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Abstract: In the existing stochastic gradient matching pursuit algorithm, the preliminary atomic set
includes atoms that do not fully match the original signal. This weakens the reconstruction capability
and increases the computational complexity. To solve these two problems, a new method is proposed.
Firstly, a weak selection threshold method is proposed to select the atoms that best match the original
signal. If the absolute gradient coefficients were greater than the product of the maximum absolute
gradient coefficient and the threshold that was set according to the experiments, then we selected the
atoms that corresponded to the absolute gradient coefficients as the preliminary atoms. Secondly,
if the scale of the current candidate atomic set was equal to the previous support atomic set, then
the loop was exited; otherwise, the loop was continued. Finally, before the transition estimation of
the original signal was calculated, we determined whether the number of columns of the candidate
atomic set was smaller than the number of rows of the measurement matrix. If this condition was
satisfied, then the current candidate atomic set could be regarded as the support atomic set and
the loop was continued; otherwise, the loop was exited. The simulation results showed that the
proposed method has better reconstruction performance than the stochastic gradient algorithms
when the original signals were a one-dimensional sparse signal, a two-dimensional image signal, and
a low-rank matrix signal.

Keywords: compressed sensing; low rank matrix; stochastic gradient; weak selection method;
reliability verification strategy; reconstruction performance

1. Introduction

Compressed sensing (CS) [1–4] has been receiving considerable attention. The main premise of
CS theory is that the reconstruction of a high-dimensional sparse (or compressive) original signal
from a low-dimensional linear measurement vector under the measurement matrix should satisfy the
restricted isometry property (RIP) [5]. At present, CS is divided into the following three core aspects:
Sparse representation of the signal, nonrelated linear measurements, and signal reconstruction. The
sparse representation of the signal is used as the design basis for the over-complete dictionary [6,7]
with the capability of sparse representation, such as discrete cosine transform (DCT), wavelet transform
(WT), and Fourier transform (FT). These functions are used as the sparse representation of the signal,
where they obtain a fine effect. Unrelated linear measurement is used to design the measurement
matrix [8] that satisfies the RIP condition. The commonly used measurement matrices include the
Gaussian random matrix, the Bernoulli random matrix, and the partial Hadamard matrix. In this study,
we focused mainly on the signal reconstruction.

Signal reconstruction methods can be divided into two categories: Those based on the minimized
l1-norm problem, and the greedy pursuit algorithm based on the minimized l0-norm problem.
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Those in the first category include methods such as the basis pursuit (BP) [9] algorithm and its
optimization algorithm, the gradient projection for sparse reconstruction algorithm (GPSR) [10],
the iterative threshold (IT) [11], the interior point method [12], and the Bergman iteration (BT) [13]
method. These algorithms are generally used to solve the convex optimization problems. The
convex optimization algorithms have a better reconstruction performance and theoretical performance
guarantees; however, they are sensitive to noise and usually suffer from heavy computational complexity
when processing large signal reconstruction problems. The second category includes methods such
as the matching pursuit (MP) [14], orthogonal matching pursuit (OMP) [15], regularized OMP
(ROMP) [16], and stage-wise OMP (StOMP) [17]. These algorithms offer much faster running times
than the convex optimization methods, but they lack comparable strong reconstruction guarantees.
Greedy pursuit algorithms, such as subspace pursuit (SP) [18], compressive sampling matching
pursuit (CoSaMP) [19,20], and iterative hard threshold (IHT) [21] algorithms, have faster running
times and essentially the same reconstruction guarantees, but these algorithms are only suitable for
one-dimensional (1D) signals in compressed sensing.

Several algorithms that are deemed suitable for a 1D signal and multidimensionality signals have
been proposed. Ding et al. [22] and Rantzer et al. [23] proposed the forward selection method for sparse
signal and low rank matrix reconstruction problems. The algorithm iteratively selects each nonzero
element or each rank-one matrix. Wassell et al. [24] proposed a more general sparse basis based on
previous studies [22,23]. Liu et al. [25] proposed the forward-backward method, where the atoms can
be completely added or removed from the set. Bresler et al. [26] extended this algorithm beyond the
quadratic loss studied in Liu et al. [25]. Soltani et al. [27] proposed an improved CoSaMP algorithm
for a more general form objective function. Bahmani et al. [28] used the gradient matching pursuit
(GradMP) algorithm to solve the reconstruction problem of large-scale class signals with sparsity
constraints based on the CoSaMP algorithm. However, for large-scale class signal reconstruction
problems, the GradMP algorithm needs to compute the full gradient of the objective function, which
greatly increases the computation cost of the algorithm. Therefore, Needell et al. [29] proposed
a stochastic version of the GradMP algorithm that was called the StoGradMP algorithm. Compared
with the GradMP algorithm, the StoGradMP algorithm randomly selects an index and computes
its associated gradient at each iteration. This operation is extremely effective for large-scale signal
recovery problem.

Although the StoGradMP algorithm effectively reduces the computational cost of the algorithm,
its reconstruction capability still needs improvement. In the StoGradMP algorithm, the atomic selection
method of the fixed number (namely, selecting 2K atoms to complete the expansion of the preliminary
atomic set at each round of iterations) leads to a preliminary atomic set of the existing atoms that cannot
be fully matched with the original signal. When these atoms are added to the candidate atomic set, the
accuracy of the least square solution and the inaccuracy of the support atomic set are affected, which
then weakens the reconstruction capability of the signal and increases the computational complexity of
the StoGradMP algorithm. Therefore, in this study, we created a weak selection threshold method to
select the atoms that best match the original signal, thereby completing the expansion of the preliminary
atomic set with a more flexible atom selection. This method improves the reconstruction performance
of the algorithm. The combination of the two reliability guarantee methods ensures the correctness and
effectiveness of the proposed algorithm, identifies the support atomic set, and calculates the transition
estimation of the original signal. Finally, we established different original signal environments to verify
the reconstruction performance of the proposed method.

The layout of this paper is as follows. Section 2 introduces the CS theory for signal reconstruction
and low-rank matrix reconstruction. The StoGradMP algorithm is described in Section 3. The proposed
method, with the weak selection threshold method and the reliability verification strategy of the
stochastic gradient algorithm, are outlined in Section 4. The simulation results and the discussion are
provided in Section 5, and the conclusion is drawn in Section 6.
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2. Compressed Sensing Theory

CS theory supposes that signal x is an n-length signal. It is said to be a K-sparse signal (or
compressive) if x can be well approximated using K coefficients under some nonrelated linear
measurements. According to the CS theory, such a signal can be acquired by the following linear
random projection:

u = Φx + ε (1)

where Φ ∈ Rm×n, u ∈ Rm×1(m � n), and ε ∈ Rm×1 are the measurement matrix [30], the observation
vector, and the noise signal, respectively; u contains nearly all the information of the sparse signal
x. According to Equation (1), the dimensionality of u is much lower than the dimensionality of x.
This problem is an underdetermined problem, which shows that Equation (1) has an infinite number
of solutions. It is difficult to reconstruct the sparse signal vector x from u. However, according to
the literature [5,31], a sufficient condition for exact signal reconstruction is that the sensing matrix Φ
should satisfy the RIP condition. The RIP condition is described in Definition 1.

Definition 1. For each integer K = 1, 2, . . . , define the restricted isometry constant δK of the sensing matrix Φ
as the smallest number, such that holds for all K -sparse signal vectors x ∈ Rn×1 with ‖x‖0 = K.

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22 (2)

Assuming that the original signal x is sparse in compressed sensing, then x can be reconstructed
by solving the following optimization problem:

min
x∈Rn×1

1
2m
‖u−Φx‖22 Subject to ‖x‖0 ≤ K (3)

where m is the number of the measurement value and ‖.‖22 denotes the square of the 2-norm of the
noise signal estimate vector. Here, K controls the sparsity of the solutions to Equation (3).

The low-rank matrix reconstruction problem can be similarly formulated. We obtain the
observation vector ui, which can be described as

ui = ΦiX + εi (4)

where i = 1, 2, . . . , m, the size of measurement matrix Φi is an m × n1; the unknown signal matrix
X ∈ Rn1×n2 is assumed to be a low rank matrix; and εi is the measurement noise. According to
Equation (4), the matrix X can be reconstructed by the solving the following optimization:

min
X∈Rn1×n2

1
2m
‖u−ΦX‖22 Subject to rank(X) ≤ R (5)

where m is the number of the measurements; u, Φ, and X are the observation signal, measurement
matrix, and low-rank matrix signal, respectively; and R controls the rank level of the solution to
Equation (5).

To analyze Equations (3) and (5), we first define a more general notion of sparsity. Given the
sparse basis Ψ =

{
ψ1,ψ2, . . . ,ψn

}
, which consists of the vectors ψi

x =
n∑

i=1

αiψi = Ψα (6)

where αi =
〈
x,ψi

〉
= ψT

i x is the projection coefficient of the original sparse signal x and K � n. x is
sparse with respect to the sparse basis Ψ if the number of nonzero entries are much lower than the
length of signal x; that is, K � n. The sparse basis Ψ can be explained respectively:
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(1) For sparse signal reconstruction, the sparse basis Ψ could be a finite set, such as Ψ =
{
ψi

}n
i=1,

where ψi is the basic vector in the Euclidean space.
(2) For low-rank matrix reconstruction, the sparse basis Ψ could be an infinite set, such as Ψ =

{
ϕiνi

}∝
i=1,

where ϕiνi are the unit-norm rank-one matrices.

This notion is sufficiently general to address several important sparse models, such as the group
sparsity and low ranks [28,32]. Therefore, we can describe Equations (3) and (5) using Equations (7)
and (8), respectively:

min
x

1
M

M∑
i=1

fi(x)︸        ︷︷        ︸
F(x)

Subject to ‖x‖0,Ψ ≤ K (7)

min
X

1
M

M∑
i=1

fi(X)︸        ︷︷        ︸
F(X)

Subject to rank(X)Ψ ≤ R (8)

where fi(x) is the smooth function, which can be a non-convex function; ‖x‖0,Ψ controls the sparsity
level of signal; fi(X) is also the smooth function with respect to the low rank matrix, which is the
non-convex function; and rank(X)Ψ determines the rank level of the low rank matrix X. In particular,
‖x‖0,Ψ is the smallest number of atoms in Ψ, such that the original signal x can be described by

‖x‖0,Ψ = min
x

K : x =
∑
i∈|E|

αiψi, |E| = K

 (9)

where |E| denotes the number of nonzero entries in the original signal x.
According to Equations (7) and (8), the reconstruction problem of the sparse signal and the low

rank matrix need to be separately explained.
For the sparse signal reconstruction, the sparse basis Ψ consists of n basic vectors, each of

size n in Euclidean space. This problem can be regarded as a special case of Equation (7), where
fi(x) = (ui −

〈
ϕi, x

〉
)2 and M = m. In this case, we need to decompose the observation signal u into

a non-overlapping vector ubi of size b. The matrix Φbi is the sub-matrix of size bi × n, which consists of
partial row vectors in the measurement matrix Φ.

According to Equations (3) and (7), the smooth function is F(x) = 1
2m‖u−Φx‖22. Therefore, the

smooth function F(x) can be written as

F(x) =
1
M

M∑
i=1

1
2b
‖ubi −Φbix‖

2
2 =

1
M

M∑
i=1

fi(x) (10)

where M = m/b, representing the number of the sub-matrix M, is an integer. Consequently, each
sub-function fi(x) can be treated as fi(x) = 1

2b‖ubi −Φbi‖
2
2. In this case, each sub-function fi(x) accounts

for a collection of observations of size b, rather than only one observation. Thus, when we randomly
spilt the smooth function F(x) into multiple sub-functions fi(x) and block the measurement matrix Φ
into multiple sub matrices Φbi , the computation of the stochastic gradient in the stochastic gradient
methods is benefitted.

For the low-rank matrix reconstruction problem, according to the explanation provided in (2) of
this section, we know that the sparse basis Ψ consists of infinitely several unit-norm rank-one matrices.
According to Equations (5) and (8), the smooth function can be represented as fi(X) = (ui − 〈Θi, X〉)2.
Therefore, the smooth function F(X) can be written as
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F(X) = 1
M

M∑
i=1

fi(X) = 1
M

M∑
i=1

 1
2b

ib∑
j=(i−1)×b+1

(
u j −

〈
Φ j, X

〉)2


∆
= 1

M

M∑
i=1

1
2b‖ubi −Φbi ∗X‖

2

2

(11)

where M = m/b is the number of block matrix in the sensing matrix Φ and M is an integer. Similarly, each
function fi(X) accounts for a collection of observations ubi of size b, rather than only one observation.

3. StoGradMP Algorithm

The CoSaMP [19] algorithm has become popular for reconstructing sparse or compressive signals
from their linear non-adaptive measurement. According to the relevant literature, we know that
the CoSaMP algorithm is fast for small-scale signals with low dimensionality, but for a large-scale
signal with high dimensionality, the reconstruction accuracy and the robustness of the algorithm
are considered poor and not ideal. Regarding the shortcomings of the CoSaMP algorithm, Bahmani
et al. [28] summarized the idea of the CoSaMP algorithm and proposed a gradient matching pursuit
(GradMP) algorithm to solve the reconstruction problem of large-scale class signals with sparsity
constraints. However, for large-scale class signals, the GradMP algorithm needs to compute the full
gradient of the objective function F(x), which greatly increases the computational cost of the algorithm.
Therefore, after the GradMP algorithm, Needell et al. proposed a stochastic version of the GradMP
algorithm called StoGradMP [29], which does not need to compute the full gradient of F(x). Instead,
at each round of iterations, an index i ∈ [M] is randomly selected and its associated gradient fi(x) is
computed. This operation is effective for handling the large-scale signal recovery problem, as gradient
computation is often prohibitively expensive. To better analyze the StoGradMP algorithm, its block
diagram is shown in Figure 1.
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Figure 1. Block diagram of the StoGradMP algorithm.

The StoGradMP algorithm is described in Algorithm 1, where the steps at each iteration are shown
below. Because the reconstruction process of the sparse original signal and the low-rank matrix are
almost identical, for the sake of simplicity, we express the above two original signals using w in the
subsequent explanations.

Randomize process: Randomly determine an index ik with probability p(ik), where k is the loop
index and ik ∈M. Then, compute its associated block matrix Φbi and smooth functions.

Signal proxy: Compute the gradient gk of the smooth function, where gk is an n× 1 vector. For
the low-rank matrix, gk is an n× n matrix.

Identify: In compressed sensing, when sorting the absolute values of the gradient in descending
order, the first 2K-largest absolute values of the gradient vector are selected. Then, search the atomic
index of the block sensing matrix corresponding to these coefficients. Thereafter, a preliminary
atomic set Tk is formed at the k-th iteration. In the low rank matrix reconstruction, the best rank
2R approximation to gk is obtained by keeping the top 2R singular values in the singular value
decomposition (SVD).
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Merge: Establish the candidate atomic set Γk at the k-th iteration, which consists of the preliminary
atomic set Tk at the current iteration and the support atomic set Λk at the previous iteration.

Estimate: Calculate the transition signal ak at the current iteration, which is obtained using
a sub-optimization method. This is a least squares problem for both the compressed sensing and
low-rank matrix reconstruction problems. In compressed sensing, ak is an n × 1 vector, whereas in
matrix recovery, ak is an n× n matrix.

Prune: Sorting the absolute values of the transition signal vector ak in descending order, the
first K largest components are selected in vector ak, and the atomic index of the candidate atomic set
corresponding to these components is then obtained. The support atomic set Λk is constructed at the
current iteration. The support atomic set belongs to the candidate atomic set, Λk ∈ Γk. Similarly, in the
matrix reconstruction, the best rank R approximation to ak is obtained by retaining the top R singular
values in the SVD.

Update: Update the current approximate estimation of the original signal, wk = akΛ. Here,
Λ = Λk. The position of the nonzero entries of the final estimation signal wk is determined by the
index of the support atomic set. wk is the final estimation signal at the kth iteration and w represents
the original signal, which includes the sparse signal and the low rank matrix signal.

Check: When the l2-norm of the current residual of the estimation signal wk is smaller than the
tolerance error tol_alg or the loop index k is greater than the maximum number of iterations (maxIter),
then the reconstruction algorithm halts the iterations and the final approximation estimation of signal
ŵ is output such that ŵ = wk. If the halt condition is not satisfied, then the algorithm continues to
execute the iterations until the halt condition is met.

The entire procedure is as shown in Algorithm 1.

Algorithm 1. StoGradMP Algorithm

Input: K, u, Φ, p(i), b, tol_alg, maxIter
Output: an approximation estimation signal ŵ = wk
Initialize: ŵ = 0, k = 0, Λk = 0, Tk = 0, Γk = 0, M
repeat
k = k + 1 loop index
select the ik with probability p(ik) randomize
gk = ∇ fik (wk) form signal proxy
Tk= supp2K

(∣∣∣gk
∣∣∣) identify 2K components

Γk = Tk ∪Λk−1 merge to form candidate set
ak = Φ+

Γk
u transition estimation using least squares method

Λ = suppK(|ak|) prune to obtain the support atomic set
wk = akΛ final signal estimation
r = u−Φwk update the current residual
Until halting iteration condition is true, exit loop

4. Proposed Algorithm

The StoGradMP algorithm takes the sparsity of the original signal as the known information
and uses it to complete the expansion of the preliminary atomic set in the preliminary stage of the
algorithm. The StoGradMP algorithm determines the 2K-most relevant atoms in the preliminary stage
of each round of iterations, and these atoms form a preliminary atomic set. Here, K represents the
numerical value of the sparsity level and rank level, which is a fixed number greater than zero. This
atomic selection results in the addition of smaller relevant atoms and incorrect atoms to the preliminary
atomic set, which reduces the accuracy and speed of the reconstruction algorithm, thereby affecting
the reconstruction performance of the algorithm. To solve this problem, we used the weak selection
threshold strategy to achieve the expansion of the preliminary atomic set at the preliminary stage of
the algorithm.



Sensors 2019, 19, 2343 7 of 22

The entire process explanation of the proposed algorithm is described here. First, according
to Equations (10) and (11) in Section 2, we selected the index ik with probability p(ik). This step is
mainly used to randomize the measurement matrix Φ to obtain a stochastic block matrix Φbik

, which is
expressed by

I = ceil(rand× nb) (12)

bik = b× (I − 1) + 1 : b× I (13)

where nb is the number of block matrices according to Equation (10), which is equal to nb = f loor(m/b).
Here, M = nb. b is the number of rows of the block matrix, which is equal to b = min(m, K). When
the original signal is a sparse signal, K represents the numerical value of the sparsity level. When the
original signal is a low-rank matrix signal, K is the numerical value of the rank level. bik represents the
index of rows of the measurement matrix, which is randomly determined. The block matrix Φbik

is
also randomly selected. Then, the stochastic gradient function fi(w) is computed. Here, w consists of
the symbols used in Section 3, which represents the sparse original signal and the low rank matrix.
According to Equations (10) and (11), the sub-function fi(w) is expressed as

fik(wk) =
1
2b
‖ubik

−Φbik
wk−1‖

2
2

(14)

where k is the loop index, and ubik
and Φbik

are the i-th block observation signal and the i-th block
matrix at k iteration, respectively. From Equations (12)–(14), we know that the sub-function fi(w) is
also stochastically determined, and that fi(w) belongs to F(w).

When the block matrix Φbik
and the stochastic gradient function fi(w) are obtained, the gradient

of sub-function fi(w) is calculated, which is expressed as

gk = ∇ fi(wk) (15)

where gk is the gradient of the sub-function fi(w) at the k-th iteration, wk is the final estimation of
the original signal at the k-th iteration, and ∇(.) denotes the derivative of the sub-function fi(w).
Combining Equation (13) with Equation (14), the gradient gk can be expressed as

gk = −2×ΦT
bik

(
ubik
−Φbik

wk−1

)
(16)

where (.)T represents the transpose operation of the matrix.
According to Equation (16), the smaller the absolute value of the gradient, the worse the match

between the selected atoms and the original signal. In the StoGradMP algorithm, 2K is fixed and
selected as the largest gradient coefficient from the gradient vector gk to determine the atomic index of
the block matrix and form the preliminary atomic set. The selected gradient coefficients may contain
some smaller gradient coefficients in the StoGradMP algorithm during some iterations. This reduces
the reconstruction performance and increases the computational complexity. Therefore, to improve
the reconstruction performance of the StoGradMP algorithm, we used the weak selection threshold
method to complete the expansion of the preliminary atomic set Tk. This process can be described as

γ = max
(∣∣∣gk

∣∣∣) (17)

Tk = suppκ×γ
(∣∣∣gk

∣∣∣) (18)

where γ is the maximum value of the absolute gradient vector
∣∣∣gk

∣∣∣ at the k− th iteration, κ ∈ [0.1 1.0] is
the threshold, and suppκ×γ(.) represents the preliminary atomic set that satisfies the weak selection
threshold condition. The gradients corresponding to the preliminary atoms satisfy the condition that
their absolute values are greater than κ× γ. If the threshold is greater than 1, then κ× γ is greater than
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all gradients of the absolute value, and the atomic set is null. This causes the weak selection threshold
method to fail. A too-small threshold of κ increases the number of error atoms in the preliminary
atomic set. In the low rank matrix reconstruction, the best rank approximation to gk is obtained by
maintaining the singular value at a level greater than the weak selection threshold in the SVD, where γ
is the maximum singular value. The preliminary atomic set consists of the singular vectors that satisfy
the weak selection threshold method.

After selecting the preliminary atomic set, we used it and the previous support atomic set Λk−1 to
form the current candidate atomic set, which can be expressed as:

Γk = Tk ∪Λk−1 (19)

where Γk, Tk, and Λk−1 denote the candidate atomic index set, the preliminary atomic index set, and
the support atomic index set, respectively.

After the current candidate atomic set was constructed, to ensure the correctness and effectiveness
of the proposed method, we added the reliability guarantee method 1 to the proposed algorithm, that
is, if

supp|Λk−1|== supp|Γk| (20)

is true, where supp|Γk| and supp|Λk−1| are represents the size (or scale) of the current candidate atomic
index set Γk and the previous support atomic index set Λk−1, respectively. The method is unable to
select the new atoms from the block matrix to add to the candidate atomic set. At this time, the loop
is exited and the estimated value of the original signal is the output. We added the sub-condition
judgment in the above judgment condition to prevent the proposed method from exiting the loop in
the first round of iterations. Since both the candidate atomic set and the support atomic set are empty
sets in the first round of iterations, this sub-condition judgment can be expressed as follows: If k == 1,
then the estimated signal ŵ is equal to 0.

Although the weak selection threshold method improves the correlation of the preliminary atomic
set and increases the flexibility of atom selection, it is possible that when the threshold is too small, the
number of columns of the candidate atomic set is greater than the number of the rows of the candidate
atomic set. This leads to an inability to obtain the transition estimation of the original signal using the
least squares method because the premise of the least squares method is that the number of rows of the
atomic set is greater than the number of columns of the atomic set. Therefore, before solving the least
squares method, we must ensure that this condition exists. Therefore, we developed the reliability
guarantee method 2, that is, if

supp|Γk| ≤ m (21)

then,
Λ = Γk (22)

ΦΛ = Φ(:, Λ) (23)

where supp|Γk| represents the number of columns of the candidate atomic matrix Γk at the k-th iteration.
If this condition is satisfied, then we regard the candidate atomic index set Γk as the current support
atomic index set Λ, and the atoms corresponding to the current support atomic index set Λ are used to
construct the current support atomic set ΦΛ. Conversely, if the condition is not satisfied (the number

of rows is smaller than the number of columns), then the matrix
(
ΦT

Λ × ΦΛ
)−1

is not inverse. If this
occurs, we exit the loop and let ŵ = 0.

Next, we used the least squares method to solve the sub-optimization problem, which can be
described as:

ak = Φ+
Λ

u (24)



Sensors 2019, 19, 2343 9 of 22

where ak is the transition estimation signal of the original signal, u is the observation signal, and (ΦΛ)
+

represents the pseudo inverse of the support atomic set ΦΛ. To better analyze the role of the reliability
guarantee method 2, Equation (24) can be written as:

ak =
(
ΦT

Λ ×ΦΛ
)−1
×ΦT

Λ × u (25)

where (ΦΛ)
T and

(
ΦT

Λ ×ΦΛ
)−1

represent the transpose operation and inverse operation of the matrix
ΦΛ and the matrix ΦT

Λ ×ΦΛ, respectively. In combination with Equations (21) and (24), we can ensure
that the operation ΦT

Λ ×ΦΛ is invertible.
Based on Equations (22)–(24), we observed that the support atomic set is obtained using reliability

guarantee method 2 and the candidate atomic set. If the reliability guarantee method 2 is true, then
the current candidate atomic set can be regarded as the support atomic set. This operation is used
to obtain the final support for the signal estimation. Next, we updated the current residual and final
estimation of the original signal, which is expressed as

rc = u−ΦΛak (26)

wk = akΛ (27)

where wk is the final estimation of the original signal at the k-th iteration, akΛ is the reconstruction
signal corresponding to the support atomic index set Λ, and rc is the current residual.

Finally, for the different original signals, we created different stop iteration conditions if

‖rc‖l ≤ tol_alg or k ≥ maxIter (28)

is true, where tol_alg is the tolerance error of the algorithm iteration, and maxIter is the maximum
number iterations of the algorithm. Specifically, if the original signal is a sparse signal, l = 2, that is,
the l2-norm of the residual estimation vector, then we set tol_alg and maxIter to 1× 10−7 and 500×M,
respectively. When the original signal is a low-rank matrix, then the current residual estimation is
a matrix, which is obtained by conducting a Frobenius norm operation on the error matrix. Here,
l = F. We set the tol_alg and maxIter to 1 × 10−7 and 300 ×M, respectively. According to Equation
(28), when the stop iteration condition is satisfied, the algorithm stops the iterations and the output is
the final estimation of the original signal ŵ = wk. If the halt iteration condition is not satisfied, the
iteration is continued, and it updates the current final estimation for the gradient computation of the
next iteration, wk+1 = wk. It continues until the stop iteration condition is true. To better analyze the
proposed algorithm, its block diagram is shown in Figure 2.
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Algorithm 2: Proposed algorithm.

Input: Φ, u, p(i), b, tol_alg, maxIter, κ
Output: an approximation estimation signal ŵ = wk
Initialize: ŵ = 0, k = 0, Λk = 0, Tk = 0, Γk = 0, M
repeat
k = k + 1 loop index
Select ik from [M] with probability p(ik) randomize process
gk = ∇ fik (wk−1) form signal proxy
γ = max

(∣∣∣gk
∣∣∣) determine the max gradient value

Tk = suppκ×γ
(∣∣∣gk

∣∣∣) weak selection method to identify the preliminary atomic set
Γk = Tk ∪Λk−1 merge to form candidate set
Reliability guarantee method 1
If supp|Λk−1|== supp|Γk|

If k == 1
ŵ = 0;

end
break;

end
Reliability guarantee method 2
If supp|Γk| ≤ m

Λ = Γk identify the support atomic set
ΦΛ = Φ(:, Λ)

else
If k == 1

ŵ = 0;
end
break;

end
ak = Φ+

Λu transition estimation by least squares method
r = u−ΦΛak update the current residual
wk = akΛ final signal estimation
Until halting iteration condition is true, exit loop

5. Discussion

We analyzed the simulation for the following experiments: 1D sparse signal reconstruction, low
rank matrix reconstruction, and 2D image signal reconstruction. The reconstruction performance is an
average after running the simulation 200 times using a computer with a quad-core, 64-bit processor,
and 4G memory.

5.1. 1D Sparse Signal Reconstruction Experiment

In this experiment, we used a random signal with K-sparse as the original signal. The measurement
matrix was randomly generated with a Gaussian distribution. We set the range of the weak selection
thresholds κ to [0.2, 0.4, 0.6, 0.8]. The recovery error and iteration stop error of all the algorithms
were set to 1× 10−6 and 1× 10−7, respectively. These errors were obtained by conducting an l2-norm
operation on the error vector. The maximum number of iterations maxIter was set to 500×M.

Figure 3 compares the reconstruction percentage of the proposed algorithm to the different
thresholds. Figure 3 shows that when the threshold was 0.6, the reconstruction percentage of the
proposed algorithm was the highest compared to the other thresholds under the same measurements
and sparsity levels.

Figure 3 shows that the reconstruction percentage of the proposed algorithm was 100% for all of
the sparsity and threshold levels when the number of measurements was greater than 160. Therefore,
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we set the range of measurements to [160 – 250] to compare the average running time of the proposed
algorithm at different weak selection thresholds, as shown in Figure 4. Figure 4 shows that the average
running time of the proposed algorithm was the shortest for different sparse levels when the threshold
was 0.8, followed by 0.6, with very small differences between the two. Based on the analysis of Figures 3
and 4, we set the default weak selection threshold to 0.6.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 23 

 

+
ka uΛ= Φ  transition estimation by least squares method 

kr u aΛ= − Φ  update the current residual 

k kw a Λ=   final signal estimation  
Until halting iteration condition is true, exit loop 

5. Discussion 

We analyzed the simulation for the following experiments: 1D sparse signal reconstruction, low 
rank matrix reconstruction, and 2D image signal reconstruction. The reconstruction performance is 
an average after running the simulation 200 times using a computer with a quad-core, 64-bit 
processor, and 4G memory. 

5.1. 1D Sparse Signal Reconstruction Experiment 

In this experiment, we used a random signal with K -sparse as the original signal. The 
measurement matrix was randomly generated with a Gaussian distribution. We set the range of the 
weak selection thresholds κ  to [0.2,0.4,0.6,0.8] . The recovery error and iteration stop error of all 
the algorithms were set to 61 10−×  and 71 10−× , respectively. These errors were obtained by 
conducting an 2l -norm operation on the error vector. The maximum number of iterations maxIter  
was set to 500 M× . 

Figure 3 compares the reconstruction percentage of the proposed algorithm to the different 
thresholds. Figure 3 shows that when the threshold was 0.6, the reconstruction percentage of the 
proposed algorithm was the highest compared to the other thresholds under the same 
measurements and sparsity levels. 

 
Figure 3. Reconstruction percentage of the proposed method at different weak selection thresholds (
n = 256 , 12,16,20,24K = , 0.2,0.4,0.6,0.8κ = , 20 : 5 : 160m = , Gaussian signal). 

Figure 3 shows that the reconstruction percentage of the proposed algorithm was 100% for all of 
the sparsity and threshold levels when the number of measurements was greater than 160. 
Therefore, we set the range of measurements to [160 – 250] to compare the average running time of 
the proposed algorithm at different weak selection thresholds, as shown in Figure 4. Figure 4 shows 
that the average running time of the proposed algorithm was the shortest for different sparse levels 

Figure 3. Reconstruction percentage of the proposed method at different weak selection thresholds
(n = 256, K = 12, 16, 20, 24, κ = 0.2, 0.4, 0.6, 0.8, m = 20 : 5 : 160, Gaussian signal).

Sensors 2019, 19, x FOR PEER REVIEW 12 of 23 

 

when the threshold was 0.8, followed by 0.6, with very small differences between the two. Based on 
the analysis of Figures 3 and 4, we set the default weak selection threshold to 0.6. 

 
Figure 4. Average running time of the proposed method with different weak selection thresholds (

256n = , 12,16,20,24K = , 0.2,0.4,0.6,0.8κ = , 160:5: 250m= , Gaussian signal). 

Figure 5 compares the reconstruction percentage of the proposed algorithm using the 
StoGradMP algorithm. We set the sparse level to [12,16, 20, 24]K ∈ , and the weak selection threshold 
to 0.6. Figure 5 shows that when the sparse level was 12, the reconstruction percentages of the 
proposed algorithm and the StoGradMP algorithm were nearly identical for all the measurements. 
When 16K = , 20, or 24, the reconstruction percentage of the proposed algorithm was higher than 
that of the StoGradMP algorithm. When the sparse level was 24, the difference in the reconstruction 
percentages between the two algorithms was the largest. Therefore, we concluded that when the 
sparse level increases, the difference between the reconstruction percentages increases further. This 
means that in sparse signal reconstruction, the proposed method is more suitable for reconstruction 
in a larger sparsity environment compared to the StoGradMP algorithm. 

Figure 4. Average running time of the proposed method with different weak selection thresholds
(n = 256, K = 12, 16, 20, 24, κ = 0.2, 0.4, 0.6, 0.8, m = 160 : 5 : 250, Gaussian signal).

Figure 5 compares the reconstruction percentage of the proposed algorithm using the StoGradMP
algorithm. We set the sparse level to K ∈ [12, 16, 20, 24], and the weak selection threshold to 0.6. Figure 5
shows that when the sparse level was 12, the reconstruction percentages of the proposed algorithm
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and the StoGradMP algorithm were nearly identical for all the measurements. When K = 16, 20, or
24, the reconstruction percentage of the proposed algorithm was higher than that of the StoGradMP
algorithm. When the sparse level was 24, the difference in the reconstruction percentages between
the two algorithms was the largest. Therefore, we concluded that when the sparse level increases,
the difference between the reconstruction percentages increases further. This means that in sparse
signal reconstruction, the proposed method is more suitable for reconstruction in a larger sparsity
environment compared to the StoGradMP algorithm.Sensors 2019, 19, x FOR PEER REVIEW 13 of 23 
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Figure 5. Reconstruction percentages of the StoGradMP and proposed algorithms (n = 256, κ = 0.6,
K = 12, 16, 20, 24, m = 20 : 5 : 90, Gaussian signal).

Figure 6 compares the reconstruction percentage of the proposed algorithm with the StoGradMP
and StoIHT algorithms. In Figure 5, the interval of measurement was set to five, and to reflect the
details, we set the interval of measurement to two in Figure 4. Figure 6 shows that when 46 ≤ m < 50,
the reconstruction percentages of the methods were 0%. This means that they could not complete the
reconstruction. When 50 ≤ m ≤ 76, the reconstruction percentage of the proposed method ranged from
0.2% to 97.6%; however, the reconstruction percentages of the StoGradMP and StoIHT algorithms
were still 0%. When 72 ≤ m ≤ 78, the reconstruction percentage of the StoGradMP algorithm began
to increase from 0.6% to 95%. When 78 ≤ m ≤ 120, the reconstruction percentages of the proposed
and StoGradMP algorithms were nearly 100%. However, the StoIHT algorithm was still unable to
complete reconstruction. When 120 ≤ m ≤ 142, the reconstruction percentage of the StoIHT algorithm
increased from 0% to 100%. When 142 ≤ m, then all the reconstruction algorithms could achieve
full reconstruction. This demonstrates that the proposed method provides better reconstruction
performance than the others.

Figure 7 compares the average running time. Figure 6 shows that the reconstruction percentage
was 100% for all the reconstruction algorithms when the number of measurements was greater than
150. Therefore, in this simulation, we set the range of measurement to [150– 250]. Figure 7 shows that
the proposed method has a shorter running time than the StoGradMP algorithm. Although the StoIHT
algorithm had a shorter running time than the other algorithms, it required more measurements to
achieve the same reconstruction percentage as the other algorithms.

Figure 8 compares the reconstruction percentages of the proposed algorithm and the prior
improved algorithm (IStoGradMP) [33]. Both of these algorithms reconstructed the signal in an
unknown sparsity environment. The main differences between the proposed algorithm and the
IStoGradMP algorithm are: (1) In the preliminary atomic stage, the proposed algorithm uses the atomic
matching strategy to obtain the preliminary atomic set, whereas the IStoGradMP algorithm evaluates
and adjusts the estimated sparsity of the original signal to obtain the preliminary atomic set; (2) the
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scales of the preliminary atomic set and the support atomic set are unfixed at each iteration in the
proposed algorithm, whereas the scale of the preliminary atomic set and the support atomic set are
fixed at each iteration of the IStoGradMP algorithm; and (3) the support atomic set is determined by
the candidate atomic set and the reliability guarantee method for the proposed method, whereas the
support atomic set is determined by pruning the candidate atomic set in the IStoGradMP algorithm.
We also proposed an improved StoGradMP algorithm based on the soft-threshold method [34]. This
algorithm [34] requires that sparsity information of the original signal to be known, whereas the
proposed method and the IStoGradMP algorithm [33] can reconstruct the signal without knowing the
sparsity information. Based on the above comparative analysis, in this section, we only compared the
experimental simulations in an unknown sparsity environment. We only compared the IStoGradMP
and the proposed methods.
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Figure 6. Reconstruction percentages of the different algorithms (n = 256, K = 24, κ = 0.6, m = 46 : 2 :
150, Gaussian signal).
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Figure 8 shows that for arbitrary measurement values, the reconstruction percentage of the
proposed algorithm was higher than that of the IStoGradMP algorithm. However, we discovered
that as the sparsity level increased, the gap in the reconstruction percentage between the proposed
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algorithm and the IStoGradMP algorithm gradually reduced. This means that the proposed method is
more suitable than the IStoGradMP algorithm under smaller sparsity environments.Sensors 2019, 19, x FOR PEER REVIEW 15 of 23 
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Figure 9 compares the average running times of the proposed method and the IStoGradMP method
under different sparsity level conditions. Figure 8 shows that when the number of the measurements
was greater than 150, the reconstruction percentage of the proposed method and the IStoGradMP was
100% for all the sparsity levels. Therefore, we set the range of the number of the measurement to
[150 – 250]. Figure 9 shows that when the threshold of the proposed method was set to 0.6, the average
running time of the proposed method was less than that for the IStoGradMP algorithm. This means
that the computational complexity of the proposed algorithm was lower than that for the IStoGradMP
algorithm. That is, the proposed method was faster than the IStoGradMP algorithm under the full
reconstruction conditions.
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Based on the analysis of Figures 8 and 9, we conclude that for a smaller sparsity level environment,
the proposed algorithm with a proper weak selection threshold has better reconstruction performance
as well as a lower computational complexity than the IStoGradMP algorithm.

5.2. Low-Rank Matrix Reconstruction Experiment

In this experiment, we used the random matrix with a low-rank property as the original signal.
We set the rank level of the matrix to R = 1, 3. The size of the low rank matrix was 10 × 10. The
measurement matrix was randomly generated with a Gaussian distribution. The recovery error and
iteration halt error of all the algorithms were set to 1× 10−6 and 1× 10−7, respectively. These errors
were obtained using a Frobenius norm operation on the respective error matrix. The maximum number
of iterations maxIter was set to 300×M.

Figure 10 compares the reconstruction percentage of the proposed method at different weak
selection thresholds. Figure 10 shows that the reconstruction percentage was higher than the other
algorithms when the threshold was 0.2 for the different rank levels of the matrix.
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Figure 11 compares the average running times of the proposed method at different thresholds.
Figure 11 shows that the smaller the weak selection threshold, the higher the reconstruction percentage,
which means that a larger threshold increases the computational complexity of the proposed method.
Thus, in the subsequent simulation without special instructions, the default weak selection threshold
was set to 0.2.

Figure 12 compares the reconstruction percentages of the different measurements of the proposed
and StoGradMP algorithms at different rank levels. We observed that the proposed method had a better
reconstruction percentage than the StoGradMP algorithm at the different rank levels.

Figure 13 compares the reconstruction percentage of the proposed algorithm to the StoGradMP
and StoIHT algorithms for different measurements. In Figure 12, we set the measurement interval to
five, and to show details, we set the interval of measurement to two in Figure 13. Figure 13 shows that
when 20 ≤ m < 22, the reconstruction percentage of all the algorithms was 0%. When 22 ≤ m ≤ 34, the
reconstruction percentage of the StoIHT and proposed algorithms began to increase from 0% to 88.2%
and 0.6% to 87%, respectively. However, the StoGradMP algorithm struggled to complete the signal
reconstruction. When 32 ≤ m ≤ 58, the reconstruction percentage of the proposed algorithm ranged
approximately from 87% to 100%. The reconstruction percentage of the StoIHT algorithm increased
from 88.2% to 99.8%. The reconstruction percentage of the StoGradMP algorithm increased from 0.2%
to 95.4%. In this measurement range, the reconstruction percentage of the proposed algorithm was
higher than those of the other algorithms. When 58 ≤ m, almost all the reconstruction algorithms
achieved a high probability reconstruction. Therefore, we conclude that the reconstruction percentages
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of the proposed method and the StoIHT method were almost the same, and higher than the StoGradMP
algorithm, which existed at a lower rank level of the matrix.
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Figure 14 compares the average running times of the different algorithms. Figure 13 shows
that when the number of measurements was more than 80, the reconstruction percentage of all the
algorithms was 100%. Therefore, to better analyze the computational complexity of the different
algorithms, we set the range of measurements to [80 – 200] in the simulation. Figure 14 shows that
the proposed algorithm had the shortest running time, followed by the StoIHT and StoGradMP
algorithms. We observed that when the number of measurements increased, the running time of the
StoIHT algorithm also increased, whereas the average running times of the proposed and StoGradMP
algorithms tended to decrease and remain stable.
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randomly low-rank matrix).

Based on the above analysis, we conclude that the proposed algorithm with a weak selection
threshold produces better reconstruction performance than the StoGradMP algorithm, as well as
a lower computational complexity than the other algorithms.

5.3. 2D Image Signal Reconstruction Experiment

In this subsection, we used six 256× 256 test images as the original images. We considered the
image signal as a 2D signal. The test images included the following: Baboon, Boat, Cameraman, Fruits,
Lena (human portrait), and Peppers. The sparse basis was a wavelet basis with sparse representation
capability, and the size was 256 × 256. The measurement matrix was randomly generated with
a Gaussian distribution, and the size was 153× 256. We assumed that the sparsity was 51. The iteration
halt error of the algorithm was set to 1× 10−7, the maximum number of iterations maxIter was set to
30, and the weak selection threshold was set to κ = 0.6.

We used the peak signal to noise ratio (PSNR) as an indicator to evaluate the reconstruction
quality, which could be expressed as:

MSE =
1

M×N

M−1∑
i=0

N−1∑
j=0

∣∣∣x̂(i, j) − x(i, j)
∣∣∣2 (29)

PSNR = 10× log10

MAX2
x̂

MSE

 = 20× log10

(
MAXx̂
√

MSE

)
(30)

where M = N = 256; x̂(i, j) and x(i, j) represent the reconstruction value and the original value of
the correspondence position, respectively; MSE is the mean square error; and MAXx̂ represents the
maximum value of the color of the image point. In this paper, each sample point is represented by
eight bits, MAXx̂ = 255. The larger the PSNR, the higher the reconstructed image quality.
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Figure 15 shows the original images. Figures 16 and 17 shows the reconstructed images using
the StoGradMP and proposed algorithms, respectively. Comparing the reconstructed images to the
original images, we observed that the two methods successfully reconstructed the original images.
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Figure 16. Reconstructed images using the StoGradMP algorithm (a) Reconstructed Baboon image
with PSNR = 16.5754 dB; (b) Reconstructed Boat image with PSNR = 20.9987 dB; (c) Reconstructed
Cameraman image with PSNR = 21.8698 dB; (d) Reconstructed Fruits image with PSNR = 23.5299 dB;
(e) Reconstructed Lena image with PSNR = 25.5532 dB; (f) Reconstructed Peppers image with PSNR =

23.7168 dB.
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Figure 17. Reconstructed images using the proposed algorithm (a) Reconstructed Baboon image
with PSNR = 19.4619 dB; (b) Reconstructed Boat image with PSNR = 24.4034 dB; (c) Reconstructed
Cameraman image with PSNR = 28.8105 dB; (d) Reconstructed Fruits image with PSNR = 27.0217 dB;
(e) Reconstructed Lena image with PSNR = 28.8224 dB; (f) Reconstructed Peppers image with PSNR =

27.2669 dB.

Table 1 compares the average PSNR of the StoGradMP and proposed algorithms under different
test image conditions. Table 1 shows that the average PSNR of the proposed algorithm was higher than
the StoGradMP algorithm for the different test images, and the average PSNR of the proposed method
was higher than 3–4 dB. This shows that the reconstructed image quality of the proposed algorithm
was better than the StoGradMP.

Table 1. Comparison of the average peak signal to noise ratios (PSNR) of the StoGradMP and proposed
algorithms for the different test images.

Algorithm

Image StoGradMP Proposed

Baboon 16.5263 dB 19.4775 dB
Boat 20.9818 dB 24.2238 dB

Cameraman 22.3862 dB 25.7790 dB
Fruits 23.3538 dB 26.9003 dB
Lena 25.2590 dB 28.7027 dB

Peppers 23.7567 dB 27.2286 dB

Table 2 compares the average running times of the StoGradMP and proposed algorithms for the
different test images. From Table 2, the average running times of the StoGradMP algorithm was longer
than the proposed method for the different test images, and the average running time of the StoGradMP
algorithm was more than twice that of the proposed algorithm. This means that the proposed method
had lower computational complexity than the StoGradMP algorithm when images were reconstructed.
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Table 2. Comparison of the average runtimes of the StoGradMP and proposed algorithms for the
different test images.

Algorithm

Image StoGradMP Proposed

Baboon 51.04 s 19.32 s
Boat 51.45 s 20.22 s

Cameraman 51.13 s 17.94 s
Fruits 81.66 s 19.41 s
Lena 50.52 s 22.64 s

Peppers 56.88 s 19.03 s

Based on the above analysis, the proposed method has a better reconstruction performance
for different test images compared to the StoGradMP algorithm, as well as a lower computational
complexity than the StoGradMP algorithm.

6. Conclusions

In this paper, a novel stochastic gradient matching pursuit algorithm based on weak selection
thresholds was proposed. This algorithm uses the weak selection threshold method to select the atoms
that best match the original signal from the block sensing matrix and completes the expansion of the
preliminary atomic set. The proposed algorithm adopts two reliability guarantee methods to identify
the support atomic set and calculate the transition estimation of the original signal to ensure the
correctness and effectiveness of the proposed algorithm. The proposed algorithm not only eliminates
dependency on prior sparsity information of the original signal, but also increases the flexibility of the
atomic selection process while improving atomic reliability. Therefore, it enhances the reconstruction
accuracy and reconstruction efficiency of the proposed algorithm.

Our series of simulation results showed that the proposed method has better reconstruction
performance and less computational complexity compared to the other algorithms. Future research
should consider using the proposed method to process large-scale array signals, such as wireless
communication signals, radar signals, and sonar signals, to enhance the useful signal, suppress noise
interference, reduce the burden on sensor devices, and ensure fast real-time transmission of the array
signal. The weak selection threshold was determined by setting the threshold and the maximum
stochastic gradient in our proposed method. The optimal setting threshold was different for different
types of signals, which affects the reconstruction performance. Our future work will consider methods
to adapt the setting threshold to the signal.
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