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Abstract: In this paper, a deep learning (DL)-based physical (PHY) layer authentication framework is
proposed to enhance the security of industrial wireless sensor networks (IWSNs). Three algorithms,
the deep neural network (DNN)-based sensor nodes’ authentication method, the convolutional neural
network (CNN)-based sensor nodes’ authentication method, and the convolution preprocessing
neural network (CPNN)-based sensor nodes’ authentication method, have been adopted to implement
the PHY-layer authentication in IWSNs. Among them, the improved CPNN-based algorithm requires
few computing resources and has extremely low latency, which enable a lightweight multi-node
PHY-layer authentication. The adaptive moment estimation (Adam) accelerated gradient algorithm
and minibatch skill are used to accelerate the training of the neural networks. Simulations are
performed to evaluate the performance of each algorithm and a brief analysis of the application
scenarios for each algorithm is discussed. Moreover, the experiments have been performed with
universal software radio peripherals (USRPs) to evaluate the authentication performance of the
proposed algorithms. Due to the trainings being performed on the edge sides, the proposed method
can implement a lightweight authentication for the sensor nodes under the edge computing (EC)
system in IWSNs.
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1. Introduction

With the development of Industry 4.0, wireless sensor networks (WSNs) have great application
prospects for industrial scenarios due to their advantages over traditional wired networks [1–4].
However, fully-automated mechanized operations and the wireless communication environments
make the industrial wireless sensor networks (IWSNs) have stronger requirements for high security
and low latency [5]. M.Luvisotto et al. [6] mentioned that the response delay in IWSNs should be in
milliseconds. Moreover, under the edge computing (EC) system in IWSNs, some sensor nodes are in
some completely security-free environments because there are no redundant computing resources
and transmission resources. Therefore, lightweight authentication is urgently needed to enhance the
security of IWSNs while ensuring low latency. The encrypted methods [7,8] are too heavy to support
the nodes due to complex computing. I. Bhardwaj et al. [9] did some lightweight processing on the
password, but their method still cannot meet some specific requirements. Some other researchers
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proposed a fast cross-authentication scheme that combines non-cryptographic and cryptographic
algorithms to solve the security and latency issues [10]. In addition, the heterogeneous nature of the
IWSNs makes traditional encryption-based authentication methods more complex to implement
or manage. However, physical (PHY) layer methods provide some new approaches to protect
the lightweightIWSNs. The high authentication rate and low cost are especially valued for such
applications. By introducing deep learning (DL) into the PHY-layer authentication method, under the
EC system, the training is performed under the edge devices, and the sensor nodes almost do not bear
any extra costs.

D. Christin et al. [1] surveyed related WSN technologies dedicated to industrial automation from
the aspects of security and quality of service (QoS). The work in [4] presented a QoS framework for
IWSNs guaranteeing the delay bound and the target reliability. N. Neshenko et al. [11] surveyed
the challenges and research problems in the Internet of Things (IoT) including intrusion detection
systems, threat modeling, and emerging technologies. However, the papers mentioned above only
address the security and reliability issues from the perspective of the system architecture or simply
give a direction for future research. L. Xiao et al. [12] proposed a method to enhance the security of
underwater sensor networks exploiting the power delay profile of the underwater acoustic channel to
discriminate the sensors. The article [13] presented a two-factor user authentication protocol using the
hash function that protects against other attacks in wireless sensor networks, with the exception of
denial of service (DoS) and node attacks. However, the traditional security methods have relatively
large requirements on computing resources and communication resources, which cannot meet the
requirement of low latency.

PHY-layer authentication can achieve lightweight authentication and effectively address the
tradeoff between the security and low latency requirement of the wireless sensor networks in industrial
scenarios. The PHY-layer authentication methods can distinguish the legitimate sensor nodes and
illegal ones by physical layer channel information, such as channel state information (CSI) [14–17],
received signal strength indicator (RSSI) [18–20], received signal strength (RSS) [21], and the radio
frequency (RF) fingerprint [22,23]. However, the PHY-layer authentication methods mentioned above
based on the hypothesis test are mostly compared with a threshold to distinguish users, which makes
it difficult to discriminate multi-nodes at the same time. Authenticating multi-nodes simultaneously is
a multi-classification problem, which needs to be solved urgently.

Deep learning has a large number of applications, such as computer vision, image classification,
pattern recognition [24–26], and so on. There are considerable research works using deep learning
in wireless communications, such as in channel estimation and channel prediction. P. Illy et al. used
machine learning to enhance the security of edge computing by implementing intrusion detection [27].
The paper [28] used the deep neural network to estimate the CSIs in orthogonal frequency division
multiplexing (OFDM) systems. The work in [29] proposed a Raleigh fading channel prediction scheme
with a deep learning method. N. Wang et al. [30] proposed a physical-layer authentication scheme
based on extreme learning machine to detect spoofing attack. The DL-based PHY-layer authentication
methods proposed in this paper can achieve multi-user authentication in a short time.

Unlike the traditional test-threshold-based PHY-layer authentication, the DL-based PHY-layer
authentication methods can distinguish multiple sensor nodes simultaneously and maintain excellent
performance. In the EC system, multi-sensor nodes need to be authenticated simultaneously, which
is suitable for using the DL-based methods. The DL-based authentication methods are usually
divided into the offline training phase and online authentication phase. The PHY-layer authentication
framework we proposed in this paper also includes an online retraining process. In summary, the
DL-based sensor nodes’ authentication algorithms proposed in this paper, utilizing the spatial diversity
of wireless channels, can discriminate the sensor nodes without the test thresholds and have more
practical application values. The main contributions of our work can be summarized as follows:
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• We propose a DL-based PHY-layer authentication framework to enhance the security of industrial
sensor networks. We also briefly explore the applications of the framework for practical industrial
scenarios.

• Three different algorithms are adopted to implement the PHY-layer authentication in IWSNs,
including the deep neural network (DNN)-based sensor nodes’ authentication method, the
convolutional neural network (CNN)-based sensor nodes’ authentication method, and the
convolution preprocessing neural network (CPNN)-based sensor nodes’ authentication method.

• Simulation results show that the proposed algorithms can achieve better performance. In addition,
the experiments in the engineering center with USRPs validate their utility in practical industrial
environments.

The rest of this paper is organized as follows. We present the preliminaries and system
model in Sections 2 and 3, respectively. The DL-based PHY-layer authentication method in
industrial wireless sensor networks is proposed in Section 4. We provide numerical experiments
in Section 5. The experiment in a practical environment and conclusions are presented in Sections 6
and 7, respectively.

The symbols used in this article are briefly described as follows. Uppercase bold letters are
used for the matrix (e.g., H, W) and lowercase bold letters for vectors (e.g., x, y). The elements are
represented by the letters with subscripts and not bold (e.g., xi, ω1i).

2. Preliminaries

2.1. Channel State Information

Due to the inherent characteristics of the wireless channels, the transmitted signals may
experience a series of attenuations, such as, multipath effects, fading, shadowing, and delay
distortion. The channel state information (CSI) provides us the channel variations experienced during
propagations. In wireless communications, CSI represents the channel properties of a communication
link. The CSI needs to be estimated by the receiver to detect the transmitted signals.

In the wireless fading channel, the system is modeled as:

y = Hx + n, (1)

where y and x represents the receive and transmit signal, respectively. H denotes the channel matrix,
which is the CSI we mentioned above. n denotes the additive white Gaussian noise vector, which
follows a complex standard normal distribution. n ∼ CN (0, σ0), where the mean value is zero and
the noise covariance matrix σ0 is known. H represents the channel’s frequency response, which can be
estimated by y and x in the receiving end.

2.2. Deep Neural Network

Generally speaking, DNN is a deeper version of the artificial neural network (ANN) through
increasing the number of hidden layers in order to enhance the ability in representation or classification.
As shown in Figure 1, it is a typical deep neural network with an input layer, multiple hidden layers,
and an output layer. Each layer has a large number of neurons. The input of each neuron is the output
of the upper neuron multiplied by the corresponding coefficient, and the output of each neuron is the
input activated by activation functions. For example, the output of the first neuron in the first hidden
layer is:

z1
1 = fa

(
∑

i
ω1ixi + ξ1

)
, (2)

where ω1i denotes the weight coefficient of links z1
1 and xi. ξ1 denotes the threshold coefficient of

z1
1. fa (·) represents the activation function. Common activation functions are the sigmoid function,
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the rectified linear unit (ReLU) function, and the soft-max function, defined as fsigmoid (x) = 1
1−e−x ,

fReLU (x) = max(0, x), fso f tmax (x) = ex

‖ex‖1
, respectively, where x is a vector and ‖·‖1 denotes the

`1-norm. Usually, the hidden layer and output layer use the ReLU function and the soft-max function,
respectively. The output of lth layer is given by:

zl = f l
a

(
W l · zl + ξl

)
. (3)

We use the Ψl (·) to represent the operation of each layer of neurons. Then, we have the output of
the deep neural network,

ŷ = Ψ (W , Ξ) = ΨL
(

ΨL−1
(
· · ·Ψ1 (x)

))
. (4)

The application of the neural network is executed in two steps, a training phase and an
identification phase. When in the training phase, the input data (i.e., CSI) of the input layer and
the corresponding label y are known. Then, we train the parameters W and ξ by minimizing the cost
function L by the gradient descent method, which is formulated as:

Ŵ , ξ̂ = arg min
W ,ξ

(L) , (5)

where L represents the value of the loss function. The loss function usually uses a mean squared error
function or a cross entropy function, which is given by:

Lmean−square = ‖y− ŷ‖2
2 , (6)

or:
Lcross−entropy = yT · log (ŷ) , (7)

where (·)T denotes the transpose of the matrix or vector.
In the identification phase, the label of the input data (i.e., CSI) is unknown. By inputting CSI to

the neural network, its corresponding output ŷ will be used to identify and classify the input CSI.
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Figure 1. The deep neural network.

2.3. Convolutional Neural Network

The convolutional neural network (CNN) is part of the feedforward neural network with
convolutional computation and a deep structure [11]. CNN includes convolutional layers, pooling
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layers, and fully-connected layers compared with ordinary neural network. The convolutional layer
computes multiple convolutions in parallel to produce a set of linear activation responses. Further, the
convolution operation can effectively extract features form the original signal (e.g., CSI). The output of
the convolutional layer is given by:

Zl = f l
a

(
Zl−1 ⊗W l + ξl

)
, (8)

where Zl denotes the output of the lth layer and W l and ξl denote the convolution kernel and threshold
in the lth layer, respectively. ⊗ represents the convolution operation. f l

a (·) denotes the activation
function in CNN, often using the ReLU function.

Following the convolutional layer is the pooling layer, which effectively reduces the data
dimension without losing valid information. The pooling function replaces the output of the network
at that location using the overall statistical characteristics of the adjacent outputs at a location; for
example, the maximum value in the adjacent rectangular region. Other commonly-used pooling
functions include the average value in an adjacent rectangular region, the `2 norm, and the weighted
average in adjacent regions. The main goal is to reduce the dimension or the resolution of feature maps.
The pooling operation, which is a subsampling, can facilitate the extraction of high-level features.

The fully-connected layer of CNN is more like a hidden layer in DNN. There can be one
fully-connected layer or multiple in CNN. We convert CSI into a matrix and use different colors
to represent different values. As shown in Figure 2, it is a typical convolutional neural network with
two convolutional layers, two pooled layers, and one fully-connected layer. We can see that the CSI
converts to a matrix of 32 by 32 in size. The size of the convolution kernel in the first convolutional
layer is four by four. After the convolution and activation, the average pooling operation is performed
with a kernel of four by four in size. Then, there is another convolution, activation, and pooling
operation. The final two layers are the fully-connected layer and the output layer activated with
soft-max. The output of CNN can be formulated as:

ŷ = Υ (w, ξ) = ΥL
(

ΥL−1
(
· · ·Υ1 (X)

))
. (9)

Like DNN, CNN is also executed in two steps, a training phase and an identification phase.
During the training phase, the input data (i.e., CSI) and corresponding labels y will be used to train
the parameters w and ξ in CNN, which is formulated as:

ŵ, ξ̂ = arg min
w,ξ

(L) , (10)

where L denotes the value of the loss function in CNN. In the identification phase, the well-trained
CNN will be used to perform the PHY-layer authentication.
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Figure 2. The convolutional neural network. CSI, channel state information.
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3. System Model

We propose a DL-based PHY-layer authentication for an industrial wireless sensor network that
can resist the spoofing attack. The methods we propose can enhance the security of the industrial
wireless network without sacrificing communication resources. As shown in Figure 3, we placed
many sensor nodes in the different locations of the industrial scene. The wireless sensor nodes send
the pilot to the base station (BS) with time division duplexing (TDD) mode. First of all, each node
needs to be identified by the upper layer authentication to facilitate labeling the corresponding CSI.
In the initialization phase, we trained our neural networks through the training data (i.e., CSIs)
and corresponding labels. Then, we authenticated the legitimate and illegal sensor nodes with
newly-estimated CSI in the authentication phase. In the retraining phase, we updated the CSIs’
training set with the new channel information of certified sensor nodes and retrained the neural
network for the next authentication. The authentication processing of the industrial wireless sensor
network is shown in Figure 4.

The DL-based PHY-layer authentication we propose can dynamically adjust system parameters
over time. It can further improve the accuracy of authentication and has higher practicality.

Edge node 1Edge node 1 Edge node 2Edge node 2 Edge node XEdge node X
···
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Figure 3. The system model of DL-based PHY-layer authentication in IWSNs.
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Figure 4. DL-based PHY-layer authentication flow chart.

4. Deep Learning-Based Sensor Nodes’ Authentication Algorithms

In our previous work, we briefly introduced the physical layer channel authentication based
on CNN [31]. This paper will further improve the CNN algorithm and propose a rapid-DNN-based
PHY-layer authentication algorithm to meet the low latency requirements of industrial wireless sensor
networks.

4.1. DNN-Based Sensor Nodes’ Authentication

The DNN-based PHY-layer authentication in industrial wireless sensor networks uses the DNN
to implement sensor nodes’ authentication. In the initialization phase, the base station collects channel
state information of each sensor node and performs the corresponding labeling according to the upper
layer protocol authentication (e.g., EAP, AKA). The DNN was trained by the collected information
to obtain the initial neural network parameters. In the authentication phase, the CSI of the unknown
sensor node will be authenticated by the well-trained DNN in the initialization phase. After the new
CSI has been authenticated, the dataset will be trained again for the next authentication.
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Algorithm 1 DNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W†, and threshold vector ξ† of DNN

1: Initialize all connection weights W†
0 , and thresholds ξ†

0 in the network will be obtained through

the training of DNN, using the pre-acquired dataset D† = {(xk, yk)}m
k=1;

2: Compute ŷ(i) by well-trained DNN;
3: Update the training set D† = {(xk, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
4: Retrain the DNN by the new dataset and get new weight matrix W† and threshold vector ξ†;
5: Return ŷ(i), W†, ξ†.

4.2. CNN-Based Sensor Nodes’ Authentication

The CNN-based sensor nodes’ authentication method is more like the DNN-based sensor nodes’
authentication. They have the same steps except that the authenticated neural network changes from
DNN to CNN. In the initialization phase, the CNN will be trained by the pre-acquired dataset of
different sensor nodes. Then, the ith CSI will be authenticated by the well-trained CNN. At last, the
CNN will be retrained after the dataset is updated.

Algorithm 2 CNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W♦, and threshold vector ξ♦ of CNN

1: Initialize all connection weights W♦
0 , and thresholds ξ♦0 in the network will be obtained through

the training of CNN, using the pre-acquired dataset D♦ = {(xk, yk)}m
k=1;

2: Compute ŷ(i) by the well-trained CNN;
3: Update the training set D♦ = {(xk, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
4: Retrain the CNN by the new dataset and get new weight matrix W♦ and threshold vector ξ♦;
5: Return ŷ(i), W♦, ξ♦.

4.3. Convolution Pre-Processing Neural Network-based Sensor Nodes’ Authentication

The convolution pre-processing neural network-based sensor nodes’ authentication method
we propose in this paper has shorter training time and higher authentication accuracy. The core
idea is to perform offline convolution preprocessing on the CSIs before training the neural network.
The convolution preprocessing can effectively reduce the data dimension and extract the feature
information of the CSIs, while the convolution kernels are trained by pre-obtained CSIs and
corresponding labels. After convolution, activation, and pooling by the convolution kernels, the CSIs
xk become x̄k. The latter’s dimensions are much smaller than the former’s. For the CPNN-based sensor
node authentication method, the convolution kernels V⊥ need to be calculated by the pre-obtained
CSIs. Then, the neural network is trained by the new dataset D⊥ = {(x̄k, yk)}m

k=1 in the initialization
phase to get the weight matrix W⊥

0 and threshold vector ξ⊥0 .
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Algorithm 3 CPNN-based sensor nodes’ authentication.

Input: The ith CSI to authenticate x(i)

Output: The label of unknown CSI ŷ(i), the new weight matrix W⊥, and threshold vector ξ⊥ of CPNN

1: Initialize: training the CNN by the pre-acquired CSIs to obtain the convolution kernels V⊥; the

dataset D⊥ = {(x̄k, yk)}m
k=1 obtained by convolution; the weights W⊥

0 and thresholds ξ⊥0 in the

neural network will be obtained through the training of CPNN, using dataset D⊥ = {(x̄k, yk)}m
k=1;

2: Convolution pre-processing of the CSI x(i) into x̄(i);
3: Compute ŷ(i) by the well-trained CPNN;
4: Update the training set D⊥ = {(x̄k, yk)}m

k=1 by
(

x(i), ŷ(i)
)

;
5: Retrain the CPNN by the new dataset, and get new weight matrix W⊥ and threshold vector ξ⊥;
6: Return ŷ(i), W⊥, ξ⊥.

4.4. Complexity Analysis

We compare the computational complexity of each sensor nodes’ authentication methods in this
section. The initialization phase was performed offline, and we will not discuss its computational
resources and latency issues. In the authentication phase, the DNN-based sensor nodes’ authentication
method needs to perform:

bl = W l · zl−1 + ξl . (11)

As shown in Table 1, the computational complexity of the mathematical operation of DNN-based
method is almost O

(
max

(
n1 × n2, n2 × n3, · · ·, nL−1 × nL)), where nl denotes the number of neurons

in the lth layer in DNN. In our numerical experiments, we used a five-layer DNN in which the number
of neurons in each layer was 1024, 120, 60, 25, 4. Therefore, the computational complexity is almost
1× 105. The CNN-based sensor nodes’ authentication method needs to perform:

Bl = Zl−1 ⊗W l + ξl . (12)

The computational complexity of the mathematical operation of the CNN-based method is
almost O

(
max

(
n1 × n1

ker × n1
num, n2 × n2

ker × n2
num, · · ·, nL−1

f ull × nL
))

, where nl indicates the number

of convolution operations in the lth layer. nl
ker and nl

num denote the dimensions and the number of
convolution kernels in the lth layer. nL−1

f ull and nL represent the number of neurons in the fully-connected
and output layers. In our numerical experiments, we used eight convolution kernels with dimensions
of 4 × 4 × 1 and 16 convolution kernels with dimensions of 2 × 2 × 8. The dimensions of the
input layer and fully-connected layer were 32 × 32 × 1 and 1 × 1 × 256, respectively. Therefore,
the computational complexity of the CNN-based method was almost 5× 105. The CPNN-based
sensor nodes’ authentication method needs to perform convolution pre-processing on CSI, and the
computation complexity of pre-processing was relatively small. The computational complexity of
the CPNN-based method is O

(
max

(
n0 × n0

ker × n0
num, n1 × n2, · · ·, nL−1 × nL)), which is almost the

same as that of the DNN-based method, where n0 denotes the number of convolution operations in
pre-processing and nl denotes the dimensions of the CSI after being processed in the lth layer. n0

ker and
n0

num denote the dimension and number of convolution kernels in pre-processing, respectively. There
were 16 convolution kernels of size 4× 4× 1 in the pre-processing of the CPNN-based method. There
were four convolution steps. The computational complexity of the CPNN-based method was almost
2× 104.

During the retraining phase, the number of parameters that needed to be trained is shown
in Table 2. The DNN-based sensor nodes’ authentication method needs to train weight matrix
W† and threshold vector ξ†, in which it needs to train

(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL)
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parameters. There were almost 1× 105 parameters for the DNN-based sensor nodes’ authentication
method in our numerical experiments. The CNN-based sensor nodes’ authentication method
needs to train convolution kernels W♦ and threshold vector ξ♦, which needed to train(

n1
kernel × n1

num + n2
kernel × n2

num + nL−1
f ull × nL

)
parameters. In our numerical experiments, only 1× 103

parameters needed to be trained. The CPNN-based authentication method needed to train weight
matrix W⊥ and threshold vector ξ⊥. Like the DNN-based method, the parameters of CPNN-based
method depended on the number of neurons in each layer. However, the dimension of the input in
the CPNN-based method was much smaller than the DNN-based method. The number of neurons in
each layer of CPNN was 256, 50, 25, 12, and 4. There were almost 1× 104 parameters that needed to be
trained in the retraining phase.

Table 1. The computational complexity in the authentication phase.

Algorithms Computational Complexity Simulation

DNN-based O
(
max

(
n1 × n2, n2 × n3, · · ·, nL−1 × nL)) 1× 105

CNN-based O
(

max
(

n1 × n1
ker × n1

num, n2 × n2
ker × n2

num, · · ·, nL−1
f ull × nL

))
5× 105

CPNN-based O
(
max

(
n0 × n0

ker × n0
num, n1 × n2, · · ·, nL−1 × nL)) 2× 104

Table 2. The number of parameters in the retraining phase.

Algorithms Number of Parameters Simulation

DNN-based
(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL) 1× 105

CNN-based
(

n1
kernel × n1

num + n2
kernel × n2

num + nL−1
f ull × nL

)
1× 103

CPNN-based
(
n1 × n2 + n2 × n3 + · · ·+ nL−1 × nL) 1× 104

5. Numerical Experiments

Simulations have been performed to evaluate the performance of DL-based PHY-layer
authentication for industrial wireless sensor networks. We performed the simulations under different
nodes and analyzed the impact of the number of sensor nodes on the authentication success rate.
We also compared the performance of different algorithms under different numbers of sensor nodes.
Cost J denotes the value of the loss function, which is calculated by (6) or (7). The authentication rate
Pa is defined as the probability of discriminating the wireless sensor nodes.

We considered the tapped delay line (TDL) model to simulate Raleigh fading channels with
multipath delays [32]. The TDL model uses a set of non-frequency selective fading generators (such as
the FWGN model or the Jakes model), where each generator is independent of each other and has an
average power of one. The channel state information of different transmitters can be generated by:

y(n) =
ND−1

∑
d=0

hd(n)x(n− d). (13)

where ND denotes the number of taps of the filters. We set the normalized Doppler shift fd = 0.125,
and six paths with different power delays were selected to synthesize the channels of different wireless
sensor nodes. For more realistic consideration, the time delay of the first five paths of the sensor nodes
was the same, which was 0 second (s), 5× 10−6 s, 1× 10−5 s, 1.5× 10−5 s, and 2× 10−5 s, respectively.
When there were twelve sensor nodes, the time delay of the sixth path of each sensor node was as
shown in Table 3.
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Table 3. The time delay of the sixth path of 12 sensor nodes.

Sensor Node 1 Sensor Node 2 Sensor Node 3 Sensor Node 4 Sensor Node 5 Sensor Node 6

6.6× 10−5 s 6.2× 10−5 s 5.8× 10−5 s 5.4× 10−5 s 5.0× 10−5 s 4.6× 10−5 s

Sensor Node 7 Sensor Node 8 Sensor Node 9 Sensor Node 10 Sensor Node 11 Sensor Node 12

4.2× 10−5 s 3.8× 10−5 s 3.4× 10−5 s 3.0× 10−5 s 2.6× 10−5 s 2.2× 10−5 s

When there were four sensor nodes, the sixth paths of each sensor node were 6.6 × 10−5 s,
4.6× 10−5 s, 3.4× 10−5 s, 2.2× 10−5 s, respectively. Sampling interval tsampling= 5× 10−6 s; the signal
to noise ratio (SNR) of the simulation channel was 4 dB; the number of subcarriers was nsub_carrier=256;
the number of pilot intervals and of the cyclic prefix length were npilot_inteval = 256 and lcp_length = 30,
respectively.

We used a five-layer neural network for the DNN-based sensor nodes’ authentication method,
where the numbers of neurons in the hidden layer were 120, 60, and 25. The size of the input layer was
determined by the CSI dimension, and the size of the output layer was determined by the number of
sensor nodes. The convolutional neural network used in the CNN-based algorithm had seven layers,
which were an input layer, two convolution layers, two pooling layers, one fully-connected layer, and
an output layer. The two convolutional layers respectively used eight convolution kernels of size
4× 4× 1 and 16 convolution kernels of size 2× 2× 8, respectively. For the CPNN-based algorithm,
it had 16 convolution kernels of size 4× 4× 1 for the convolution pre-processing. In the authentication
phase and retraining phase, we used a five-layer neural network for the CPNN-based algorithm, where
the numbers of neurons in the hidden layer were 50, 25, and 12. Moreover, the adaptive moment
estimation (Adam) accelerated gradient algorithm and minibatch skill was used for the accelerating of
the neural networks’ training.

As shown in Figure 5a, the x-axis is the number of neural network iterations and the y-axis is
the cost function value. As the number of iterations increased, the cost function value decreased.
In addition, the fewer the sensor nodes, the faster the cost function value dropped. We can visually see
the authentication rate under different sensor nodes from Figure 5b. After 30 iterations, the authenticate
rates tended to be stable. However, the authentication rate of four sensor nodes was higher than that
of six sensor nodes, and the authentication rate of 12 sensor nodes was the lowest. Specifically, after 30
iterations, the authentication rates of 4 sensor nodes, 6 sensor nodes, 8 sensor nodes, and 12 sensor
nodes was 95.5%, 80.83%, 77.25%, and 66.5%, respectively.
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Figure 5. The authentication performance with different sensor nodes. (a) The cost value under
different numbers of sensor nodes with the DNN-based method; (b) The authentication rate under
different numbers of sensor nodes with the DNN-based method.
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By discussing the authentication success rate under different numbers of hidden layers,
we researched the robustness of the DL-based authentication method. The DNN-based algorithm
had the most excellent performance. Therefore, we considered the influence of different hidden
layer numbers on the authentication rate under the DNN-based method. As shown in Figure 6a, the
authentication rate of the DNN-based method with different numbers of hidden layers increased as the
iterations increased. The greater the number of hidden layers, the faster the convergence of the neural
network’s performance. The authentication success rate of the DNN-based method with different
hidden layers after the training was stabilized are shown in Figure 6b. As the number of hidden layers
increased, the authentication success rate increased. However, due to the inherent characteristics of
the specific wireless channels, the performance of the DNN-based method did not continue to grow
and tended to be stable, after the number of hidden layers was increased to a certain number.
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Figure 6. The authentication performance with different numbers of hidden layers. (a) The authentication
rate of different numbers of hidden layers; (b) The authentication rate of different numbers of hidden
layers after training was stabilized.

In addition, we performed simulation analysis on the authentication performance of different
algorithms under different numbers of sensor nodes. As shown in Figure 7a, the DNN-based method
had the best performance, because it had many parameters. For example, the authentication rates
of the DNN-based method were 95.5% and 77.25% under four sensor nodes and eight sensor nodes,
respectively. The CNN-based algorithm had the worst performance, because of the convolution and
pooling and more or less lost some information of CSIs. For example, the authentication rates of the
CNN-based method were 86.25% and 67.87% under four sensor nodes and eight sensor nodes. Another
CPNN-based method we proposed in this paper was similar in performance to the CNN-based method.
The authentication rates of CPNN-based algorithm were 85.25% and 66.75% under four sensor nodes
and eight sensor nodes. However, the CPNN-based method had the shortest training time compared
to the DNN-based algorithm and CNN-based algorithm, as shown in Figure 7b. Therefore, it has
a better application prospect in the actual industrial wireless sensor network. We can see that the
CNN-based method had the longest training time, followed by the DNN-based method.

In summary, the DNN-based sensor nodes’ authentication had the best authenticate performance
and a relatively limited training time. However, its training parameters will grow exponentially as
the dimensions of CSI become larger. Therefore, the DNN-based algorithm is suitable for a shorter
CSI authentication scheme. The CNN-based sensor nodes’ authentication method effectively reduced
the parameters that the neural network needed to train. However, due to the convolution operation
and the pooling operation, it did not meet the requirements of saving training time, especially when
the dimension of CSI was relatively small. At last, the CPNN-based sensor nodes’ authentication
method can effectively solve the problem of training time and authentication performance. It has an
unparalleled advantage in practical industrial wireless sensor network applications.
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Figure 7. The authentication performance with different algorithms. (a) The authentication rate of
different algorithms under different numbers of sensor nodes; (b) The time in the training phase of
different algorithms under different numbers of sensor nodes.

6. Experiments In Practical Environment

Experiments have been performed with universal software radio peripherals (USRPs) to evaluate
the authentication performance of the proposed DL-based PHY-layer authentication algorithms in
industrial wireless sensor networks. The experimental simulations were performed at the school’s
engineering center, which has a large number of industrial facilities, such as computer numerical
control (CNC) engraving and milling, CNC lathe, and so on. As shown in Figure 8, five radio sensor
nodes equipped with industrial computer and USRPs were placed in a 43.56× 38.84× 6.5m3 factory.
The base station was equipped with 8 antennas in Position 2, and the other sensor nodes were equipped
with 2, 4, or 8 antennas in Positions 1, 3, 4, and 5. The distances between sensor nodes and the base
station varied from 5–25 meters (m). In this experiment, we set the carrier frequency fc = 3 gigahertz
(GHz), the interval of subcarriers finterval_subcarrier = 15 kilohertz (kHz), and the number of subcarriers
nsubcarrier = 128. The transmitting power of USRPs was 15 dBm, and the transmission gain was 20 dB.
The practical view of the engineering center is shown in Figure 9.
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Figure 9. The location of the wireless sensor nodes in the practical industrial scenario.

We tested the authentication rates of sensor nodes with different antennas in different locations.
As shown in Figure 10, as the number of antennas increased, the authentication success rate increased
correspondingly. For example, the authentication rate of the DNN-based algorithm with 2 antennas was
92%, while the authentication rate of the DNN-based algorithm with 4 antennas and 8 antennas was
99.5% and 99.5%, respectively. From the histograms of different colors, we can see that the DNN-based
sensor nodes’ authentication method had the best performance. For example, the authentication rate
of DNN-based algorithm with 8 antennas was 99.5%, while the authentication rate of the CNN-based
algorithm with 8 antennas was 85%. In addition, the CPNN-based algorithm had the same performance
as the CNN-based algorithm. However, the retraining time of the CPNN-based method was much
shorter than that of the CNN-based algorithm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
u

th
e
n
ti

c
a
ti

o
n
 r

a
te

Figure 10. The authentication rate with USRPs.

7. Conclusions

The DL-based PHY-layer authentication method in industrial wireless sensor networks we
proposed in this paper has a strong practical significance. It can both achieve lightweight authentication
and authenticate multiple nodes simultaneously. Especially for the CPNN-based sensor nodes’
authentication algorithm, it had good authentication performance and an ultra-short retraining time.
The DNN-based sensor nodes’ authentication had the best authenticate performance and a relatively
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limited training time. However, its training parameters will grow exponentially as the dimensions of
CSI become larger. Therefore, the DNN-based algorithm is suitable for a shorter CSI authentication
scheme. As shown in Table 2, the CNN-based algorithm and CPNN-based algorithm effectively
reduced the parameters that the neural network needed to train. However, due to the convolution
operation and the pooling operation, the CNN-based algorithm did not meet the requirements
of saving training time, especially when the dimension of CSI was relatively small. At last, the
CPNN-based sensor nodes’ authentication method can effectively solve the problem of training time
and authentication performance. It has an unparalleled advantage in practical industrial wireless
sensor network applications.
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Abbreviations

The following abbreviations are used in this manuscript:
AKA Authentication and key agreement
ANN Artificial neural network
CNN Convolutional neural network
CPNN Convolution preprocessing neural network
CSI Channel state information
DL Deep learning
DNN Deep neural network
EAP Extensible authentication protocol
IWSNs Industrial wireless sensor networks
MHz Megahertz
OFDM Orthogonal frequency division multiplexing
PHY Physical
QoS Quality of service
ReLU Rectified linear unit
RSS Received signal strength
RSSI Received signal strength indicator
TDD Time division duplexing
USRPs Universal software radio peripherals
WSNs Wireless sensor networks
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