noise, similarly to the errors in Figure 10. 

To further analyze the performance of the proposed method, the estimated errors over different 
time periods are shown in Figure 12. The detailed results are illustrated in Table 4.  

 

10-1 100 101 102 103
10-3

10-2

10-1

100

Integration Times (s)

A
lla

n 
D

ev
ia

tio
n 

( °/
s)

 

 

10-1 100 101 102 103
10-3

10-2

10-1

100

101

Integration Times (s)

A
lla

n 
D

ev
ia

tio
n 

( °/
s)

 

 

Gyro 1
Gyro 2

Gyro 3
Gyro 4

Gyro 5
Gyro 6

Model1
Model2

Model3
Model4

IMM
MMCF

5 10 15
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

30 32 34 36 38 40
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

Single gyroscope MMCF

Sensors 2018, 18, x FOR PEER REVIEW  15 of 17 

 

(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 12. Estimated error with MMCF over different time periods: (a) at 5–15 s, the input signal was 
0ω = ; (b) at 30–40 s, the input signal was 10 sin( ) stω π π= ° ; (c) at 55–65 s, the input signal was 
40 sω = ° ; (d) at 80–90 s, the input signal was 20 sω = − ° ; (e) at 120–130 s, the input signal was 

5 sin(0.5 ) stω π π= ° ; and (f) at 155–165 s, the input signal was 20 sin( ) stω π π= ° . 

Figure 12 shows that the proposed method could effectively reduce the errors of the gyroscope in 
any kind of motion. The statistics results in Table 4 also demonstrate the performance improvements. 
It can be seen from Table 4 that the RMSEs of the estimation were obviously reduced compared to the 
original rate signals of the individual gyroscopes. Furthermore, the performance of the proposed 
method had to do with the dynamic characteristics of the input signal. The reduction factor with 
respect to 0 input and constant input is about 4–5, whereas the corresponding factor for sinusoidal 
input was about 2–3, which was lower than that of the 0 input and constant input. Additionally, it 
indicated an increase in the RMSE with increasing frequency and amplitude with respect to the swing 
rate signal. 

Table 4. The test results over different time periods (different input). 

Time (s) Input ( s° ) 
Single Gyroscope Gyro Array 

RMSE ( s° ) RMSE ( s° ) IF 
5–15 0 0.4939 0.1120 4.4098 

30–40 10 sin( )tω π π=  0.4775 0.2081 2.2946 
55–65 40 0.5190 0.1212 4.2822 
80–90 −20 0.4320 0.0850 5.0824 

120–130 5 sin(0.5 )tω π π=  0.4778 0.1686 2.8339 
155–165 20 sin( )tω π π=  0.4797 0.2200 2.1805 

Note: t refers to the time. 

6. Conclusions 

55 60 65
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

80 82 84 86 88 90
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

120 122 124 126 128 130
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

155 160 165
-2

-1

0

1

2

Time (s)

E
rro

r (
°/s

)

 

 

Figure 12. Estimated error with MMCF over different time periods: (a) at 5–15 s, the input signal was
ω = 0; (b) at 30–40 s, the input signal was ω = 10π sin(πt)◦/s; (c) at 55–65 s, the input signal was
ω = 40◦/s; (d) at 80–90 s, the input signal was ω = −20◦/s; (e) at 120–130 s, the input signal was
ω = 5π sin(0.5πt)◦/s; and (f) at 155–165 s, the input signal was ω = 20π sin(πt)◦/s.

Table 4. The test results over different time periods (different input).

Time (s) Input (◦/s)
Single Gyroscope Gyro Array

RMSE (◦/s) RMSE (◦/s) IF

5–15 0 0.4939 0.1120 4.4098
30–40 ω = 10π sin(πt) 0.4775 0.2081 2.2946
55–65 40 0.5190 0.1212 4.2822
80–90 −20 0.4320 0.0850 5.0824

120–130 ω = 5π sin(0.5πt) 0.4778 0.1686 2.8339
155–165 ω = 20π sin(πt) 0.4797 0.2200 2.1805

Note: t refers to the time.
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Figure 12 shows that the proposed method could effectively reduce the errors of the gyroscope in
any kind of motion. The statistics results in Table 4 also demonstrate the performance improvements.
It can be seen from Table 4 that the RMSEs of the estimation were obviously reduced compared to
the original rate signals of the individual gyroscopes. Furthermore, the performance of the proposed
method had to do with the dynamic characteristics of the input signal. The reduction factor with
respect to 0 input and constant input is about 4–5, whereas the corresponding factor for sinusoidal
input was about 2–3, which was lower than that of the 0 input and constant input. Additionally, it
indicated an increase in the RMSE with increasing frequency and amplitude with respect to the swing
rate signal.

6. Conclusions

In this paper, a multi-model combined filter allowing for simultaneous treatment of stochastic
and set-membership uncertainties was proposed to combine multiple MEMS gyroscopes to improve
overall accuracy. The dual uncertainties model of a gyroscope array was established. To reproduce the
dynamic characteristics of the rate signal, multiple models with different process noises were involved
in the filter. Combined with the IMM update process and the calculation method for a Minkowski sum
of multiple ellipsoidal sets, the multi-model state estimates integrating dual uncertainties was updated.
The experimental results showed that the RMSE of the estimated rate signal by the proposed method
was reduced from 0.4916◦/s to 0.1478◦/s, which performed better than the IMM filter and combined
filters with single models. This proved that the proposed method is efficient in improving the system
overall performance and that it produces better adaptability to different kinds of uncertainties and
different dynamic characteristics. Moreover, the proposed method can provide the bounds of the rate
signal estimates. This property is meaningful for the robustness of the system and benefits attitude
control and guidance.
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