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Abstract: Numerous instruments such as ionization chambers, hand-held and pocket dosimeters
of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated
luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications.
Of recent, photonic devices have also been adopted. This article evaluates recent research and
advancements in the applications of photonic devices in medical radiation detection primarily focusing
on four types; photodiodes – including light-emitting diodes (LEDs), phototransistors—including
metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and
charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive
analysis of the operating principles and recent technologies of these devices is performed. Further,
critical evaluation and comparison of their benefits and limitations as dosimeters is done based
on the available studies. Common factors barring photonic devices from being used as radiation
detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally,
the potentials of these devices and the challenges of realizing their applications as quintessential
dosimeters are highlighted for future research and improvements.

Keywords: radiation-induced current; dosimetry; photodiodes; phototransistors (MOSFETs);
photovoltaic sensor; CCD/CMOS

1. Introduction

Radiation can be classified into mainly two, i.e., charged particle radiation that consists of fast
electrons and heavy charged particles, and uncharged radiation that comprises electromagnetic
radiation and neutrons [1]. In radiation spectroscopy, both these radiation types interact with matter
in different ways, hence, the need for radiation measurement and monitoring in order to control
its effects in the matter accordingly. Today, radiation is used for carrying out radiotherapeutic or
imaging procedures like Computed Tomography (CT)—in the field of medicine [2]. However, during
its applications, there has to be precaution since excessive radiation attenuation by human tissue may
result into high absorbed dose values [3,4]. This could be a root cause of secondary malignancies [4].
Therefore, stringent measures to control and manage both intentional and unintentional radiation
exposures through radiation dosimetry is necessary.

Medical radiation dosimetry involves measurement, calculation, and assessment of the quantity
and quality of ionizing radiation exposed to and attenuated by the human body. Various gas, liquid
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and solid-state dosimeters are used to quantify radiation; these are predominantly grouped under
the ionization chamber, semiconductor and diamond detector types [5,6]. These detectors are used to
measure radiation delivered internally (in-vivo)—by ingesting or inhaling radioactive substances, and
externally using external beam radiation therapy.

X-rays are electromagnetic waves with a wavelength shorter than that of ultra violet light but
longer than that of gamma rays. X-rays, and other electromagnetic waves such as visible light, are also
discrete energy packets known as photons/quanta. Quantization of X-rays could therefore make X-ray
photons show characteristics of high-energy particles. In X-ray radiation detection, detection efficiency
is the ratio of the number of counts in the detector’s spectrum to the number of photons emitted by the
radiation source [7]. High density and the atomic number of a radiation detector material imply higher
sensitivity of the detector [8]. Comparing silicon’s density; 2.3 gcm−3 to that of air; 1.3 × 10−3gcm−3,
Romei et al. [9] state that solid-state detectors avail the same overall detection efficiency as that of
gas detectors; for instance, semiconductor detectors need less energy to form an electron-hole pair
compared to ionization chambers [9]. This way, applications of solid-state dosimeters in radiation
detection has become recurrent in recent technologies. At an atomic level, atoms in the solid state
are close to each other. On the other hand, atoms are fairly far apart from each other in gases and
liquids. This makes solids to be with a higher density when compared to liquids and gases. During
radiation detection, if a radiation photon strikes an atom, electrons are excited into the conduction
band-hence a detectable current signal. On the other hand, when the radiation photon strikes the
interatomic spacing, there will be less/no energy absorbed by the atomic electrons, hence low/no
electron excitations. Consequently, there is a low detectable current signal. Therefore, a radiation
photon strikes more atoms in solids than in liquids and gases. This way, solid-state detectors provide a
higher resolution and sensitivity during radiation detection, i.e., if compared to liquid-state detectors
and ionization chambers [2].

In particular, the semiconductor solid-state detectors mainly comprise photonic devices; circuit
board components of electronic gadgets that are used for production and detection of electromagnetic
radiation. Photodiodes, phototransistors, and CCDs are some of the semiconductor-based photonic
devices that have profoundly been used for producing, detecting and manipulating light. Light has
a wavelength range of 440–800 nm [10,11]. Nevertheless, these photonic devices are also sensitive
to other ranges of the electromagnetic spectrum. Therefore, current researches aim to exploit this
capability. For instance, silicon photodiodes can detect radiations having wavelengths shorter than
1.2 µm, i.e., visible and ultraviolet light, and some wavelengths near infrared radiation [12].

Using equations, schematics, and graphs, a detailed explication of the photonic device structure
and physics is presented in the form of benefits and limitations as dosimeters. Further, factors such
as minimum and maximum measurable dose, ability to give real-time measurements, reduction in
sensitivity after radiation exposure, and price among others are examined. This is aimed at providing
a comparative analysis of these photonic devices as medical radiation detectors since there is currently
no study that has addressed this type of contradistinction.

This article, therefore, benchmarks; photodiodes, phototransistors/ MOSFETs, solar cells, and
CCDs for accurate and effective medical radiation detection and measurement. This work is based on
previous and current researches by different authors and ultimately aims at facilitating the development
of alternative dosimeters to improvise for the conventional medical radiation dosimeters that are
quite costly.

2. Photodiodes/LEDs

A photodiode is a semiconductor-based electrical device that converts photonic energy, in the
form of electromagnetic radiation, to a detectable electrical signal in the form of current or voltage
(Figure 1a). LEDs are also semiconductor-based devices. However, LEDs convert electrical energy—in
the form of current, to light (photons); through the electroluminescence process [13]. To a greater
extent, most of the semiconductor-based photodiodes and LEDs consist of silicon PN junctions. Today,
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photodiodes are typically used for signal detection [9,14–16] while LEDs are principally used for
luminescence [13]. However, some novel studies have directly manipulated LEDs for electromagnetic
radiation detection (sensing) [11,17–20].
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Figure 1. Images of some of the semiconductor-based photonic devices (a) Photodiode [21]; (b) chip
on board light-emitting diode (COB LED) [22]; (c) surface mount diodes light-emitting diode (SMD
LED) [23].

Photodiodes can be broadly classified into four, i.e., PN photodiodes; consisting of a heavily
positive semiconductor (P) affixed to a heavily negative semiconductor (N) to form a junction,
PIN photodiodes; comprising a PN junction with an intrinsic region sandwiched between the P
and N semiconductors in order to increase detection volume [14], Avalanche photodiodes (APDs):
Photodiodes that are very sensitive to relatively low intensity electromagnetic radiation due to their
high precision and gain capability [24], and Schottky photodiodes: Photodiodes associated with
appreciably low operational capacitance [25].

Recent technologies deploy surface mount diodes (SMDs) and chip on board LEDs (COB LEDs).
SMDs and COBs are multiple sole LEDs adhered onto a printed circuit board to form one compatible
unit as shown in Figure 1b,c. COBs have more chips/LEDs, hence, provide more luminescence than
SMDs; they also consume less energy [26].

2.1. Structure

Silicon being a group four element, comprises of four valence electrons in its outer most shell.
This way, a silicon atom makes covalent bonds by sharing electrons with the neighbouring atoms.
The sharing could be among the silicon atoms themselves or even atoms of a different element - through
the doping process [13]. Therefore, pure/intrinsic silicon is almost incapable of conducting current
naturally [13,27]. It has gotten few/no free electrons in the conduction band but has gotten more holes
in the valence band as shown by Figure 2a [13]. Nonetheless, conduction could still occur due to
crystal defects or thermal excitation [27]. Current electronic applications mostly deploy doped silicon.
In doped silicon, the sharing atoms are from either group 3 or group 5. During the bonding process,
electron sharing creates an electron deficiency; if the sharing atoms are from group 3, or an excess of
electrons; if the sharing atoms are from group 5 [13,27]. A deficiency creates holes [13] which are free
and move around just like the excess electrons. After the bonding process, the loss of excess electrons
leaves a positive charge on the impurity atoms while the gain of an electron leaves a negative charge
on the impurity atoms. Therefore, a region where there is an excess of the negatively charged electrons
becomes an N region: N-type doped semiconductor, while a region with an excess of positively charged
holes becomes the P region: P-type doped semiconductor [13,27].
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Figure 2. (a) Semiconductor Energy Bands; (b) lattice structure Vacancies and Interstitials.

When the P and N types are in contact, electrons in the N region move across to the P region to
make recombinations with the holes [13]. At this junction, the impurity atoms get depleted of charges
that results in an electric field due to their positive and negative polarization. The electric field has
an associated electric potential that ceases further charge flow across the junction. Therefore, this
results in a necessity for an external potential, bias, for charges to travel across the junction [28]. This
applied potential should be in opposition to the intrinsic region’s electric field potential. Charges are
not only stimulated electrically with the potential bias [13] but also thermally [10,29], and optically [30].
PN junctions are the main components of semiconductor devices as shown in Figure 3a.
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Figure 3. (a) Cross-section of an NPN transistor (similar to that of a photodiode); (b) an unbiased PN
Junction; (c) a parallel plate capacitor; (d) an NPN transistor circuit diagram.
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2.2. Functionality and Operational Principle

The operation of LEDs is based on electrical stimulation/ electroluminescence; electrons
gain electrical energy and drift towards holes that results into recombinations [13]. During these
recombinations, energy equivalent to the semiconductor material’s energy band gap is dissipated
off in the form of light photons [13]. There is also a direct proportionality between the electrical
energy applied and the photonic light produced by LEDs, i.e., more current leads to more charge
recombinations, hence, the production of more light and vice versa [13]. Transposition of these
processes explains the working principle of photodiodes. Here, the charges receive energy in the form
of electromagnetic radiation that makes electrons drift towards the holes.

This charge flow creates an internal electric field that ceases the further flow of charge, hence,
establishing an equilibrium in the depletion region of the PN junction. Therefore, an external positive
or negative potential has to be applied against the newly-present internal potential; so that electrons
and holes move across the junction again. This positive or negative potential is also termed as forward
or reverse biasing depending on its orientation. In the forward biasing of a PN junction, the positive
bias voltage repels the holes on the P side. Similarly, the negative bias voltage repels the electrons
on the N side. These repulsions from both the negative and positive bias voltages make the charges
overcome the internal electric field potential in the depletion zone (Figure 3b). This makes charges
eventually flow over the junction, hence, the operation of a PN junction. In contrast, during the reverse
bias, the positive bias voltage attracts the electrons from the N side while the negative bias voltage also
attracts the holes from the P side; that results in no charge flow across the junction.

Despite the reverse bias, some random charges can still overcome the electric field potential in
the depletion zone. This random charge flow over the junction leads to a current flow termed as a
leakage/dark current. This dark current flow during the reverse bias gives a clue to the intuition of
radiation detection by a PN junction, i.e., medical radiation detection using a reversely biased PN
junction. When photons fall on a reversely biased PN junction, their energy is absorbed by the electrons
in the N region. Due to this energy absorption, electrons overcome the depletion region’s electric
field potential thus formulation of recombinations. From Equation (1) [16], an electrical current (I) is a
result of summing up (integrating) all the small charges, (dq), flowing per unit time (dt). The current
(I) can also be defined as the rate of charge flow. An induced measurable photocurrent [31] can be
used to depict the nature of photonic energy that induced it. The generated electrical signal may
be of small magnitude or incompatible to the measuring device (ammeter/ multimeter). Therefore,
a photocurrent may not be directly sensed by a detector device. In this case, amplification has to
be done to produce a measurable electrical current [25,32,33]. Medical radiation detection using PN
junction-based dosimeters exploits this principle to measure and characterize the quality and quantity
of radiation striking the dosimeter; the characterization is based on the induced photocurrent.

I =
dq
dt

(1)

2.3. Present Literature

The ability of PIN photodiodes to detect mammography and radiology clinical beams are examined
in a study by Romei et al. [9]. Here, reproducible linearity, system sensitivity, diode batch-to-batch
reproducibility, and the correlation between diode read-out and absorbed dose are investigated using
an S2506-02 photodiode [9]. A Monte Carlo simulation was also performed to investigate the effect of
the photodiode casing during the measurement of low energy radiations. As highlighted in Section 2.2,
there was a need for an amplification stage in order to acquire the signal in the current mode [9].

PIN diodes were also evaluated for detection of diagnostic radiology clinical beams while using a
standard reference as calibration [34]. A linear correlation between the PIN photodiode read-out and
the dose measured with standard dosimeters was observed [34]. In this study, satisfactory sensitivity;
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in accordance with the read-out dose values, small size, and being cost effective are highlighted as the
advantages of using PIN photodiodes [34].

Further, a BPW34FS photodiode was benchmarked for; angular dependence-variation of the
output signal according to the radiation beam angle of incidence, energy dependence, dose linearity, and
sensitivity degradation (due to accumulated dose) using computed tomography X-rays [35]. Its response
was then compared to those of the OP520 and OP521 phototransistors [35]. Air kerma/energy
dependence response for all of the three devices implied the need for calibration for each device.
All the three device signals were also highly dependent on the angle of incidence of the radiation
beam [35]. The photodiode had low sensitivity that was unaffected by increased X-ray exposure [35].
The transistors’ high sensitivity also considerably plummets with an increased absorbed dose; this
presented a need for calibration in order to obtain accurate results following continued exposures [35].

SFH206, BPW34, SFH205, and BPX90F PIN photodiodes were also examined for application as
radio-protection detectors in radiology [14]. The examination was based on the minimum sensitive
area (5 mm2), half angle (60◦), and low-cost as comparison criteria [14]. This was because these devices
are inexpensive and have a small volume [14]. Photodiodes are also defined as direct-reading real-time
dosimeters, and their responsiveness to x and gamma rays, air kerma/absorbed dose linearity, and
repeatability were analysed [14].

In addition, current mode S1223, BPW34, and PS100-6-CER2 PIN photodiodes were also appraised
as real-time gamma radiation detectors while using photodiodes of different active areas and varying
the number of diodes connected in parallel [15]. The assessment was done by deducing the
photocurrent-dose rate, and accumulated charge-absorbed dose relationship [15]. A customized
computer-based electrometer, that could measure photoinduced currents as low as 50 pA with
considerably low errors, was also used. In this study, the photodiode’s induced current was linear with
the dose rate while the accumulated charge was also linear with the absorbed dose [15]. The current
response of the devices could be estimated with a function that is based on the dose rate and the
photodiode’s detection volume, i.e., the product of the active area and depletion layer width [15].

2.4. Benefits, Limitations and Challenges as Potential dosimeters

Accurate detection and measurement of radiation-induced photocurrent is paramount and the
ability to perform this is termed as sensitivity. Photodiode sensitivity can be enhanced by increasing the
device’s sensitive area; to ensure more accurate results in medical radiation applications. However, this
is related to an adverse effect of increasing the capacitance [14]. From Equation (2) [16], while assuming
a parallel plate capacitor [18] with constant charge, the capacitance is inversely proportional to the
applied voltage. It can also be observed from Equation (3) [15,16] that area-A (sensitive area) is directly
proportional to the capacitance thus an increase in the area increases the capacitance. Therefore, due to
the inverse proportionality between the capacitance and the voltage, there is an output signal-voltage
amplitude drop associated with an increase in the area [14]. In other words, the parameter that
affects the PIN photodiode’s photocurrent most is the active detection volume [28]. The detection
volume is a product of the active area and the depletion region’s width [15]. While the active area is
constant, the depletion layer can be varied by the amount of the reverse bias voltage [15]. This however
increases the leakage/dark current that eventually affects the minimum dose rate (current) that can be
measured [15]. A study by authors [14] also suggests combining the photodiodes in parallel (tiling) to
increase the detection area. However, they further explicate that increasing the sensitivity this way has
a cost of increasing the capacitance; hence a low voltage output signal.

Q = CV (2)

Q-Charge on capacitor plates, C- Capacitance of the capacitor, V-Voltage across the capacitor plates

C =
εA
d

(3)
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C-Capacitance, ε-Dielectric constant, d-Distance between the capacitor plates, A-Area of the
capacitor plates

PIN photodiodes have a higher quantum efficiency over other current read-out sensors [15]. This
infers that a higher fraction of the incident photon beam contributes to the photocurrent [14,36]. The
PIN photodiode’s wide intrinsic region has high charge densities [37] that implies many charge carriers
per photon that strikes this region [14]. There are no electrons filling the outermost energy bands in
this intrinsic region, hence charges prefer filling up these empty energy bands; a phenomenon that
results in a high charge concentration in this region.

Compared to ionization chambers, semiconductor detectors also have a higher signal-to-noise
ratio, i.e., they require lower average energy to create a pair of charge carriers [9]. This could also
imply high sensitivity to low energy radiation thus increase in the measurable range. Although
photodiodes may give a small signal to radiation exposure, they are preferred because accuracy is
crucial in dosimetry; photodiodes produce a pure signal with less noise [35].

Some attributes of an efficient medical radiation dosimeter include; having a wide dose-measurement
range, high accuracy levels, giving a real-time response to radiation exposure, and being user-friendly [9].
The radiation-induced current of photodiodes only flows during radiation exposure, thus giving a
direct measurement/output electric signal [14]. This implies that photodiodes are active and real-time
dosimeters [15]. Therefore, photodiodes are preferred to passive dosimeters like the TLDs [15]. This is
because the absorbed dose of the TLDs could be affected by fading during the time between radiation
exposure and measurement; that leads to inaccuracy in measurements.

Photodiodes can be termed as hard dosimeters because their loss of sensitivity after radiation
exposure is negligible [35]. In other words, they have higher repeatability [15]. In dosimetry,
repeatability refers to the extent to which the dosimeter gives stable/constant results following
successive/consecutive radiation exposures - keeping all parameters constant [16]. This is a key feature
for dosimeters since they are repeatedly used for dose measurements in different sessions. Therefore,
the ability to give unwavering readings is pivotal.

Since dosimeters measure the radiation received by the body, their structural composition relative
to the human body should be taken into consideration. Silicon’s atomic number-14 is different from
that of human tissue-approximately 7.4 [9]; therefore, both silicon and human tissue are associated
with different chemical interactions. However, silicon may still be used for dosimetry of x and gamma
rays, interacting with human tissue, by applying calibration factors [9].

PINs are vulnerable to atomic displacements in their lattice structure [38]. These displacements
are due to absorbed dose/ photon energy of the incident beam as shown in Figure 2b. Increase in
displacements could imply an increase in dark currents [15], but these damages in the PIN’s structure
may be negligible. For instance, the lowest measurable photocurrent level for each sample in [15]’s
study was more than two orders of magnitude higher than the nominal dark current before radiation
exposure [15]. Considerably high dark current levels could, however, limit the minimum measurable
level of radiation-induced photocurrent [15]. This is because the low energy radiations won’t be able
to stimulate electrons and holes from the dosimetric traps [30]. Eventually, the post-recombination
current signal will be weaker/lower than the pre-existing dark current signal: Unmeasurable.

Since an increase in the dark currents leads to a decrease in the photocurrent, periodic recalibration
has to be carried out to ensure long term stability and accuracy. This is supported by the finding that
states that the level of sensitivity loss as a function of radiation damage depends on the photodiode’s
characteristics, the energy of the source, and the total absorbed dose [15].

Increase in ambient temperature also leads to a relative increase in the leakage current; the charge
drift is stimulated by the heat energy. Yukihara [30] also observes a significant charge concentration
(signal) decrease at room temperature. This is because the heat energy could easily stimulate the
charges out of shallow traps. Recombinations of these charges from shallow traps produce dark
currents; shallow traps are situated close to energy levels at the edge of the conduction and valence
bands [30].
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3. Phototransistors

Since photonic devices emit, detect, and manipulate light, devices such as metal–oxide–
semiconductor field-effect transistors (MOSFETs), bipolar joint transistor (BJT), vertical double-diffused
MOSFETs (VDMOSFETs), and transistors are not considered as photonic devices. Although this paper
mainly focuses on photonic devices, this section also includes MOSFETs, BJT, VDMOSFET, RADFETs
and transistors because they have the same structure, operation principles, and are often compared to
photonic devices during medical radiation detection.

3.1. Structure

Phototransistors consist of a PN junction in the NPN format (Figure 3a)-similar to photodiodes and
transistors. The only difference between photodiodes and phototransistors is that the phototransistor
base section (P) is sensitive to the photons of light that strike it [11]. Since transistors are fundamentally
amplifiers, they multiply the base current with a gain factor giving rise to an amplified collector
current. Therefore, if the base of the transistor is photosensitive, amplified photocurrent signals will
be produced as collector currents. Phototransistors are therefore defined as optoelectronic devices
commonly constituting two relatively thick N-type sandwiching a thin P-type semiconductor material
layer [39]. The NPN junction sections are emitter, base, and collector, respectively [16]. These sections
are named according to the roles they play in electron transmission across the junction. In reference to
Figure 3a, both the base and the collector are bigger than the emitter. The base inputs charge into the
junction and on the other hand, the collector gathers charge out of the junction. Further, the collector is
bigger than the base thus collects and takes into account all of the emitted charge without omitting
any; this implies high sensitivity. Andjelković and Ristić also state that the base-collector junction is
the sensitive volume of the phototransistor and is deliberately made longer than the base-emitter to
achieve high sensitivity to the incident radiation [16].

3.2. Functionality and Operational Principle

Exposure of phototransistors to radiation stimulates the flow of a charge/photocurrent in them.
This charge/photocurrent is a record of the type of radiation that induced it. Therefore, accurate
quantification, evaluation and measurement of all collected charge guarantees accurate backtracking
to the radiation that induces this charge/photocurrent. The product of the photocurrent and the time
taken to collect this photocurrent is equivalent to the charge collected by the sensor during this time.
This accumulated charge is proportional to the absorbed dose [15]. In addition, if there is a linear
relationship between the intensity of the radiation-induced current and the dose rate, the intensity of
the radiation-induced current is equivalent to the dose rate [15]. The radiation-induced photocurrent
will be stable and proportional to the dose rate as long as the incident radiation dose rate is high
enough during exposure [16].

3.3. Present Literature

Gamma radiation from a Co-60 source was detected with a collector-emitter biased NPN
phototransistor [16]. The accumulated charge-absorbed dose relationship, dose rate effect on the
induced current, short term repeatability, and stability of induced current were assessed. The radiation-
induced current was stable with a less than 5% uncertainty and the induced charge was considerably
good with a less than 3% uncertainty [16]. A notable current fall after an absorbed dose of 20 Gy was
however observed; this was attributed to the radiation-induced lattice structural damages [16,38].
A non-linear relationship between the absorbed dose and the accumulated charge was also noticed;
this was similarly due to the current gain damages [16]. The results of this study recommended the use
of an NPN phototransistor because of its high sensitivity, linear induced current-dose rate relationship,
and minimal dose rate dependence on charge sensitivity [16].
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Radiation Field Effect Transistors (RADFETs) are p-channel metal oxide semiconductor transistors
purposely manufactured for radiation detection. RADFETs were compared to a p-channel VDMOSFETs
for radiation detection by analysing the radiation-induced threshold voltage alteration; the threshold
voltages change after radiation exposure [40]. Here, the threshold voltage shift and radiation dose
exhibited a linear dependence on each other when a +10v gate bias was applied [40]. The p-channel
power VDMOSFETs responded more to radiation exposures than the RADFETs – there was a higher
threshold voltage shift. This was attributed to more fixed traps that are induced by gamma radiation [40].
Fading was also examined at room temperature and it was more eminent in VDMOSFETs than in
RADFETs [40].

In breast cancer radiotherapy treatment, bipolar junction transistors were tested as radiation
detectors despite the fact that they are affected by accumulated dose structural damages [39]. Similar
to the threshold voltage shift technique used in VDMOSFETs, this study uses the current amplification
factor (β) shift to determine the absorbed dose – radiation absorption alters the value of β. Therefore,
radiation is quantified and characterized according to the change in the value of β. In particular,
a Darlington type BJT was used since it has a higher gain compared to other BJTs; its gain is a product
of two BJTs-β1β2 [41]. This high gain ultimately implies a high response/sensitivity to low energy
radiations [39].

Another study also tested the accuracy of MOSFETs in the detection of radiotherapy absorbed
dose [42]. The MOSFET dose calculations were ascertained by referring to the Monaco and MasterPlan
pre-treatment plans of different anatomical regions; this was aimed at ensuring synchrony between the
planned and actual absorbed dose [42].

RADFETs can’t provide real-time/ online dose information using conventional methods. Therefore,
they were configured as a PN junction, i.e., the gate, drain and source terminals (Figure 4) were
inactivated /grounded. Co-60 gamma radiation-induced current was thereafter measured from the
bulk terminal [28]. The radiation induced-currents were stable and progressively increased with
the increase in the bias voltage of up to 30V [41]. While the current increased with the dose rate in
accordance with the power law, its read-out sensitivity was linear to the applied bias voltage [38,41].
This led to an overall performance that is relatively similar to that of the PN photodiodes; additionally,
the device is unsusceptible to radiation-induced lattice structural damages [38,41].
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While examining reproducibility, dose linearity, energy dependence, and fading, MOSFETs were
investigated for in-vivo applications using an Alderson phantom [43]. The radiation-induced current
signal was linear with applied doses between 0.2 and 2 Gy of the absorbed dose [43]. From the
attained results, there was minimal temperature dependence between 22 and 40 ◦C, and the beam angle
variation was within 5% [43]. The MOSFET’s in-vivo dosimetry was applicable in the 80 kV–250 kV
range, and reproducibility was observed as a function of the absorbed dose [43]. The measured signal
also faded/reduced as the time between radiation exposure and measurement increased [43].
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3.4. Benefits, Limitations and Challenges as Potential Dosimeters

Santos et al. [44] demonstrated that phototransistors have good read-out stability for low energy
radiation (Diagnostic range) [44]. However, they exhibit a high sensitivity loss during high energy
radiation exposure; doses up to 100 Gy [16]. Furthermore, phototransistors have a higher current
gain/higher sensitivity in comparison to PIN photodiodes, but they experience faster sensitivity loss
with respect to the absorbed dose; this is due to the gain degradation [44]. In Figure 3d, the small base
current IB is amplified by the gain factor of the phototransistor-β; β is the ratio of the collector current
IC to the base current IB. Typical current gains for phototransistors range from a hundred to several
thousands [16]. A higher transistor gain factor, therefore, corresponds to the multiplication of the
base current with a bigger value in order to obtain the collector current. This way, the phototransistor
amplifies the small radiation-induced photocurrent, IB, to a greater value, IC, hence, higher sensitivity
and good read-out stability for low energy radiation [44]. The main advantage of phototransistors over
the photodiodes is this inherent current gain which brings the benefit of higher sensitivity to incident
radiation [16].

This sensitivity can even be further augmented by increasing the bias voltage [45], i.e., the
collector-emitter voltage. This consequently enhances the collection efficiency [16]. For investigating
the emitter-collector capacitance, a parallel plate capacitor will be analogized. Since the emitter-base
junction is considerably smaller than the collector-base junction, the emitter-collector capacitance will
be assumed to be the collector-base junction capacitance [16]. The total charge on the parallel plate
capacitor plates in Figure 3c is given by Equation (2) [16].

In Equation (3) [15,16], ε is the dielectric constant of the material between the capacitor plates.
ε is equivalent to εo if the dielectric material between the capacitor plates is air. Substitution of
Equation (3) [15,16] in Equation (2) [16] makes the distance d between the capacitor plates directly
proportional to the applied voltage V; with (εA/Q) as the proportionality constant. An increase in the
voltage across the capacitor, therefore, implies that d increases relatively. This thickness-d is related to
the depletion layer of the capacitor - as stated by Anđelković [16]. In a study by Oliveira [14], this
depletion layer implies the intrinsic region in PIN diodes [14]. Therefore, a wide intrinsic region implies
many charge carriers per photon; this optimizes the device’s sensitivity. However, an increment in
the depletion layer by increasing the voltage [45,46] is associated with an increase in dark currents;
Figure 3 of Anđelković [16] clearly elaborates the dark current increment of various transistors [16].
Despite the fact that the transistors are of different brands, the dark current effects showed the same
trend they appreciably increased with the increase in the collector-emitter voltage. Therefore, the
increase in the bias voltage and structural damages increase dark currents.

Similar to photodiodes, dark currents of phototransistors determine their minimum measurable
dose rate [16]. For higher precision during dose rate and absorbed dose rate measurements,
the difference between the measured current and dark currents should be as large as possible.
This is because the induced current is the difference between the measured and dark currents [16].
Therefore, if the radiation-induced current is low, effectively differentiating it from the already existing
dark currents will involve some inaccuracies. This implies that a phototransistor will measure only
radiations that can produce photocurrents with values above the dark currents. Therefore, low
energy radiations producing photocurrents below the dark current can’t be measured by the device;
the induced currents are calculated by subtracting the dark current from the measured current [16].
Therefore, the difference between the measured and dark currents should be reasonably large to enhance
precise current measurements [16]. A dark current can hence be termed as the “phototransistor’s
induced-current threshold value” since only radiations that can produce currents above the threshold
value can be measured. A phototransistor with a high threshold value has a limited measurable dose
range, i.e., only radiations with enough energy to induce currents above the high threshold value will
be detectable [37]. On the other hand, transistors with a low threshold value have a wide measurable
dose range (high sensitivity). This is because low energy radiations can also induce currents above the
relatively low threshold value, hence, being measurable. In practice, [16] states that the photovoltaic
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mode is preferred since it ensures a low dark current [16]. The low dark currents imply a low threshold
value that increases detectable and measurable energy ranges, hence, high sensitivity.

In comparison to photodiodes, phototransistors are more susceptible to radiation damage.
Therefore, phototransistors have a faster sensitivity degradation with respect to an absorbed dose;
this is because of radiation-induced displacement defects in the Si bulk [16]. A displacement effect
is when an incident radiation or particle dislodges a lattice atom from its normal location through
the Rutherford/nuclear elastic and nuclear inelastic scattering processes. This results into a vacancy;
non-existence of an atom in its lattice vicinity, and an interstitial; the existence of an atom in a
lattice structure vicinity where it is not meant to be (Figure 2b) [36,47]. An increase in these defects
implies an increase in the density of the recombination centres; this reduces the minority carrier
lifetime [36,46]—time taken by a minority carrier to recombine. Consequently, there is a decrease
of the current gain [16] because there was an increase in the leakage current; resulting from an
increase in the density of the generation-recombination centres [48]. In other words, the creation
of more recombination centres in the form of isolated and clustered defects [47] could be assumed
to be diluting the charge concentration. This is because an increase in these centres will make the
constant charges numbers to be less compared to the newly increased number of recombination centres.
Therefore, charges will have more room to easily recombine from anywhere thus reduced minor carrier
lifetime; this finally results into low currents. Despite this degradation due to the absorbed dose,
phototransistors could still be used as dosimeters while applying a correction factor; because they have
a higher sensitivity to radiation [35].

MOSFETs also consist of a PN junction, but they have a metal oxide layer as their sensitive/radiation
detection region [28]. Therefore, MOSFETs with a thick metal oxide layer have more hole-trapping
centres; this implies higher responsivity [49]. When both the MOSFET source and drain terminals
are grounded, the radiation sensitive field effect transistor version of MOSFETs could be considered
as two P+/N junctions connected in parallel [28]. MOSFETs are used in radiation detection, but the
p-channel MOSFETs (RADFETs) are preferred over current mode dosimeters. This is because they are
portable compared to diodes and photodiodes, and their sensitivity could be boosted with bias voltage
applications – just like for diodes and photodiodes [28]. Similar to PN junctions [28], incident radiation
on the metal oxide layer of the MOSFET immediately leads to the formation of electron-hole pairs [45].
This is followed by the attraction of all the electrons to the aluminium gate plate by the positive voltage
bias; a condition that leads to a high hole concentration [40]. This ultimately makes the volume density
of electrons in the inversion layer to be different from that in the substrate layer. The voltage obtained
by application of the charge conservation principle between the gate and substrate semiconductor
interface is termed as threshold voltage-Vth [50]. This voltage can also be defined as the voltage at
which the device operation commences [51]. After radiation exposure, a new equilibrium is established;
this corresponds to a new threshold voltage value. A proper analysis of this threshold voltage shift
could, therefore, be used to investigate the quality and quantity of radiation attenuated in the metal
oxide hence this voltage shift. Applying the same principle, Sedra [52] uses the radiation-induced
lattice damages as a parameter for dosimetry [39]; these damages reduce the gain factor of a transistor.
A BJT Darlington transistor is used in particular due to its higher gain compared to other transistor
types [52]. Here, the limitation of transistors-having high post-radiation exposure lattice structural
damages is a benefit. This is because this limitation is used to depict the amount of radiation that
led to the transistor gain factor drop. Therefore, higher gain drop implies more damages, hence,
more absorbed dose and a low gain factor drop, on the other hand, implies less damage, hence, less
absorbed dose.

4. Photovoltaic sensors/Solar Cells

Photovoltaic sensors are devices whose operating principle is based on the photovoltaic effect.
The photovoltaic effect is a process where incident photons of light excite valence electrons to higher
energy levels/ conduction bands. The flow of these electrons in the conduction bands implies induction
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of a voltage and current in the device [36,53]. In medical radiation applications, it’s not only the light
section of the electromagnetic radiation spectrum that excites these electrons to the conduction bands;
the X-ray section can also stimulate electrons.

4.1. Structure and Operational Principle

In reference to Section 2.1 of this paper, Gallium Nitride (GaN) and Cadmium Telluride (CdTe) are
semiconductor materials. They are deployed in solar cells (Figure 5) to convert sunlight (electromagnetic
radiation) to a current/charge which is stored as an electrical potential difference (voltage). Upon
radiation exposure, semiconductor material electrons absorb the incident radiation energy and are
excited to the conducting band (Figure 2a). Considering an unbiased PN junction of the semiconductor
material in Figure 3b, these excited electrons could be localized in the N region. Therefore, their
possession of radiation-gained energy enables them to drift towards the P section in order to recombine
with the holes. In photovoltaic films, there is a non-equilibrium (free carrier concentration) created
by illumination. This reduces the total volume of the depletion region while increasing the effective
volume of the material where charges can be transported [2]. Photocurrents are also monitored with an
application of a small bias voltage across the terminals of the device [2]. The drift of electrons implying
a flow of a radiation-induced electric current, there is a conversion of radiation to a radiation-induced
current. Therefore, a solar cell converts solar energy (radiation) to a storable form of electrical
energy (charge).
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Figure 5. Solar Cell.

A flow of 6.2× 1018 electrons in one second implies one unit of current-Ampere. This can also be
defined as the flow of one Coulomb of charge per second. The quantity of induced current being directly
proportional to the amount of radiation induce it, we can depict the type and quantity of the radiation
that is inducing a photocurrent in solar cells – during medical applications today. Solar cells are
grouped into three subgroups, i.e., first-generation wafer-based silicon; consisting of monocrystalline
and polycrystalline solar cells, second-generation thin films; composed of amorphous silicon and CdTe
thin film solar cells, and third-generation new emerging technology; including nanocrystal, polymer,
and perovskite-based solar cells, dye-sensitized, and concentrated solar cells [54].

4.2. Present Literature

A GaN thin film was adopted in the detection of 40–300 kV Bremsstrahlung sourced X-rays while
simulating the X-ray imaging of the index finger and wrist of the human phantom [2]. The film showed
a high current gain, minimal radiation angular dependence, high sensitivity to X-ray intensity and had
a linear total dose response [2]. It could also measure the 1 µGy s−1–10 mGy s−1 air kerma range with a
signal stability of 1% [2]. Additionally, there was no need for geometry/ energy recalibration because
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the results varied with only a percentage of 2 – within the measured range of energy in the study [2].
Further, in this study, the solar cell executed high-resolution X-ray imaging since solar cells normally
have a detection volume smaller than 10−6 cm3 [2]. With some more enhancements, they would also be
used in vivo biosensing [2].

A semiconductor monocrystalline silicon solar cell’s response to cobalt-60 gamma radiation dose
was also studied using the thermal luminescence glow peak technique [10]. To navigate the sources of
errors in gamma radiation dose measurements, both the solar cell and TLDs were used for radiation
detection. According to the results, gamma dose measurements were more accurate while using solar
cells [10].

Because of their low operational power and low cost, thin film sensors connected to data acquisition
electronics and wireless data transmissions were used in kV and MV photon beam detections [33].
Their sensitivity per unit area was compared to that of normal photodiodes, and to that of an Electronic
Portal Image Device (EPID) [33]. The thin films were placed under block sheets of a solid water slab
phantom, and radiation exposures were made while varying parameters such as beam energies, dose
rates, total doses, depths, and radiation exposure angles [33]. Further, IMRT sensitivity and precision
tests like closed Multi-Leaf Collimator (MLC) were performed [33]. The detector’s performance was
not dependent on the amount of the absorbed dose and the dose rate. The sensor’s sensitivity was
also sufficient, i.e., a stable and accurate read-out signal was detected during the radiation exposures;
hence, being a possible quality assurance tool [33].

Photovoltaic CdTe semiconducting thin films were also used for detecting diagnostic radiology
and radiotherapy keV and MeV energies – imaging dosimetry energies associated with image-guided
radiotherapy techniques (IGRT) [8]. The films provided real-time tracking of the tumours in IGRT
treatment delivery [8]. The films further facilitated noise reduction and better image resolution
compared to the commercially available indirect electronic portal imaging devices (EPIDs); these EPIDs
are mainly made of amorphous/non-structured silicon [8,54].

4.3. Benefits, Limitations and Challenges as Potential Dosimeters

GaN thin films are almost independent of the angle of radiation exposure. This implies that the
films will be able to give accurate dose measurements independent of the beam direction; thus, a wide
range of geometric applicability [2]. Therefore, the application of GaN films in radiotherapeutic beam
fields is feasible; the angles of these fields are selected while ensuring maximum dose delivery to the
targets, and at the same time sparing the organs at risk (OAR) [4,55]. Therefore, the ability to efficiently
measure the absorbed dose at all angles doesn’t present a need to alter the radiation field angles in
order to suit the measurable dosimetry angle of the thin film dosimeter. In case beam alteration is done
to suit the film’s dosimetric range, there may be increased radiation exposure to the OARs. These films
could, hence, stage a better performance when compared to ionization chambers that are associated
with a large angular dependence [56]. However, considering the geometrical shape of these films, they
aren’t symmetrical like the ionization chambers. Therefore, there may be a variation in the results
displayed from the different angles and positions of radiation exposure [33].

Even after frequent consecutive radiation exposures, the GaN thin film-based dosimeter’s
radiation-induced current varied within only a 2-percentage range – hence, consistent results. Therefore,
there is no need for GaN film recalibration; a procedure that is normally applicable to dosimeters
in medical radiation [2]. This consistency may be due to fewer vacancies and interstitials [10,47,57]
created in the GaN lattice structure – hence, insusceptibility to radiation-induced damages [58]. In other
words, the films ‘accumulated-dose related errors are minimum, i.e., they produce consistent results.
Due to the radiation hardness of GaN, its usage in tracking detectors affected by luminosity has
also been suggested in space science and astronomical applications [59]. This radiation hardness is
eminent in Figure 3a of Hofstetter [2]. In Hofstetter’s study [2], the photocurrents before and after
radiation exposure are equivalent when plotted on the same graph. This implies that there were trivial
photocurrent degradations due to radiation exposures [2].
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GaN thin films with detection volumes of smaller than 10−6cm3 imply a high spatial precision [2].
These films could be further developed for not only X-ray detection but also other radiotherapy
treatment modalities such as the Stereotactic Body Radiation Therapy/Stereotactic Radiosurgery
(SBRT/SRS) and Intensity Modulated Radiation Therapy (IMRT). These treatment modalities involve
the delivery of high doses to relatively small dynamic fields in a short period of time [4]. SBRT and
SRS volumes are normally small and therefore a correspondingly small volume dosimeter would be
vital in the replication and simulation of these treatment fields during dosimetry. Since these films are
relatively thinner and more flexible than present dosimetric films, they could also be easily applied
in dosimetry applications that involve curved surfaces where normal dosimeters cannot easily be
applied [33].

The band gap energy is proportional to the amount of energy of a photon released after
recombination of an electron and a hole [13]. CdTe’s bandgap being in the 1.44–1.47eV range [8,54], and
that of GaN being 3.4 eV [60], CdTe and GaN-based films can be operated at room temperature [60,61].
Therefore, CdTe-based dosimeters will have less temperature dependence because the room
temperature’s heat energy may not excite electrons from the valence band to the conduction band; the
excitation consequently results into a photocurrent. Therefore, a fairly huge proportion of the induced
current would be as a result of the electromagnetic radiation incident on the detector. This implies
higher accuracy and quantum efficiency levels of the dosimeter. Nevertheless, a large band gap also
insinuates that only radiation whose energy is above this band gap will be measured. This is because
the band gap energy is required to pluck an electron from the valence band to the conduction band; so
that an electron drift occurs in the conduction band, i.e., a photocurrent (Figure 2a). Therefore, low
energy radiation whose energy is below the band gap will have less probability of being accurately
detected. This may limit the dosimeters from measuring low energy radiations that affects their
sensitivities. Contrarily, some studies have reported the detection of some photocurrents induced
by radiations whose energy is below the band gap [60]. For incident radiations whose energies are
above the band gap, 103–104 range gains were observed [60]. In addition, since shallow and deep traps
are situated between the valence and conduction energy bands, a wider band gap may also imply
higher sensitivity because charges will get easily stuck in these multitudinous traps. The magnitude of
the radiation energy used to free these charges is proportional to the number of freed charges; this is
proportional to the induced photocurrent [10]. Presence of these numerous traps could also lead to
fading where the charges can easily be stimulated out of these traps. The stimulations could be by,
for example, heat energy at room temperature. There will thus be inaccuracies in the signal detected.
This is because all the trapped charges are a “record” of the energy used to trap them [10]. Due to
the numerous traps containing charge, less energy would be required to stimulate charge out of any
of these traps. Ultimately, there will be inaccurate backtracking of the amount of energy that was
involved in the trapping of these charges.

GaN thin films are associated with large charge gains where free charge carriers are generated
due to incident radiation. This increases the number of free charge carriers available to transport
charge; a phenomenon known as photoconductivity [60]. Photoconductivity leads to more charge
flow and a high non-linear photocurrent flow [60]. This results into an amplified radiation-induced
current produced by the detector; a slight change in the kerma can readily be observed under typical
operational conditions [2]. This photoconductive model could also be referred to as conductivity
modulation (carrier density) because of the photogenerated carriers [60]. This model produces more
photoconductive gains that are in the order of 103

− 104 for GaN sensors [60]. These gains are high
compared to the detection process where there is direct charge extraction [2]. In addition, there
is a linear relationship between these current gains and the amount of radiation incident on the
dosimeter-thus being linear for the 0.5–2 Gy dose range [10]. Despite blockage of all the ambient light
and operation of the detector at room temperature, photoconductivity produces dark currents, i.e.,
a signal will be detected even before any radiation strikes the dosimeter [2].
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CdTe films are cost-effective [54] and are associated with a direct detection method–thus low
noise effects [8]. GaN films also have a high sensitivity to noise ratio and they are nearly independent
of the air kerma rate [2]. A GaN film detector produced direct signals that were not processed using
any configuration formula/measurements; hence, faster and simpler read-out compared to traditional
detectors [2]. In addition, the induced photocurrent is stable with a standard deviation of ±0.028 µA;
the current varied within a range of 1% during 10 min of radiation exposure [2]. This is as a result of
very slow non-exponential photoconductance decays; these decays are associated with carriers being
trapped in shallow and deep traps [30,60]. The stability of this current could also imply reproducibility;
repeated series of experiments produce the same results while maintaining a constant set-up. GaN
sensors were observed to be reproducible, i.e., there was an average standard deviation of 1.3% in five
repeated series of measurements carried out by Hofstetter [2]. In another study [33], the variation of
results of the individual photocells in a solar cell array-based prototype was within a percentage of
one [33]. However, the reproducibility of the solar cells cannot be compared to that of diodes used in
dosimetry; this could be attributed to errors during manufacturing [33].

5. Charge Couple Devices (CCD)/Charge Metal Oxide Semiconductors (CMOS)

When a capacitor is fully charged, charge flow ceases and there is a static charge stored on the
capacitor plates and in the dielectric material. The capacitor is then referred to as fully charged because
this trapped charge in the dielectric material, and on the capacitor plates, doesn’t flow unless a complete
circuit is connected to it. For the capacitor in Figure 3c, the dielectric material is air, but any other
material could be placed between these plates. This could boost the capacitor’s capacitance since
the dielectric constant is dependent on the dielectric material. The dielectric constant is also directly
proportional to the capacitance as seen in Equation (3) [15,16]. Capacitors, therefore, are energy-banks
since they store charge equivalent to the voltage potential connected across them as observed in
Equation (2) [16]. When the capacitor plates are metal, and the dielectric material is a metal oxide,
a capacitor with a PN junction is formed. Therefore, electromagnetic radiation striking the surface
of the capacitor plate induces an electron-hole pair; thus, conversion of the incident electromagnetic
radiation energy to charge. A Charge Coupled Device (CCDs) is an array of single and independent
metal oxide semiconductor capacitors closely packed in a sole block. The charge on each capacitor
is transferable from one-unit cell/pixel /photo site of this block to another. Ultimately, the Analog to
Digital Converter (ADC) transforms this analog current signal (charge) to digital format [62].

5.1. Structure and Operational Principle

In a CCD, the actual charge transfer takes place in potential energy wells situated in n or p
substrates that are found below electrodes; these electrodes are connected to a multiphase pulsed clock
voltage [62] (Figure 6). Biasing one gate electrode with a positive step potential leaves the adjacent
electrodes at a lower voltage [62]. This, therefore, creates a deep potential well below the biased
electrode [62]. In this potential well, the electron charge is trapped and stored as seen in the first-time
phase t1 of Figure 6 [62]. However, if these adjacent electrodes are also consequently biased with a
higher positive potential, there will be deeper potential wells below the adjacent gate electrode [62].
Since electrode charge carriers prefer lower energy for stability, there will be a drift of charge to the
newly created deeper wells as illustrated in the second time phase t2 of Figure 6 [62]. These wells could
also be filled with electrons, which are not induced by radiation—heat induced electrons. Therefore,
the charge signal can be stored for a short time; this time is much shorter than the thermal relaxation
times for metal oxide capacitors [62]. This time normally ranges from 1 s to several minutes at room
temperature; varies depending on the structure and fabrication process [62].

When the pixels are exposed to electromagnetic radiation, a charge; whose amount is a linear
function of the illumination intensity, is accumulated from the electron-hole pair [62]. This charge is
transferred and converted to a small voltage that is amplified in order to be compatible for analog
to digital conversion by the ADC [62]. The amplified voltage is still susceptible to noise such as heat
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energy that also contributes to the electron-hole pair stimulations [62]. Complementary Metal Oxide
Semiconductor Devices (CMOS) similarly operates under the same principle as the CDDs but their
accumulated charge is amplified at each cell unit/pixel by multiple chip amplifiers, respectively [62].
Advantages of CMOS over CCD include; low power consumption, being inexpensive and easy to
manufacture [63]. On the other hand, CCDs merits have; fast speeds, high dynamic ranges, greater
light sensitivity and produce high-quality low noise images [63]. Factors such as camera size and
noise [64,65] could also be a device preference and selection criteria.

CCD pixel numbers range from 128–16 million [62] and it’s selected by the manufacturer and
hence, they determine the level of sensitivity of the device.  
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5.2. Present Literature

Radioactive tracers such as Iondine-131 (131I), Yttrium(90Y), and Fluorodeoxyglucose (FDG) –(18F),
are radionuclides that decay by emitting charged particles like electrons(β−), positrons(β+) [57,66],
and gamma rays at speeds surpassing the speed of light in that particular medium/tissue [66–71]. This
phenomenon polarizes the medium, and photons are emitted after a molecule retains its normal/stable
position [68,69]. In other words, the excited electrons fall back to their ground states due to the
fading of the polarization effect [66,68,69]. The photons are emitted as an electromagnetic radiation
wave front [69]–Cherenkov radiation (λmax ∼180 nm; water [68,72]). When Cherenkov radiation
is accurately quantified and detected using CCD detectors [70], it depicts information regarding its
source. For instance, the Cherenkov radiation could be emitted by anatomical structures, tissues or
even cells [57,73]. The speed at which light travels through a medium is proportional to the refractive
index of the traversed medium; Cherenkov Luminescence (CL) emissions increase as the refractive
index increases [69]. Therefore, different media will produce different CL emissions. The solid state
of matter has particles closely packed together and therefore if radiation or a particle is travelling
through it, there will be more interactions between the photons of the radiation/particle and the solid
particles. Therefore, there are more interactions in solids than in liquids and gases; the speed of
light in fluids is higher than that and in solids. However minimal these interactions may seem, they
reduce the velocity of the light; the reduction in the speed of light has a positive correlation with the
refractive index, η, of the medium [69]. With the η of water being 1.33 [66] and that of biological tissue
being ∼1.36–1.45 [66,74], the velocity of light, vm, in these media is ∼0.75 c and ∼0.7 c, respectively
(Equation (4) [69,71]) [69].

vm =
c
η

(4)

vmVelocity of light in a medium, ηrefractive index of the medium, cSpeed of light in a vacuum
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When a body moves with a speed relatively close to that of light, its kinetic energy will not
be be given by the classical mechanics formula −E = 1/2mv2. The kinetic energy will be given by
Equation (5) [69,71].

E = mc2

 1√
(1− v2

c2 )
− 1

 (5)

EEnergy of a particle moving at a speed close to that of light, cspeed of light, mmass of the particle,
vvelocity of the particle

If this energy exceeds a certain threshold energy value [75], the Cherenkov radiation will be
produced [69]. We can substitute the threshold kinetic energy (0.511 Mev) [66] into Equation (5) [69,71]
in order to calculate the minimum velocity that has to be possessed by a particle to stimulate Cherenkov
Emissions (CEs). CEs increase with an increase in the refractive index of a medium (Equation (7) [71,75]);
the threshold energy to induce the Cherenkov radiation is inversely proportional to the refractive
index. However, CEs don’t solely depend on the refractive index but rather many other factors such as
the density and geometry of the medium, and the type of radioisotope [66,71]. During radiation-tissue
particle interactions, there may be some Bremsstrahlung radiation. Bremsstrahlung is the radiation that
is dissipated after deceleration of a particle cutting through the Coulomb field of an atomic nucleus [66].
Bremsstrahlung would, however, have no effect on the refractive index of the medium during particle
interactions [69].

The Cherenkov radiation principle has its applications in both diagnostic radiology; Cherenkov
Luminescence Imaging (CLI), and radiotherapy; thyroid and the liver radiotherapy [57,66,68–71].
Despite the use of the Cherenkov radiation in the measurement of beta-emitting radionuclides starting
as early as 1968 [76], CLI is a new modality in the nuclear medicine arena – it was recently initiated in
2009 [69]. Therefore, literature pertaining to CL in medicine is not much compared to other photonic
devices, but it is progressively emerging.

In one study [68], the CLI of β emitters and imaging agents characterized with both radioactive
and a fluorescence emission were examined. First, the medical imaging applications of β emitters
and imaging agents were each investigated separately. Later on, both the β emitters and imaging
agents were combined in a hybrid technology during image-guided surgery [68]. Application of β
emitters and imaging agents separately is associated with both some advantages and disadvantages.
However, in a hybrid technology combining a β emitter and an imaging agent, the shortcomings of
one technique could be compensated by the other. Nonetheless, further research still has to be done to
ensure the accuracy and sensitivity of the attained signal.

Radiotracers emitting high-energy positrons via post-decays were also used to detect CLI.
Radiotracer elements are radioactive and their quantity and number of particles they emit reduce
with time –according to Equation (6) [69]. In this study, CLI in vivo application was validated by
investigating the signal/Cherenkov light emitted by radiotracers injected in mice [69].

t 1
2
=

[
In(2)
τ

]
(6)

t 1
2
Half-life (Time for half the quantity of the radioactive nuclei to decay), τDecay constant

The viability of Cherenkov Emission (CE)-based portal imagers in dynamic and stationary
CyberKnife radiotherapy treatment fields was investigated [70]. Using a half-full water tank and
a circular radiation beam with a diameter of 60 mm, CEs were stimulated in tissue equivalent
materials [70]. CCDs placed behind the tissue equivalent materials were then used to detect CEs
stimulated by both dynamic and stationary radiation [70]. A comparison with the results from an
onboard linac portal imager was done to reveal potential resolution and contrast limits [70]. Results
showed that the CE-based technique’s contrast percentages through both air and water were lower
than those of the linac-based portal imaging system [70]. In all the above applications, Cherenkov
Luminescence was emitted after a particle(s) travelled through a medium. From Equation (5) [69,71],
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the velocity of the particle must exceed the velocity of light in a given medium. Let’s now assume a
particle whose velocity v is just equivalent to the speed of light vm in a particular medium. To attain its
kinetic energy, we shall substitute Equation (4) [69,71] into Equation (5) [69,71] that will give rise to;

E′ = mc2

 1√
(1− 1

n2 )
− 1

 (7)

Equation (7) [71,75] therefore represents the amount of kinetic energy the particle has if it is
traversing the medium at a speed of light in the medium. Since the particle velocity has to surpass that
of light in the same medium, the particle with energy E′ will not produce the Cherenkov radiation.
This is because the light photons also have this same energy while travelling through the medium.
Therefore, a Cherenkov particle has a velocity v greater than vm i.e., v > vm. Thus, the Cherenkov
particle’s energy ECherenkov is greater than E′(ECherenkov > E′). With this, we could now define E′ as the
minimum energy that a particle must be having above which it will emit Cherenkov radiation. Hence,
E′ = EThreshold which is the minimum energy that a particle is supposed to attain before it emits a
Cherenkov radiation. With the refractive index of water being 1.33, EThreshold is 0.264 MeV and if the
refractive index of tissue is assumed to be 1.4, EThreshold is 0.219 MeV [71].

5.3. Benefits, Limitations and Challenges as Potential Dosimeters

Since CCDs are luminescence-based detectors, they can yield inaccurate results from the
luminescence emitted by the used fluorophore [66,68,71]; the fluorophore brightness affects the
signal intensity. The CE brightness is affected by several signal depletion factors such as excessive
luminescence attenuation by tissues that have chromophore absorbers like hemoglobin; tissues are
also heterogeneous in regard to their refractive indices [66,68,71]. Scattering effects, ambient light,
electrical noise by camera dark currents, and surface reflections could also affect the signal [66,68,71].
All these factors consequently reduce the final signal magnitude and the image resolution. This signal
could, however, be boosted by using liquid scintillators in conjunction with CLI imaging; as one hybrid
technique [66].

CDDs or CMOSs detect the wavelength of CLs close to that of visible light (Ultra Violet (UV)).
This implies that other light sources produce noise effects; CLI should be performed in total darkness
to increase the detection efficiency of CCDs [66,68]. Ambient signal detection could also be eliminated
by synchronizing the linac pulses with the CCD camera capturing time intervals [71].

The signal detected by the CCDs is directly proportional to the CL intensity. Further, the CL
intensity is also directly proportional to the half-life (Equation (6) [69]) of the radioisotopes that stimulate
the luminescence [68]. CLs measured by CCDs are, therefore, of low spatial resolutions compared to
fluorescence luminescence. This is because CL is an indirect (secondary) luminescence; high-speed
moving charged particles polarize molecules of a material–primary CL stimulation stage [68]. Since
different radioisotopes emit decay particles with varying magnitudes of energy, there will also be a
variation in the CEs generated; the radiation intensity reduces due to the half-life effects [66]. Further,
with reference to Equation (7) [71,75] CE luminescence is refractive index dependent. Therefore, CEs
will fluctuate according to the tissue refractive index variation [71]. This implies that there will be no
homogeneity in the intensity of the signals attained. In turn, some regions in the image will appear
brighter and clearer than the others due to more luminescence. Similarly, other regions will appear
darker due to less luminescence in those regions. However, studies have been carried out and results
have shown that CLI imaging could be used to increase the spatial resolution of SPECT images [71].

CCDs have high quantum efficiencies in the ∼570–720 nm spectral range [68]. This makes CCDs
feasible in the imaging of common luminescent molecules [68]. However, CCD efficiency declines
to half when the imaged wavelength is less than 350 nm; yet this is a region where CL is highly
concentrated [68]. Despite the fact that the efficiency decline effect is less in near-infrared dyes, there is
consequently deterioration of the CCD signal [68].
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CCDs are also less likely to take real-time measurements since they involve the use of visible
light [69]. Visible light has a low penetration power because its wavelength is more than 450 nm.
This implies the need for proper exposure of the areas of interest before any imaging is done. This
way, image acquisition could take approximately 5 min [68,69]. However, this operation time is still
quite short compared to other imaging modalities like Positron Emission Tomography (PET) where it
takes about 20 min to acquire the same images [69]. Longer treatment times/data acquisition times
could, however, increase susceptibility to errors resulting from patient movements; hence, the need for
additional patient immobilization procedures. This extra immobilization process is likely to cause
fatigue in patients.

When CE-based images were compared to EPID images [70], CE demonstrated an almost similar
contrast for imaging of an air-water inter-surface lining [70]. On the other hand, EPIDs had a
higher image contrast for the air and water media inter-surface lining—during a real-time video [70].
Cherenkov luminescence-based video imaging during a breast cancer intra-surgery also increased
precision in the patient positioning [71].

Novel techniques like CE-based imaging could also improvise for lack of EPIDs on devices
like CyberKnife®. This would improve patient immobilization/positioning in radiation therapy;
hence, accurate tracking of the targets (tumours)—conventionally achieved using portal imaging
(EPIDs) [66,70]. CE-based imaging would be moderately cheaper compared to the normal imaging
tools that are currently used in medical radiation imaging [66,71].

CL intensity depends on the speed of the particle; this speed is determined by the half-life
(t 1

2
) of the radioisotope [69]. When the quantity of a radioisotope reduces to half its initial amount

(after the half-life), the CCD signal intensity will similarly dwindle [68]. To ensure a low patient
absorbed dose, radionuclides with short half-lives are commonly used. However, larger quantities of
radioisotopes having short half-lives could be administered in order to attain a prolonged stable signal.
This ultimately leads to excessive radiation attenuation by tissues [3,4] and high diagnostic patient
doses [68]. Lack of sensitivity stability over a prolonged duration could limit the application of the CLI
imaging technique to procedures like total body tomography; imaging of the whole body is done—not
only a specific region of interest [69].

Although Cherenkov luminescence emits a very weak signal, if a highly sensitive camera is
used, higher quality images may be obtained; this could be an alternative to the PET and SPECT
scanners [57]. In addition, PET and SPECT scanners are relatively less efficient in the imaging of some
radionuclides like yttrium-90 [66] that are used in radiotherapy [57]. Development of modalities such as
radio-immunotherapy could also be facilitated; these modalities use radionuclides like yttrium-90 [57].
In addition, CLI could be used to validate SPECT images because it has a better spatial resolution
compared to PET; during imaging/ display of positron-sourced proton distributions [66,71]. CLI is also
currently a basis for the development of other novel techniques such as the Integrated Monte Carlo
code; manipulates principles of both ionizing radiation and optical photons, Cherenkov Luminescence
Tomography (CLT), and Cherenkov Luminescence Endoscopy [57,71].

Scatter radiation particles move at slow speeds, i.e., they have low kinetic energies. Therefore, they
do not satisfy Equation (5) [69,71]; hence no CE illuminations will arise from stray particles [70]. This
implies less need for noise filtration procedures [70]. In other words, there would be low noise signals
when the radiation source is due to the Cherenkov luminescence since it doesn’t involve external
optical stimulation [68].

With the promising CCD camera benchmark results as detectors for Cherenkov imaging in Table 1,
we could further expound this phenomenon to estimate the absorbed dose. Cherenkov emissions
were observed during radiotherapeutic radiation exposure of a human phantom with X-ray beams—a
procedure that involved an absorbed dose of 5 Gy [77]. In this case, a specific Cherenkov image
resolution would be correlated to a particular absorbed dose quantity involved in the production of
the Cherenkov image (Table 2). Therefore, CCDs would be applied as indirect dosimeters where an
image resolution would be calibrated to imply an absorbed dose value.
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Table 1. Comparison of the devices based on some dosimetry parameters and benchmarks.

Dosimetric Parameter Dosimetric Device

Photodiodes Phototransistors/
MOSFETs Photovoltaic Sensors/Solar cells CCD/CMOS

(In relation to CLI)

Susceptibility to post-radiation
lattice structural damages Low [35] High [16,35,38] Negligible [2,10,59] Not Applicable

Post-radiation dark
currents/Noise Low [35] High [16] Low [2,8] Low -noise [68,70]

Post-radiation sensitivity loss Negligible [15] High [16,35,44] Negligible [33,58,59] Radioactive half-life leads to
signal loss [68]

Quantum efficiency High [14,15,78] Adjustable [16] High [33] High [68]

Angular dependence High [35] High [35] Almost independent [2,33] Not applicable

Reproducibility/Repeatability High [9,15] Varies with absorbed dose [16] Feasible [2,33] Low [66,70]

Sensitivity to radiation Low/varies with energy [35] High [16,45] High Low [69]

Read-out type Real-time [14,15] Indirect/passive [28] Direct [8,54] Indirect [68,69]
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Table 2. Medical Photonic Device Dosimetric Ranges.

Medical Procedure Analysed Tested/Reviewed
Dose Range (cGy)

Dosimetry Radiation Type Dose Type Photodiodes/LEDs Phototransistors/
MOSFETs

Photovoltaic
sensors/Solar cells CCD/CMOS

Diagnostic Radiology
X-rays Air Kerma 0.003 – 0.450 [9] – – –

X-rays Air Kerma 0.001–0.043 [34] – – –

X & Gamma rays Air Kerma 0.006–0.400 [14] – – –

Computed
Tomography X-rays Air Kerma 0.340 – 8.30 [35] 0.340–8.30 [35] – –

Not specified Gamma rays Air Kerma 47.2–330 [15] – – –

Not specified Gamma rays Air Kerma – 10,000–50,000 [40] – –

Breast Cancer
Radiotherapy X-rays Alderson Rando Absorbed Dose – 200 [39] – –

Radiotherapy X-rays Anthropomorphic phantom Absorbed
Dose – 4,000–18,500 [42] – –

Imaging X-rays Human wrist and index finger phantom
(one pixel) – – 0.086 [2] –

Radiotherapy Gamma rays Air Kerma – – 50–200 [10] –

General Medical
Dosimetry X-rays Solid Water Phantom – – 0.1–500 [33] –

Radiotherapy X-rays Human Body phantom – – – 500 [77]
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6. Summary

Although there may be a multitude of photonic devices applied in medical radiation dosimetry, this
paper has focused on mainly photodiodes, phototransistors, photovoltaic sensors and CCD cameras.
This is because they are; currently the most commonly applied in medical radiation detection based
on the literature available, relatively low-cost devices, and there are no complex systems associated
with their applications. CCDs have been in implementation for approximately a decade [69,71].
Therefore, CCDs could have more medical application deficiencies and less literature pertaining to
their usage compared to other photonic devices. Such new technologies: Cherenkov imaging using
CCD cameras, and the margining of fluorescence dyes and Cherenkov radiation exposure as a hybrid
technology (in form of a single-imaging modality) present better results. However, further studies
have to be carried out to increase CCD efficiency while minimizing their related hazardous effects.
This would facilitate a quicker approval by governing and implementation bodies; hence, more animal
and preclinical trials [57]. This will stimulate more clinical trials that will finally improve the results of
these applications [57].

As a discrete analysis, photodiodes and phototransistors have relatively more frequent applications
compared to the CCDs and solar cells; based on the present literature and studies. Photodiodes like
the BPW34 have been associated with more pros as medical radiation detectors in this review-Table 1.
They have a high quantum efficiency, low dark currents, and low radiation-induced structural
damages. These characteristics could be considered to be some of the cornerstone characteristics of
ideal dosimeters [15]. These features further suggest that these devices are durable when applied as
radiation dosimeters. This is because there is less need for correctional/calibrations while using the
BPW34 [35]. This implies that they cannot easily wear out due to repeated usage. Being resistant to
radiation-induced damages is an essential feature in radiation dosimetry that may guarantee accurate
and stable results even after repeated usage; the long-life span of a dosimeter could also imply
durability [35].

On the other hand, phototransistors are susceptible to radiation-induced damages despite having
a relatively high amplification capability [35]. Therefore, calibration and correction procedures will
have to be carried out to maintain the device accuracy; this implies a short lifespan for these devices
since there is degradation and wear out with increased radiation exposure [35]. Users will have to
consequently buy new devices after numerous calibrations on old ones. On the other hand, photodiodes
can be used for quite long durations with less or negligible wear out. Durability could thus also
be considered a key characteristic of dosimeters associated with accurate results even preceding
multiple applications.

This presents photodiodes as fairly more robust compared to phototransistors, solar cells and CCDs.
This is because they produce low dark currents, have fairly higher insusceptibility to radiation-induced
structural damages and are negligible post-radiation sensitivity loss [15]. However, more studies have
to be carried out to further resolve their flaws like low sensitivity to radiation and having a narrow
measurable range. Alternatively, applying a solid-state scintillator in front of the photodiode could
resolve its low sensitivity to the detected radiation [79]. This may perhaps make them to be more
quintessential dosimeters in medical radiation.

The displacement effects of these photonic devices take place in the lattice structure as illustrated
in Figure 2b. Therefore, phototransistors could be fabricated using elements more resistant to
radiation-induced displacements – such as those of solar cells or even better ones. More research
on how to make the lattice structure of semiconductor devices more radiation hard will resolve this
setback. Radiation-induced displacements occur in almost all photonic devices used for radiation
detection; the magnitude of these damages could vary from one device to another. Photodiodes with
inbuilt gains/amplification could also be fabricated. Alternatively, better amplification techniques
could be applied to photodiodes in order to improve their signal magnitude and quality. In Hofstetter’s
Figure 3b [2], solar cells are shown to be radiation-hard. Therefore, further exploitation of this
characteristic may also make them ideal radiation detectors. During photonic-device based radiation
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detections, ambient light and temperature/heat buffers should be applied; an appreciably high spurious
signal may be detected due to these factors.

In medicine, radiation is mainly used in diagnostic radiology and radiation oncology. Diagnostic
procedures such as bone densitometry use significantly low radiation doses to produce X-ray images.
On the other hand, high dose radiotherapeutic treatment modalities such as stereotactic radiosurgery
(SRS) could impart absorbed doses of approximately 8–18 Gy [80,81] in one fraction. This implies that
the photonic devices to be used for medical radiation detection should measure radiation doses from
about 0 to 18 Gy in one exposure/fraction. Table 2, therefore, shows the dosimetric ranges of photonic
devices in order to determine their feasibility for medical radiation dosimetry applications.

From Table 2, photodiodes could measure minimum and maximum air kerma doses of
approximately 0.001 cGy and 8.3 cGy, respectively. In addition, the table illustrates that photodiodes
could be implemented in diagnostic radiology procedures like CT scans and X-ray imaging since
their relative absorbed doses lie in the photodiode’s measurable range. Therefore, radiotherapy
dosimetric procedures involving relatively higher absorbed doses may not be effectively implemented
with photodiodes. Instead, phototransistors (MOSFETS) and photovoltaic sensors could be preferred
since their reviewed dose range is 0.340–18,500 cGy; which is suitable for radiotherapeutic dose
measurements. For a Cherenkov emission to take place, the threshold particle energy (EThreshold)
has to be surpassed. This threshold energy could perhaps be surpassed in applications involving
higher energies and doses. In other words, CLI does not involve low absorbed dosages and energies.
CCD cameras could, therefore, be calibrated and developed to measure absorbed doses in relation
to a specific CLI image resolution. In this aspect, CCDs can be possibly designed to measure high
radiotherapeutic doses.

Solar cells are reasonably hard to absorbed dose-related wearing [2] in addition to their fairly broad
dosimetric range of 0.086–500 cGy as observed in Table 2. Therefore, it would be more appropriate for
dosimetry compared to the phototransistor that are greatly affected by radiation-induced damages.
The phototransistors (MOSFETs) would have been the optimum choice due to their wide measurable
dose of 0.340–18,500 cGy but are impaired by their appreciable displacement damage effects.

Since cost also determines the application/preference of a specific device, Table 3 gives an insight
into the probable prices of some of the photonic devices reviewed in this study.

Fabricating phototransistors using elements more resistant to radiation-induced displacements
would be the principal solution to their radiation-induced damages. This solution can, however, be
implemented by only the device manufacturers. Since signal amplification using scintillators would
perhaps resolve the photodiode’s low measurable dose range, photonic device users/researchers may
resort to using photodiodes for diagnostic radiation detection. Similarly, researchers may enhance
the solar cell’s measurable dose range using scintillators/signal amplifiers. Photodiodes and solar
cells are therefore the most promising devices for detecting diagnostic and radiotherapeutic radiation,
respectively. In nuclear medicine, CLI would be enhanced by mitigating light, heat and other ambient
signals. Alternatively, higher resolution/sensitive cameras would also be used for CLI. However, as
shown in Table 3, these cameras may be costly.

Photonic devices are generally promising radiation detectors, but more research has to be
carried out to resolve or alleviate grave flaws like lattice structure displacements that mainly hinder
their reproducibility and repeatability dosimetric parameters. Execution of more successful studies
addressing the various drawbacks highlighted in this review presents a potential for providing more
resilient, reliable and accurate photonic dosimeters.

In general, these research/development trends could be focused on mainly improving the photonic
device sensitivity to radiation. This is because the photonic devices are purposely fabricated for light
applications. While enhancing the sensitivity of these devices, their measurable dose ranges could
also be expanded. This would, hence, make the photonic devices applicable for both low and high
radiation dose measurements.



Sensors 2019, 19, 2226 24 of 28

Table 3. Some Photonic Device Retail Price Ranges.

Photonic Device Approximate Unit-Price (USD-$) Online Store

Photodiodes

S2506-02 0.0001–1.5 Alibaba
BPW34 1.6–2.45 Amazon

BPW34FS 1.98 Amazon
SFH206 1.6 Mouser Electronics
SFH205 0.79–1.92 Amazon
BPX90F 0.1–10 Alibaba
S1223 0.1–9.9 Alibaba

PS100-6-CER2PIN 78.38 Mouser Electronics
Phototransistors

OP501 0.10–9.80 Alibaba
OP505A (Optek) 0.84–2.02 Amazon
BPW85 (Vishay) 0.10–18.80 Alibaba

OP521 0.001–10.00 Alibaba
Transistors

BCV47 Darlington type BJT 0.20–0.23 Alibaba
MOSFETs 0.12–113 Mouser Electronics

Photovoltaic Sensors

Solar cell 0.46–1.20 Alibaba
Cameras

CCD 8.42–7000 Amazon
CMOS 9.99–6500 Amazon

Author Contributions: M.N.S.Y. and E.D. conceived, designed, and conceptualised the research study. E.D. wrote
the original, revised, and the accepted manuscript versions. E.D., M.N.S.Y., A.F.O. and N.H.M.T. reviewed and
edited the manuscript. M.N.S.Y., A.F.O. and N.H.M.T. supervised the research study. M.N.S.Y. administered and
acquired funding for the project.

Funding: This research was funded by the Short-Term Grant, Universiti Sains Malaysia, Grant no.:
304/PPSK/6315117.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Knoll, G.F. Radiation Detection and Measurement; John Wiley and Sons: Hoboken, NJ, USA, 2010; ISBN
0-471-07338-5.

2. Hofstetter, M.; Howgate, J.; Sharp, I.D.; Stutzmann, M.; Thalhammer, S. Development and evaluation of
gallium nitride-based thin films for x-ray dosimetry. Phys. Med. Biol. 2011, 56, 3215. [CrossRef]

3. Rivera-Montalvo, T. Radiation therapy dosimetry system. Appl. Radiat. Isot. 2014, 83, 204–209. [CrossRef]
4. Kron, T.; Lehmann, J.; Greer, P.B. Dosimetry of ionising radiation in modern radiation oncology. Phys. Med.

Biol. 2016, 61, R167. [CrossRef] [PubMed]
5. Ptw. Ionising Radiation Detectors Including Codes of Practice Freiburg, Germany: PTW. 2018. [2018/2019,

[PTW Detector Mannual]. Available online: https://www.ptw.de/fileadmin/data/download/catalogview
er/DETECTORS_Cat_en_16522900_11/blaetterkatalog/blaetterkatalog/pdf/complete.pdf (accessed on 30
November 2018).

6. Vatnitsky, S.; Jarvinen, H. Application of a natural diamond detector for the measurement of relative dose
distributions in radiotherapy. Phys. Med. Biol. 1993, 38, 173. [CrossRef] [PubMed]

7. Lépy, M.C. Detection Efficiency. Laboratoire National Henri Becquerel, CEA Saclay, F-91191 Gif-sur-Yvette
Cedex, France. 2010. Available online: http://www.nucleide.org/ICRM_GSWG/Training/Efficiency.pdf
(accessed on 7 May 2019).

8. Kang, J.; Parsai, E.; Albin, D.; Karpov, V.; Shvydka, D. From photovoltaics to medical imaging: Applications
of thin-film CdTe in x-ray detection. Appl. Phys. Lett. 2008, 93, 223507. [CrossRef]

http://dx.doi.org/10.1088/0031-9155/56/11/004
http://dx.doi.org/10.1016/j.apradiso.2013.07.011
http://dx.doi.org/10.1088/0031-9155/61/14/R167
http://www.ncbi.nlm.nih.gov/pubmed/27351409
https://www.ptw.de/fileadmin/data/download/catalogviewer/DETECTORS_Cat_en_16522900_11/blaetterkatalog/blaetterkatalog/pdf/complete.pdf
https://www.ptw.de/fileadmin/data/download/catalogviewer/DETECTORS_Cat_en_16522900_11/blaetterkatalog/blaetterkatalog/pdf/complete.pdf
http://dx.doi.org/10.1088/0031-9155/38/1/013
http://www.ncbi.nlm.nih.gov/pubmed/8381236
http://www.nucleide.org/ICRM_GSWG/Training/Efficiency.pdf
http://dx.doi.org/10.1063/1.3042212


Sensors 2019, 19, 2226 25 of 28

9. Romei, C.; Di Fulvio, A.; Traino, C.A.; Ciolini, R.; d’Errico, F. Characterization of a low-cost PIN photodiode
for dosimetry in diagnostic radiology. Phys. Med. 2015, 31, 112–116. [CrossRef]

10. Diab, H.; Ibrahim, A.; El-Mallawany, R. Silicon solar cells as a gamma ray dosimeter. Measurement 2013, 46,
3635–3639. [CrossRef]

11. Bryant, J. Photodiodes and Other Light Sensors. Analog Com. 2014. Available online: https://wiki.analog.co
m/university/courses/electronics/text/light-sensors-photodiodes (accessed on 27 March 2019).

12. Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12,
1678–1687. [CrossRef]

13. Gayral, B. LEDs for lighting: Basic physics and prospects for energy savings. Comptes Rendus Phys. 2017, 18,
453–461. [CrossRef]

14. Oliveira, C.N.; Khoury, H.J.; Santos, E.J. PiN photodiode performance comparison for dosimetry in radiology
applications. Phys. Med. 2016, 32, 1495–1501. [CrossRef] [PubMed]
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