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Abstract: Traffic noise is presently considered one of the main pollutants in urban and suburban areas.
Several recent technological advances have allowed a step forward in the dynamic computation
of road-traffic noise levels by means of a Wireless Acoustic Sensor Network (WASN) through the
collection of measurements in real-operation environments. In the framework of the LIFE DYNAMAP
project, two WASNs have been deployed in two pilot areas: one in the city of Milan, as an urban
environment, and another around the city of Rome in a suburban location. For a correct evaluation
of the noise level generated by road infrastructures, all Anomalous Noise Events (ANE) unrelated
to regular road-traffic noise (e.g., sirens, horns, speech, etc.) should be removed before updating
corresponding noise maps. This work presents the production and analysis of a real-operation
environmental audio database collected through the 19-node WASN of a suburban area. A total of
156 h and 20 min of labeled audio data has been obtained differentiating among road-traffic noise
and ANEs (classified in 16 subcategories). After delimiting their boundaries manually, the acoustic
salience of the ANE samples is automatically computed as a contextual Signal-to-Noise Ratio (SNR)
together with its impact on the A-weighted equivalent level (∆LAeq). The analysis of the real-operation
WASN-based environmental database is evaluated with these metrics, and we conclude that the 19
locations of the network present substantial differences in the occurrences of the subcategories of
ANE, with a clear predominance of the noise of sirens, trains, and thunder.

Keywords: road-traffic noise; anomalous noise event; acoustic dataset; noise monitoring; smartcity;
WASN; SNR; impact; LAeq; urban sound; noise maps

1. Introduction

Presently, cities are growing in both size and population, and the consequent increase in vehicles
is making traffic noise problem more present, with a clear effect on the quality of life of their citizens [1].
Noise is one of the main environmental health concerns [2,3], and its impact on social and economic
aspects has been proved [4]. To face this issue, European authorities have driven the European Noise
Directive (END) [5], focused on the creation of noise-level maps to inform citizens of their exposure to
noise, and aided the authorities to take appropriate action to minimize its impact.

Noise maps have been historically generated by means of costly expert measurements
using certified sound-level meters, with a basis of short-term periods aimed at being sufficiently
representative. This approach is presently overcome by the technological advances of the Internet
of Things in the framework of smart cities, which has allowed the emergence of Wireless Acoustic
Sensor Networks (WASN) [6,7]. In the literature, several different WASNs have been designed for
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urban sound monitoring, some of them focused on security and surveillance and others on city
noise management, involving noise mapping, the development of action plans, and public awareness
campaigns. For example, the SENSEable project [8] deployed a WASN to collect information from
the acoustic environment by means of a set of low-cost acoustic sensors with the goal of analyzing
that data together with public health information. Other similar projects are the IDEA project in
Belgium [9], or the RUMEUR network in France [10] with special focus on aircraft noise, or even the
Barcelona noise-monitoring network [11], whose data is integrated in the Sentilo city management
platform [12]. Recently, the SONYC project has deployed 56 low-cost acoustic sensors across New
York City to monitor urban noise and perform a multi-label classification of urban sound sources in
real time [4], but not on site. Finally, the LIFE DYNAMAP project [13] aims to monitor the noise level
generated by road infrastructures by means of two WASNs installed in two pilot areas, one within
an urban environment in Milan (District 9), and another in a suburban area surrounding Rome (A90
highway). To monitor Road-Traffic Noise (RTN) levels reliably, all Anomalous Noise Events (ANE)
unrelated to regular RTN (e.g., sirens, horns, speech, etc.) should be removed before updating the
corresponding noise maps [13].

The deployment of these projects has shown that the WASN paradigm entails several challenges,
from technical issues [14,15], to other aspects related to the WASN-based application, such as the
automation of data collection and the subsequent signal processing [16–18], especially if the system
intends detect acoustic events in real operation and locally in each sensor. Acoustic event detection
and classification belongs to the Computational Auditory Scene Analysis (CASA) paradigm [19], and it
is usually based on the segmentation of the input acoustic data into slices that represent a single
occurrence of the target class, and focus on individual simultaneous events [20]. To do so, Acoustic
Event Detection (AED) algorithms are typically trained with databases designed ad hoc in each of the
problems to be solved, hence typically considering a finite set of predefined acoustic classes [21,22].

Therefore, the development of AED-based applications entails representative audio databases
with all kinds of sounds of interest, as in the one obtained in the SONYC project [4], with data from
56 sensors deployed in different neighborhoods of New York, which considers 10 different kinds of
common urban sound sources labeled in an urban soundscape. As a first attempt to create an acoustic
dataset to model the acoustic environments of urban and suburban pilot areas in the framework of
the DYNAMAP project, an expert-based recording campaign was conducted before the two WASNs
were deployed [23]. The analyses showed the highly local, unpredictable, and diverse nature of
ANEs in real acoustic environments can be far different to previous models obtained by means of
synthetically generated datasets [23]. After labeling the gathered acoustic data, the dataset was used to
train the AED-based algorithm designed to detect ANEs, known as Anomalous Noise Event Detector
(ANED) [18]. Although that preliminary dataset collected a representative number of acoustic events of
interest from both acoustic environments, it missed several key aspects, such as different RTN patterns
observed during day–night, weekday–weekend and the effect of diverse weather conditions [24].
This work describes the generation of the acoustic dataset to model the Rome’s acoustic environment
in real-operation conditions, after deploying the 19-node WASN in its final location. The paper
describes the conducted recording campaign and the subsequent labeling of ANEs in 16 different
subcategories (without considering combined sounds in a sample), as well as the analysis of their
occurrences, duration, Signal-to-Noise Ratio (SNR), and impact on the A-weighted equivalent noise
level (LAeq ) computation.

The remainder of this paper is the following. Section 2 details the most relevant previous attempts
to generate environmental audio databases. Section 3 describes the generation and labeling of the
real-operation conditions environmental audio database in the suburban scenario. Section 4 analyses
the ANE of the dataset in terms of occurrences, duration, SNR, and impact on the LAeq. Finally,
Section 5 discusses in detail the results obtained in the analysis and the future applications of the
designed dataset.
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2. Related Work

In the literature, several audio databases related to machine hearing (or machine listening)
have been unveiled for benchmarking purposes under the umbrella of the so-called CASA, and
mainly oriented to evaluate the performance of acoustic scene classification and AED. This section
reviews the literature about environmental acoustic databases and the datasets designed for challenges
(e.g., DCASE), and describes their characteristics and limitations.

2.1. Environmental Acoustic Databases

The environmental acoustic databases employed by the machine-hearing research community
have been generally created from live recordings directly and/or synthetically generated by artificially
mixing sound events with certain acoustic environments (i.e., background noise). The latter allows
control of the SNR of the mixture, and dealing with data scarcity of specific audio events in real-life
contexts—which is one of the key problems when trying to gather representative data from live
environments [25]—while the former entails a huge effort for data collection and subsequent manual
annotation to generate the labeled database or ground truth [23,26,27].

Regarding real-life environmental acoustic databases, in [28] a 1133-min audio database including
10 different acoustic environments, both indoor and outdoor was introduced. On the other hand,
the MIVIA audio events dataset was designed for surveillance applications focused on the identification
of glass breaking, gun shots, and screams (https://mivia.unisa.it/datasets/audio-analysis/mivia-
audio-events/) [21]. The training dataset is about 20 h, while the test set is about 9 h. Moreover,
the same research laboratory developed a smaller dataset of about 1 h duration also for surveillance
purposes focused on road audio events, which contains sound events from tire skidding and car
crashes (https://mivia.unisa.it/datasets/audio-analysis/mivia-road-audio-events-data-set/) [29].

In [23], a real-life acoustic database collected from the urban and suburban environments of
the pilot areas of the Life DYNAMAP project [13] is described. The database composed of 9 h and
8 min was obtained through an in situ recording campaign. This acoustic database was developed
for discriminating road-traffic noise from ANE through the ANED [18]. The ANEs, which only
represented 7.5% of the annotated data, were subsequently classified in 19 different subcategories
after manual inspection, showing SNR levels with respect to background noise that ranged from
−10 dBm to +15 dBm and showing a high heterogeneity of intermediate SNR levels. When comparing
both environments, it can be observed that the number of ANEs in the urban area is approximately
four times higher than in the suburban area, also including events with larger acoustic salience.
Nevertheless, it is worth mentioning that the recordings in the urban area were conducted at the street
level of the preselected locations [30] within District 9 of Milan, while the recordings in the suburban
area were conducted on the A90 ring-road portals surrounding Rome (see [31] for further details).

One of the main sources employed to build acoustic databases is the well-known Freesound online
repository (https://www.freesound.org). For instance, freefield1010 is a database composed of 7690
audio clips tagged as “field recording” in the metadata of the original recordings uploaded in this online
repository, totaling over 21 h of audio [32]. In [33], 60 h of real field recordings uploaded in Freesound
from urban environments were used to build the UrbanSound database. The database is composed of
27 h, which includes 18.5 h of verified and annotated sound event occurrences classified in 10 sound
categories (i.e., air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren, and street music). Moreover, the authors also provide an 8.75 h subset—denoted as
UrbanSound8k—designed to train sound classification algorithms and obtained after arbitrarily fixing
the number of items to 1000 slices per class. In [34], a mixture of sound sources from Freesound mixed
with real-life traffic noise was considered to train and evaluate an AED algorithm (considering two
SNRs levels: +6 dB and +12 dB). Finally, “ESC: Dataset for Environmental Sound Classification” [35]
is composed of three subsets: (i) ESC-50, a strictly balanced 50 classes of various environmental
sounds obtained through manual annotation, (ii) ESC-10, as a reduced 10 classes subset of the former
as a proof-of-concept dataset, and (iii) EC-US, which contains 250,000 recordings directly extracted
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from the “field recording”-tagged category of Freesound. Nevertheless, due to the uncontrolled
origin of the sound sources uploaded to Freesound and similar online repositories (see [23] for
further examples), involving a wide variation in the recording conditions and quality, the derived
environmental acoustic databases may become unsuitable for reliable CASA- and AED-based systems
evaluation purposes [27,32].

In [27], the described acoustic dataset covers both indoor and outdoor environments, including
real-life recordings of predefined acoustic event sequences and individual acoustic events synthetically
mixed with background recordings by considering specific SNRs levels, such as −6 dB, 0 dB, and +6 dB.
In [25], the authors developed a mixed acoustic database composed of acoustic data from real-life
recordings, which was subsequently extended with synthetic mixtures of extra events of interest
to increase database diversity. In [21], an acoustic database for surveillance purposes that includes
sound events such as screams, glass breaking, and gunshots was also artificially generated from
indoor and outdoor environments considering different SNR levels (from +5 to +30 dB). Moreover,
a small environmental acoustic database containing 20 scenes mixing background noise with car,
bird, and car horn samples synthesized with SimScene software [36] was described in [37]. Following
a similar approach, in [38], the TUT Sound Events Synthetic 2016 (TUT-SED-2016 for short) was
introduced. The 566 min dataset is composed of synthetic mixtures created by mixing isolated
sound events from 16 sound event classes from the original TUT database (The reader is referred to
http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016 for a detailed explanation).

Finally, it is worth mentioning the recent development of an open-source library for the synthesis
of soundscapes named Scaper, mainly focused on SED-related applications [39]. This library provides
an audio sequencer to generate synthetic soundscapes following a probabilistic approach including
isolated sound events. The proposal allows control of the characteristics of the sound mixtures, such as
the number of events, and their type, timing, duration, and SNR level with respect to the background
noise. The authors validate their proposal through the development of the URBAN-SED database from
UrbanSound8k as an example of the result of this kind of data augmentation. The synthetic generation
of acoustic databases is a potential solution to address data scarcity when training Deep Neural
Networks (DNN) for CASA-related problems (e.g., see [38,40]). Nevertheless, although the artificial
generation of sound mixtures allows the creation of controlled training and evaluation environments,
it has been also stated that these artificially generated databases could not represent the variability
encountered in real-life environments accurately enough [18,26].

2.2. Challenge-Oriented Acoustic Datasets

Over the last decade, the CASA research community has provided publicly available datasets and
standard metrics to evaluate the development of their investigations. One of the seminal international
efforts that emerged to evaluate systems developed to model the perception of people, their activities,
and interactions was the CLassification of Events, Activities and Relationships (CLEAR) competition,
which included in its 2006 and 2007 editions specific data for acoustic event detection and classification
mainly collected from indoor environments—specifically, from meeting rooms (see e.g., [41–43]).
Although other attempts emerged to provide evaluation material for CASA-focused systems, such as
DARESounds.org initiative [44] or TRECVID Multimedia Event Detection competition (focused on
audiovisual and multi-modal event detection (https://www.nist.gov/itl/iad/mig/multimedia-event-
detection)), neither them nor CLEAR led to the establishment of a reference evaluation challenge for
the CASA research community [20].

Later, the IEEE AASP supported a new competition named Detection and Classification of
Acoustic Scenes and Events (DCASE), which started in 2013 at WASPAA conference (http://www.
waspaa.com/waspaa13/d-case-challenge/index.html). The database that was provided for that
challenge contained both live and synthetic recordings [45]. The results of that competition can be
found in [27]. Since 2016, DCASE has become an annual competition including different challenges
covering acoustic scene classification, sound event detection in synthetic and in real-life audio, domestic
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audio tagging, or the detection of bird or rare sound events, to name a few (see [22,46,47] for further
details) (http://dcase.community/events), mainly thanks to the contribution of several researchers
who have made available different datasets for public evaluation.

Among them , it is worth mentioning the creation of the “TUT Database for Acoustic Scene
Classification and Sound Event Detection” from real-life recordings [26]. This database allows the
evaluation of automatic event or acoustic scene detection systems within 15 different real-life acoustic
environments, such as lakeside beach, bus, cafe/restaurant, car, city center, forest path, grocery store,
home, library, metro station, office, urban park, residential area, train, and tram. It is worth mentioning
that the sound events subset, which covers both indoor and outdoor environments, it is mainly
focused on surveillance and human activity monitoring. Finally, it is worth noting that in the recent
announcement of the DCASE2019 competition, an Urban Sound Tagging (UST) challenge has been
presented. The goal of this task is to predict whether each of 23 sources of noise pollution is present or
absent in a 10-s scene. In this challenge, the audio in the dataset has been acquired with the acoustic
sensor network of the SONYC project: SOunds of New York City [4], and it provides a simplified
taxonomy of the sounds of the city in two levels, 8 coarse categories, and 23 fine labels. The challenge
dataset includes 2351 recordings in the training split and 443 in the validation split, making a total of
2794 10-s audios. The full taxonomy and details of the SONYC project dataset can be found in [33].

3. Design of an Environmental Database

In this section, the real-operation environmental audio database recorded and built in for the
suburban area of the DYNAMAP project is detailed. First, the conducted recording campaign is
described. Second, the subsequent generation of the audio database is detailed, which includes the
labeling and the computation of the acoustic salience of the anomalous noise events (in terms of
SNR) and their impact on the LAeq. These are computed in this study and used jointly with duration,
number of occurrences and other database descriptors to analyze in detailed nature of the ANEs of the
suburban area.

3.1. Description of the WASN-based Suburban Recording Campaign

The main goal of any recording campaign is to collect representative samples of the acoustic
environment under study through the WASN in real operation. Taking advantage of the experience
gained from the preliminary recording and analysis of that acoustic environment [23], a second
recording campaign was designed. The main reason for it was three-fold: (i) all the nodes of the
WASN had been already deployed in their definitive operative location, which increased the number of
recording points and changed slightly the sensor position in the portals, (ii) the sampling completeness,
because the previous recording campaign did not include nighttime, weekend data, or different
meteorological conditions, and (iii) the total amount of time recorded was quite short (4 h and 44 min),
including only 12.2% of ANEs, which led us to the conclusion that ANEs were misrepresented in the
dataset, after discarding the augmentation of the dataset by means of synthetic samples according
to [23].

The WASN deployed in the suburban area of DYNAMAP project is located on the A90 highway
surrounding Rome, and comprises 24 acoustic nodes, 5 of which are low-capacity sensors without
enough computational resources to run the ANED algorithm. The locations of the 19 high-capacity
sensors of the WASN in the Rome’s suburban pilot area are shown in Figure 1. The set of basic
specifications [48] that are defined to satisfy DYNAMAP requirements for each monitoring station
are the following: (i) 40–100 dB(A) broadband linearity range, (ii) 35–115 dB working range with
acceptable Total Harmonic Distortion (THD), and (iii) narrowband floor noise level. The project also
requires the possibility of audio recording, as well as Virtual Private Network (VPN) connection and
GPRS/3G/WiFi connection. The precision of the sensors is a key issue for the system reliability [49].
During the developing stage, all the elements that could increase the uncertainty of the measurement
were taken into account following the requirements of IEC 61672 [50]. Several tests have been
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conducted with both the hardware and the software, using a climate chamber with different operation
temperatures. Electromagnetic Compatibility tests were also conducted as well as atmospheric agent
simulations over the designed equipment [51].

Figure 1. Map with sensors’ location information within the WASN of DYNAMAP project in the
suburban area of Rome, those locations also sensed during the initial recording campaign described
in [23] shown in red.

Some of the recording locations are the same as the ones used in the previous recording
campaign [23] (see Figure 2). However, although conducted in the same portal both the sensor
and the exact location measurement differ. The microphone location is slightly different with respect
to the entire structure of the portal (see Figure 2a,b).

(a) (b)

Figure 2. Location of the sensor used in the recording campaign in the portals. (a) Recording campaign
deployment in [23]; (b) WASN deployment in this work (picture property of ANAS S.p.A.).

Achieving a complete and exhaustive dataset is a challenging task since the amount of available
resources is limited, e.g., processing and storage capabilities, data collection using 3G modems,
availability of all nodes in fully operative conditions, etc. In Figure 3, it can be observed that the LAeq
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presents a diurnal variation that suggests sampling the recording differentiating day and night to
obtain data from several patterns of traffic noise, and so of ANEs.

Figure 3. Daily curve of LAeq for sensor hb147 for the 2nd and the 5th of November 2017, and the
recordings conducted. Diagram of the recording days and duration for each sensor, and scheme of the
labeled files to build the dataset.

To this aim, one-day real-operation recordings were planned through all nodes of the suburban
WASN considering different days of variating traffic conditions, and assuming a trade-off between
completeness and available computation and data communication resources, which were limited
by the resources available in each of the nodes of the WASN (storage capacity, throughput of data,
etc.). The following data sampling approach was proposed: Thursday and Sunday were selected
as representative weekday and weekend days, respectively, being the 2nd and the 5th of November
2017, specifically. From each sensor, 20 min have been recorded per hour which was limited by the
storage capacity and communication resources of each of the nodes. Figure 3 shows the recordings
over the values of LAeq, while Figure 3 shows a schematic diagram with the recording process during
the selected weekday and weekend day. As a result, 16 h of acoustic data were collected from each
sensor to cover the diversity of the acoustic environment in a workday and a weekend day in this
suburban environment.
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It is worth mentioning that the high-capacity sensors used to conduct the recording campaign
using the WASN in real operation were low-cost acoustic sensors designed ad hoc for the DYNAMAP
project [51].

3.2. Data Labeling

After recording representative acoustic data for building the suburban environmental database,
a labeling process was conducted. The manual annotation of ANEs becomes particularly complex
when dealing with real-operation data from raw recordings. Thus, this process must be conducted by
experts, since it is very important to precisely determine the occurrence and boundaries of each event,
e.g., indicating the start and end points in the mixed audio [23].

The labeling process was not exhaustive because of the excessive burden that such a task would
represent if considering all recorded data, meaning that only 50% of gathered audio signals were
finally labeled. This represented a total of 156 h and 20 min of labeled audio data. From the labeling
process 94.8% was labeled as RTN, 1.8% as ANE and the remaining 3.4% was categorized as others
when the audio passage was difficult to categorize in one or other class due to the complexity of the
audio scene. These last passages were not included in the subsequent analyses presented throughout
this paper, but they have been left for future analyses that will focus, e.g., on the impact they can have
for ANED assessment.

In Figure 4, an example of the labeling process using Audacity software is shown for illustrative
purposes. The example of ANE is a siren, which is a long event, recorded in sensor hb149 the 2nd of
November 2017.

Figure 4. Example of the labeling of a siren using Audacity, with the label on top, the signal in the
middle and the spectrum on the bottom.

From the labeling of all the collected data through the 19 nodes of the Rome’s WASN, the following
list of ANEs were observed:

• airp: airplanes.
• alrm: sounds of cars and houses alarm systems.
• bike: noise of bikes.
• bird: birdsong.
• brak: noise of brake or cars’ trimming belt.
• busd: opening bus or tramway, door noise, or noise of pressurized air.
• door: noise of house or vehicle doors, or other object blows.
• horn: horn vehicles noise.
• inte: interfering signal from ad industry or human machine.
• musi: music in car or in the street.
• rain: sound produced by heavy rain.
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• sire: sirens of ambulances, police, fire trucks, etc.
• stru: noise of portals structure derived from its vibration, typically caused by the passing-by of

very large trucks.
• thun: thunderstorm.
• tran: stop, start, and pass-by of trains.
• trck: noise when trucks or vehicles with heavy load passed over a bump.

Another label has been used for the annotation process, the cmplx label that indicates that the
piece of raw acoustic audio was the result of more than one subcategory of ANE or that the sound was
not identifiable by the labeler. This is not considered to be a subcategory of ANE because it cannot be
assigned to a single noise source.

3.3. Characterization of the ANEs

In previous works, two parameters were considered by the authors to figure out the effects of
the ANEs on noise-map generation [52]. The first of the parameters is based on the classical SNR
calculation, consisting of the ratio of power of the ANE in relation to the power of the surrounding
RTN. The second metric determines the impact of the ANE on the equivalent noise level used to build
the noise map. The calculation of the two parameters is described below.

3.3.1. SNR Calculation

As aforementioned, the SNR is calculated as the classical signal-to-noise ratio used in signal
processing, considering that the ANE corresponds to the signal and the RTN is the noise. The acoustic
power of the ANE and the RTN are calculated as follows:

Px =
N

∑
n=1

(
x[n]2

N

)
(1)

where x[n] is the recorded audio with N samples that belongs to either the ANE of the RTN.
After the power calculations of the ANE and the surrounding RTN, the SNR is calculated as:

SNR = 10 log10

(
PANE
PRTN

)
(2)

where PANE belongs to the anomalous event in question and PRTN is the power of the surrounding RTN.
All the casuistry of the calculation is detailed in [52]. Finally, it is worth mentioning that the SNR

of a particular ANE could be negative if the power of the surrounding RTN is higher than the power
of the ANE itself. This may happen in cases where RTN masks other low-energy sounds, e.g., birds,
because of the fluctuation of the road pass-bys.

3.3.2. Impact Calculation

The computation of the ANE impact consists of determining the contribution of a particular
event to the equivalent noise level of the recorded audio after applying the A-weighting filter [53],
i.e., LAeq. This metric has been defined to evaluate the effect of each ANE on the noise map LAeq.
It is calculated as the difference between the LAeq computed with all the raw data and the LAeq after
removing the ANE by means of a linear interpolation (see Equation (3)). The event should be replaced
by a lower-period linear interpolation to maintain the weight of the surrounding RTN level. That way,
the road-traffic noise measurement is as accurate as possible in the whole integration time.

∆LAeq = LAeq,ANE − LAeq,ANE (3)

where ∆LAeq is the contribution of this ANE to the LAeq, LAeq,ANE is the A-weighted equivalent noise
level of the raw audio given an evaluation period and LAeq,ANE is the equivalent A-weighted equivalent
noise level of the same audio after removing the ANE.
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In the DYNAMAP project, noise-map values are updated every 5 min, thus the contribution of
ANEs on the LAeq will be evaluated in this integration time, i.e., ∆LA300s. The low-level interpolations
are carried out in a 1-s integration window, i.e., LA1s, as it heuristically proved to be a good trade-off
between representing all audible short events and not adding imperceptible changes to the equivalent
sound measurement. As the goal is to obtain the equivalent noise level completely unaffected by the
ANE, a span of 500 ms is left before and after the exact ANE label. More details on the casuistry of this
calculation may be found in [52].

Finally, it is worth mentioning that the LA300s measurement is conducted in a 5-min sliding
window where the ANE is centered. This is a better approximation than using a 5-min fixed window
as the mean distance between RTN samples and ANE samples is reduced. The fact that future samples
are needed (plus the fact that the exact labeling can only be provided after listening and labeling the
recordings) implies that this measurement can only be applied in an off-line analysis and not in the
real-time operation mode of the WASN.

4. Dataset Analysis

In this section, a detailed analysis of the ANEs present in the labeled WASN-based audio
database is described. Specifically, the distribution of the occurrences and duration of the ANE
subcategories together with their contextual SNR distribution and the impact of each of them to the
LAeq value are analyzed. First, an analysis was conducted regarding the general characteristics of
the new audio dataset considering the spectral and time behavior of nodes recordings along one day.
Secondly, two more detailed analyses were performed: (i) aggregating values of occurrence, duration,
and SNR, as well as LAeq impact considering all network sensors at a whole and, (ii) highlighting the
particularities of sensor’s locations of the WASN in terms of the same ANE statistical measures.

4.1. General Characteristics

The global trend of the audio database obtained from the sensor network has been firstly analyzed
through focusing mainly in RTN, disregarding specific characteristics of the ANE observed during
recordings. In this regard, spectrum-time profiles [54] defined as the hourly time evolution of the mean
spectrum of the audio has been computed for each sensor and day, following the same approach as
in [24]. Their computation has been performed using the 48 frequency sub-bands of the Mel-Frequency
Cepstral Coefficients (MFCC) features of the incoming audio signal, following the setup explained
in [55], and computing the mean spectrum along the 20 min of audio gathered every hour. This mean
spectrum obtained for each of the 24 h in a day conforms the spectrum-time profile of a complete
measured day, which mainly includes RTN raw signal.

Figure 5 shows four examples of the measured spectrum-time profiles, for two sensors hb134
and hb156 and for the two recorded days of the campaign. As can be observed, the general trend of
the spectrum-time profile during weekday (Figure 5a,b) is quite similar for these two sensors, while
sensor hb156 presents a slightly higher energy at high frequencies and during a narrower daily period.
During the weekend (Figure 5c,d) a very persistent ANE of hard rain was present in almost all sensors,
which can be seen as a high spectrum-profile value around 14 h. Additionally, another aspect that
can be highlighted comparing week spectrum-time profiles with those of the weekend is that during
weekend the raising and decreasing of acoustic energy during daily period is smoother than during
the week day, which can be explained by the fact that on work days there are traffic rush hours at the
beginning and ending of working hours.
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(a) Spectrum-time profile of sensor hb134 at
week recording day.

(b) Spectrum-time profile of sensor hb156 at
week recording day.

(c) Spectrum-time profile of sensor hb134 at
weekend recording day.

(d) Spectrum-time profile of sensor hb156 at
weekend recording day.

Figure 5. Spectrum-time profiles of sensors hb134 and hb156 at weekday (the 2nd of November 2017)
and at weekend day (the 5th of November 2017).

4.2. Overall Analysis

Table 1 lists the distribution of the ANEs in terms of their number of occurrences observed within
the recorded database, showing both the aggregated and segregated distributions for all sensors,
respectively. The total amount of ANEs labeled in the dataset generation represents a 1.8% of all the
recorded time, together with around 3.4% of raw data labeled as cmplx, which is the data result of the
mixture of noises or with unidentifiable sound.
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Table 1. Aggregated ANE occurrences and their total duration distribution per category.

Category Number of Occurrences Total Duration (s)

ANE 3170 10,752.9
rain 754 6413.5
brak 737 1387.2
thun 236 753.4
tran 76 655.7
trck 380 382.4
bird 482 338.9
sire 55 327.8

horn 210 165.7
alrm 5 84.3
inte 8 69.4

busd 88 56.6
stru 46 45.8
musi 3 31.6
door 83 16.3
airp 4 14.5
bike 3 9.6

Table 1 shows the distribution of total ANE duration segregated by ANE subcategory.
Most frequently observed ANEs were rain (6413.5 s) and thunder (753.4 s), due do the thunderstorm
episode observed during the weekend day in the city of Rome at 14:00. Non-meteorological ANEs with
higher total duration values were sounds of vehicles brakes (1387.2 s), trains (655.7 s), birds (338.9 s),
sirens (327.8 s), horns (165.7 s), and sounds of trucks (382.4 s). ANEs with mid-total duration values
were alarm sounds (84.3 s), interfering sounds (69.4 s), structure movement sounds (45.8 s), noise of
pressurized air or busd (56.6 s), and music (31.6 s), while ANEs with lowest presence during the
recordings were door sounds (16.3 s), airplanes (14.5 s), and bikes (9.6 s).

In Figure 6, the boxplots of the ANE durations are shown. The longer ANE correspond to musi
and alrm, while the shorter are the door, bird and busd.

Figure 6. Boxplots of duration for each ANE category. Logarithmic axis of duration is used for a better
observation of the duration values.
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To determine the salience of the ANEs, the SNR measure is calculated by following the steps in
Section 3.3.1. Figure 7 shows the SNR distributions for each ANE category. It can be observed that
ANEs with higher SNR are sounds of trains, bikes, sirens, trucks, and horns.

Figure 7. Boxplots of SNR for each ANE subcategory.

4.3. ANEs’ Impact on the LAeq

The ANE contribution in the noise map can be analyzed in several ways. In this study, each ANE
has been characterized with the two variables analyzed in the previous section: duration and SNR.
Nevertheless, the impact of each ANE to the noise map should be quantified, and preliminary studies
with a smaller dataset show that has a strong dependence on the SNR and the duration values [52].
The impact consists of the LA300s measurement of the raw audio minus the same measurement after
removing the noise event, which allows discovery of the final contribution of the event to the noise
map (more details are given in Section 3.3.2).

To find a first approximation to the ANE subcategories and impact analysis, all the recorded
ANEs are depicted according to their characteristics in Figure 8. The SNR is plotted on the vertical axis
and the duration on the horizontal axis in a logarithmic scale, for illustration purposes. Also, the size
of the marker represents the ANE impact, in a scale indicated in the legend. Besides, the class of the
event is depicted in a color scale detailed in the legend, designed to distinguish events with similar
parameters easily (the reader is referred to Section 3.2 for a list of all ANE subcategories).

In Figure 8 the reader may appreciate that the class distribution of the events is not uniform,
as seen in Table 1. Events shorter than 1 s does not appear to have a significant impact on the LA300s
when evaluated individually, as they represent an impact near 0 dB. However, events that last more
than 4 s and have a positive SNR may contribute to the LA300s level with impacts of more than 3 dB.
Among these significant ANEs, train pass-bys and sirens are the events presenting a higher overall
impact score and presence, as also depicted in Figure 7 (where bike noise also appears to have a high
median impact because it has only three occurrences). The events presenting a higher impact on the
LA300s are trains and sirens, mainly, being only the trains the ANE that surpass the 3 dB level.
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Figure 8. Scatterplot of all ANE parameters separated in subcategories (recorded and labeled in the
2nd and the 5th of November 2017).

It is worth mentioning that in some long events, the SNR and the impact on the LA300s have
computation problems. Hence, in Figure 8, only ANEs with both a quantifiable SNR and impact are
depicted. Of the total of 2014 events, only three have a duration of more than 300 s, hence, making the
impact on the LA300s impossible to calculate. In addition, 61 events give SNR calculation problems,
mainly due to high ANE density segments where the interpolation between RTN labels is not possible.
All those events have been discarded from these representations.

4.4. Node-Based Analysis

The main upgrade of the dataset detailed in this work, apart from the time distribution of the
recordings and the total amount of time labeled, is the fact that the data gathered corresponds to 19
different locations and nodes in a WASN. This leads us to detail a spatial study of the collected data,
assuming that not all nodes will observe the same subcategories of ANEs and, of course, the same
number of occurrences. This is a key study for the final usage of this dataset, which is the training of
the ANED, to detect the ANE in all the sensors of the WASN. A first approach to the homogeneity of
this network will be given by the results of the cross analysis between ANE subcategory and sensor Id.

Figure 9a shows the ANE occurrences distribution segregated by sensors Id and ANE subcategory
as an image, where it can be appreciated that birds in sensor hb143 are the ones more frequently
observed, as birds produce short noise bursts and they can be very repetitive in certain locations and
hours. Otherwise, the rain episode during the weekend day of the recording campaign is the second
mostly observed event. From the same figure, it can be observed that noise events with quite uniform
distribution across all the sensors network are some which are more related to traffic (horns, brakes,
and sounds of trucks), and meteorological sounds during the weekend (rain and thunder). The rest of
ANEs show a more irregular distribution across the sensor network during the recording campaign.
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(a) ANE occurrences distribution for each
ANE subcategory and sensor Id.

(b) ANE SNR distribution. Median SNR
value is depicted for each ANE subcategory
and sensor Id.

(c) ANE total duration distribution. The
median duration value is depicted for each
ANE subcategory and sensor Id.

(d) ANE duration distribution. The median
duration value is depicted for each ANE
subcategory and sensor Id.

Figure 9. ANE parameters distribution per subcategory for each WASN node.

Figure 9b shows the median SNR values segregated by sensors and ANE subcategory. There are
several nodes and ANE subcategories that exhibit positive SNR values, and their maximum values
are attained for sirens, horns, trucks, and buses while medium SNRs are observed for brakes, birds,
thunder, doors, and airplanes. The negative median SNR values of rain can be basically explained by
the fact that the used computation methodology of SNR (see [23] for further details) is imprecise when
the ANE duration is too high because of the underlying stationary assumption of the RTN assumed
within this method.

Figure 9c shows the total duration of ANE recorded for each ANE type and sensor Id.
The colormap scale leaves the maximum value as an outlier, depicted as a numeric value 1689 for rain
in sensor hb143. Regarding the other values, it can be appreciated that brak, sire, horn, trck, rain and thun
are the ANEs with more regular presence across the entire sensor network, while other ANEs like stru,
tran, musi, inte, bike, and alrm are more irregularly observed. Figure 9d shows the ANE mean duration
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distribution per category for each of the WASN sensors, i.e., the median ANE duration statistic has
been computed for each cell of the depicted matrix. The color bar legend also presents an outlier,
which is reached by sensor hb143 and rain ANE category. The following maximum mean duration is
related to sensor hb104 and musi.

As a conclusion of this WASN-based analysis, siren is the subcategory of ANEs with longest
duration and with presence in most of the sensors, and so are horns, but the latter have shorter
duration; both ANEs present high values of SNR. Another two subcategories are present in most of
the sensors in this WASN-based recording campaign; rain and thunder have a wide presence in the
recording, due to the fact that on the 5th of November nearly all the WASN suffered heavy rain in
the afternoon. The main difference between them is that while rain presents mainly low SNR values,
thunder presents mid SNR values. birds present values of high occurrence and duration for several
sensors, but the SNR associated with the birdsong is moderate or low. Nevertheless, the main output
of this analysis is that there are few events with uniform appearance in all the sensors, and that most of
the subcategories labeled in this work correspond to recordings of fewer groups of sensors. This leads
us to the conclusion that the WASN-based recording considering all the sensors in the network was a
requirement to observe the variety of the distribution of the events occurring in the entire network.

5. Discussion and Conclusions

In this section, several key aspects of this work are discussed and concluded after the recording,
labeling, and analysis of the WASN-based suburban scenario audio samples.

5.1. WASN-Based Dataset Analysis vs. Expert-Based Dataset

As previously stated, a preliminary suburban environment dataset in Rome was published in [23],
which consisted of a set of expert-based recordings of limited duration and scope. The work presented
in this article is based on the knowledge acquired from that first dataset. It responds to the need for
increasing the coverage of the RTN and the ANEs at all hours of the day and night, the weekend,
and even when elements external to the noise appear in the measurements, such as adverse weather
conditions, i.e., in real-operation conditions.

The WASN-based dataset presented in this work has been enriched with seven classes in
comparison to the previous one: rain, thun, tran, bird, alrm, inte and airp. On the contrary, it has
not been possible to record the noise of people talking (peop) as in the previous dataset caused by the
presence of workers in the portals. All the rest of the ANEs were already part of the expert-based
dataset, but with fewer occurrences because the dataset was much smaller. The preliminary dataset
contained 3.2% of ANE of the total recorded time, and this new dataset contains 1.8%. A possible
explanation to these differences is that the expert-based dataset recording was centered in daytime
and this WASN-based dataset has recorded day and night, where night shows low presence of ANE
with respect to the day.

The longest ANEs have been found within the sire subcategory, while the shortest ones are found
in the door subcategory, as also happened in the expert-based recording. Moreover, the ANEs labeled
as horn and sire present the highest SNR in both datasets. However, it is worth noting that in this new
dataset there are samples of tran and inte subcategories that also entail high SNRs in many occurrences,
a characteristic that was not found in [23].

From this comparative analysis, it can be deduced that the data captured in the expert-based
dataset was suitable enough for the first characterization of the suburban soundscape. Nevertheless,
the WASN-based recording campaign has shown that there were several noise subcategories that
in the preliminary recording campaign had not been recorded and labeled, which present critical
characteristics in terms of SNR and duration.
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5.2. WASN-Based Dataset and Node Homogeneity

The final use of the presented dataset is the training of the ANED algorithm for a precise detection
of the ANEs in all the nodes of the WASN already deployed in the Rome pilot area. Although the
developed dataset contains a significantly larger sample of both RTN and ANEs—around 19 times the
data gathered in the preliminary expert-based dataset [23]—the analysis of the acoustic data confirms
the heterogeneous distribution of the ANEs subcategories in real-life environments already observed
in [23]. This heterogeneity has also been observed across the nodes as detailed in Section 4.4. Although
some of the subcategories occurred in most of the nodes (e.g., brak, rain, truck and horn), there are
others found particular in some sensors of the network (e.g., airp, bike and train).

The design of a WASN-based dataset raises the hypothesis of homogeneity of the raw data
captured in each of the nodes of the network. This hypothesis was analyzed by means of the
distribution of the ANEs in the previous recording campaign [56], with an analysis of the five recording
locations. To ensure that the ANED will operate properly in all the nodes, their acoustic environments
should present a certain homogeneity in terms of frequency distribution. To collect the data in similar
conditions, all nodes have been installed maintaining the same distances and orientations to the road.
Nevertheless, a study to evaluate the homogeneity should be carried out taking into account both the
locations of the nodes and the occurrences of the ANEs with the final goal of a generalist training of
ANED for all the network.

5.3. Impact on the LA300s of the ANE Subcategories

In this paper, the impact on the computation of LA300s has been evaluated for every individual
ANE every 5 min. The analysis presents interesting results to be discussed considering the SNR and
duration of individual ANEs. The results in Section 4 show the existence of several ANEs with high
impact, which present high SNR and long duration. After the individual analysis of the impact of
ANEs on the LA300s computation, future work will also take into account the fact that dynamic acoustic
mapping in real-life conditions face a more complex operating scenario. In a real-operation scenario,
several ANEs can occur in a predefined integration time, so the ANE impact must be evaluated in an
aggregated way for each period.

Another relevant result of the individual ANE analysis is the presence of ANEs with negative
SNR. As detailed in Section 3.3.1, the SNR is evaluated taking into account each ANE in relation to its
surrounding RTN signal level. In certain cases, the RTN decreases as the ANE occurs, so a negative
SNR is obtained. Therefore, only those events with positive SNR should be removed from the LAeq
computation, as also concluded in [52].

From this work, it can be concluded that working with data recorded in a real operating scenario
is crucial to obtain a reliable modelling of the nodes’ acoustic environment, according to the differences
observed between the expert- and WASN-based datasets. Moreover, the analysis of the WASN-based
collected data again shows the important role played by SNR and duration of individual ANEs in their
impact on the LAeq computation, obtaining ANEs that should be considered for their high impact on
the equivalent level.
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AED Audio Event Detector
ANE Anomalous Noise Event
ANED Anomalous Noise Event Detection
BCK Background Noise
CASA Computational Scene and Event Analysis
CLEAR Classification of Events, Activities and Relationships
DNN Deep Neural Networks
DYNAMAP Dynamic Noise Mapping
END European Noise Directive
GTCC Gammatone Cepstral Coefficients
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RTN Road-Traffic Noise
SED Sound Event Detector
SONYC Sounds of New York City
SNR Signal-to-Noise Ratio
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