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Abstract: Energy advancement and innovation have generated several challenges for large
modernized cities, such as the increase in energy demand, causing the appearance of the small
power grid with a local source of supply, called the Microgrid. A Microgrid operates either connected
to the national centralized power grid or singly, as a power island mode. Microgrids address these
challenges using sensing technologies and Fog-Cloudcomputing infrastructures for building smart
electrical grids. A smart Microgrid can be used to minimize the power demand problem, but this
solution needs to be implemented correctly so as not to increase the amount of data being generated.
Thus, this paper proposes the use of Fog computing to help control power demand and manage
power production by eliminating the high volume of data being passed to the Cloud and decreasing
the requests’ response time. The GridLab-d simulator was used to create a Microgrid, where it
is possible to exchange information between consumers and generators. Thus, to understand the
potential of the Fog in this scenario, a performance evaluation is performed to verify how factors such
as residence number, optimization algorithms, appliance shifting, and energy sources may influence
the response time and resource usage.

Keywords: smart grid; microgrid; fog; cloud; energy distribution model; power grid;
performance evaluation

1. Introduction

The growing increase in energy demand complemented by the decrease in the means of energy
production point to the need for a new energy infrastructure. Researchers have considered the use
of smart grids, demand-side management, and distributed generation as solutions to this problem,
where the energy generation and consumption aligned with sensors that collect data from the grid can
provide cost savings and pollutant reduction [1,2]

Several services need to be created to handle all data being sent from the various smart grid
layers, such as generators, consumers, and the power transmission means, for this new infrastructure
to work [2]. A Cloud with services available to treat each smart grid layer can be used.

One of the main goals of smart grids is to reduce energy costs, improve user satisfaction, and
control the peak hours’ distribution [3]. Thus, these services must have algorithms that generate
information about which equipment can be turned on or off during peak hours. To achieve these goals,
this type of decision must be made with the help of demand-side response techniques, where several
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authors have studied how integer linear programming, genetics algorithms, and various optimization
algorithms can help reduce peak hours and increase consumer comfort [1,3–12].

In addition, if we consider energy production, we can verify how much the energy generated by
the wind or the photo-voltaic panels can supply the demand and then decrease the nonrenewable
energy production. Therefore, these algorithms will receive data from all household appliances
and need to treat each home according to their consumption policies besides monitoring the energy
production from different sources; this means that a huge amount of data will be generated and passed
across the network.

If only one house with simple appliances attached to one measurement unit (PMUor Smart Meter)
is considered, 30–120 samples are generated per second [13], since each house has several appliances
that need to be monitored and controlled. If we consider four houses, we have four-times more data
being transmitted and processed per second. This data processing is necessary to perform the demand
response management helping the consumer to save on the energy bill, but for this, it is necessary to
choose the equipment quickly that can be connected and to know the type of energy source that is
being used. If renewable energy sources are being used, it is necessary to make fast choices, since this
type of production is not constant and depends on the environment. These applications need to have a
strict latency requirement between 100 ms and 5 s [14].

The International Data Corporation (IDC) expects the device number with sensors to increase
from 50 billion–1 trillion in 2020 [15]. The increase in the number of Internet of Things (IoT) and sensing
devices has led to an exponential growth of the data produced, while computational resources such as
bandwidth and available memory may not be sufficient. Currently, Cloud Computingis being used as a
way to offer agility, availability, and scalability, significantly increasing the system reliability. However,
this centralized infrastructure model may not be appropriate for emergency cases that require quick
responses with low latency and low jitter. Another Cloud-related problem is the requirement of
sending all collected data for analysis in Cloud data centers, increasing the communication cost on the
link, as well as increased storage and processing costs. One way to minimize costs in data transfer is
to perform the partial processing of services at the edge of communication through Fog Computing,
smoothing the problem of the growth of data production directly at its source. Thus, Fog Computing,
as an extension of Cloud Computing, is used to perform services directly at the edge of the network,
providing low latency and real-time computing. In this case, the Fog can provide infrastructure to
store and process data for real-time decisions [16–18].

Thus, the Fog can be used within this new infrastructure in two ways: first, to reduce the
communication data traffic exchange, and second, to move from a conventional smart grid into a
Microgrid. The idea is to take advantage of the concept of distributed generation that comes with
using small renewable energy producers and to allow a Microgrid to operate either connected to the
national centralized power grid or in power island mode. Therefore, Fog computing can obtain data
on the amount of energy produced and consumed in real time to perform processing tasks and reduce
the need for Cloud operators and still process information with high bandwidth and low latency, and
with the help of the Cloud, it is possible to make decisions that reduce the energy bill and the amount
of pollutants [4].

Authors such as Shahryari [6] and Zahoor [4] have already proposed the use of the Fog to assist
the energy management of homes and industries. Jamil [5], Wang [7], and Muralitharan [8] carried out
studies on the use of optimization algorithms to move appliances away from peak hours. Yet, none
of the related works used optimization algorithms within the Fog or Cloud and performed energy
production control. They also did not perform a performance evaluation to understand how some
factors such as residence number, energy sources, optimization algorithms, and household appliance
shifting impact the Fog or Cloud performance environment.

Therefore, this paper proposes the use of Fog computing to optimize the use of electric energy in
Microgrids. This optimization is obtained in two ways. The first is in energy consumption, where the
demand response is applied to shift household appliances to schedules where there is no peak energy
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consumption and thus decreases bill. The second is in energy production where a PID (Proportional
Integral Derivative) controller is used to balance the renewable production, non-renewable production,
and consumption. We use optimization algorithms and a PID controller running in the Fog layer to
orchestrate the energy resources. Due to the need to centralize the information obtained from the
consumption and production of energy, we provide an analysis of how the fog servers behave when
they are simultaneously performing the calculations of the controller PID and the appliance shifting.
Finally, the performance evaluation is done showing the use of genetic algorithms and an ordinary
FIFO algorithm to verify the factors that most impact the Fog in each scenario.

This paper is organized as follows: Section 2 provides the concepts about the smart grids. Section 3
presents the related works and their relation to the proposed work. Section 4 describes the evaluation
and results obtained. Section 5 presents the conclusions.

2. Smart Grids and Fog Computing

Smart grids are designed to save energy through information communication technology, where
it is possible to obtain a fully-observable power distribution network, where both the utility and
consumer interact with each other for information sharing [4]. Yet, to achieve these properties, it is
necessary to perform consumption control and power generation [19]. Thus, it is necessary to collect
data and interact with the smart grid topology, obtaining real-time communication from consumers,
distributors, transmission lines, and generators; see our architecture model in Figure 1.

Generation Transmission Distribution Consumption

Cloud Layer

Fog Layer

Figure 1. Smart grid topology aided by the Fog and Cloud.

This model where data are collected from sensors and sent to servers has been used for several
solutions such as: car traffic analysis, security cameras, temperature control. All of these services
are important for the development of smart cities, but they need to send data over the Internet for
real-time information, which can lead to network saturation and the demand for more computing
power. Therefore, new architectures need to identify and transmit only relevant data and thus reduce
the transmission of data over the network.

Thus, using Fog computing can be useful for fast data processing along with low-latency
communication. The problem with this approach is that the Fog servers do not have great computing
power. Therefore, the proposed architectures also need the help of the Cloud, where high storage and
processing power are possible. Within the scope of smart grids, this processing is important because in
order to save energy and control the energy life cycle, robust algorithms need to be executed quickly.
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These algorithms receive data from energy production and consumption. Through these data, it
is possible to detect the peak hours’ consumption and moments of high renewable production and
then perform the calculations for shifting consumption.

2.1. Peak Control

Peak hours occur when most people use appliances at the same time, so the price of electricity
tends to increase, since power generators need to increase production by spending more resources
per hour. The demand response tries to control the peak hours by shifting household consumption to
times when there are no peak hours [1].

The problem with this approach is reducing the bill without losing comfort since you cannot use
an appliance when you want. Thus, it is necessary to understand the functioning of the residences in
order to reduce the bill and increase the comfort of the consumer.

2.2. Scheduling Appliances

To reduce the bill and increase the comfort, shifting policies can be made by the consumer.
However, these policies need to be optimized by a central module to get all the necessary information
in real time and use optimization algorithms to choose when the rate is less expensive and without
creating a new peak time.

The scheduling problem for an appliance is formulated as an optimization problem that can
be solved in terms of electricity cost, peak hours, and waiting time [1]. Thus, the algorithms can be
executed using these three parameters to find the best solution of the optimization problems.

2.3. Optimization Algorithms

Optimization problems are solved by maximizing and minimizing functions of one or more
variables in a given domain. The algorithms used to solve these problems can be either deterministic
or probabilistic.

The scheduling of appliances done by shifting consumption to non-peak hours can be
implemented with optimization algorithms belonging to the probabilistic class, such as evolutionary
algorithms. This approach is used because a large number of combinations may be necessary to find
the best time to connect the equipment [8].

Genetic algorithms are one type of evolutionary algorithm and are used to search for optimal
solutions to different problems. Therefore, we can use this class of algorithms to look for the best
solution for home appliance shifting based on consumer policy and renewable energy production.

2.4. Communication between Layers

Smarts grids were created so that there is information exchange between their layers, something
that does not exist in the conventional grids. This exchange of information makes possible real-time
decisions that help in the intelligent use of energy.

Cloud and Fog computing can help this communication if used within an architecture that allows
orchestration between robust Cloud processing and the speed of the Fog computing situated at the
edge of the network [4].

2.5. Renewable Production

Unlike the consumption peak hours, which spends much resource to produce energy, renewable
energy production can receive the peak hours of energy production. If it is considered that renewable
resources such as the Sun and wind are unstable, production by these means can achieve a large
energy production, which can help in non-renewable production, reducing pollution and the energy
bill. Therefore, it is necessary to develop mechanisms that control the process of energy production
considering the inconstancy of the alternative production [12].
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2.6. PID Controller

The PID controller is an method widely used in industry to perform process control. This control
is done by monitoring the process variable by sensors that send the data to the control system. These
values are compared to the set point, and depending on the desired value, the system activates the
actuators so that the value approaches the desired value.

To keep the Process Variable (PV) close to the Set Point (SP), the system needs to manipulate the
Manipulated Variable (MV), which is the variable that the controller acts on to control the process, such
as the amount of fuel that will be burned to generate energy or the voltage applied to a heating resistor.
Thus, the control increases or decreases MV to produce more or less energy according to necessity; this
variation is reached through Equation (1).

MV(t) = Kp
[

E(t) +
∫

E(t)dt + Kd
dE(t)

dt

]
(1)

In this paper, the PID controller was developed in Fog computing to monitor and act on the
production of renewable and non-renewable energy. Thus, the amount of non-renewable energy
produced will depend directly on the renewable energy being produced at the time. Therefore, the SP
will be the production of renewable energy less consumption as in Equation (2). The PV needs to
approach the SP, and for this, the proportional, integral and derivative techniques are used to find out
how much MV needs to be changed.

SP =
trp

∑
i=1

rpt −
tc

∑
j=1

Cj (2)

where rpi is the renewable energy being produced at the moment and Cj is the houses’ consumption at
that moment.

Therefore, the variation of MV is directly linked to the consumption or the production of renewable
energy, and as MV is responsible for the fuel that will be spent it is important to use optimization
techniques in energy consumption and to improve the use of renewable energy.

3. Related Work

Some researches have evaluated the best algorithms that can be used to ensure the demand
response using smart grid concepts. However, none have performed tests considering the information
in real time using Fog computing as a way to manage the entire energy life cycle for the best results,
besides considering the PID controller to balance the load between the generators. However, several
studies point to important results such as the use of meta-heuristic algorithms in house management,
as Nadeem et al. (2018) [1], where a control for home energy management based on meta-heuristic
algorithms such as Teaching-Based Optimization (TLBO), Genetic Algorithm (GA), Firefly Algorithm
(FA), and Optimal Stopping Rule (OSR) theory was proposed. The main objective of this proposal
was to reduce energy consumption and maximize consumer comfort. For this, the best features
of the existing algorithms were combined, and three hybrid algorithms were created: OSR-TLBO,
OSR-GA, and OSR-FA; tests were performed in MATLAB to verify the performance of these algorithms.
The authors also suggested the use of Fog or Cloud computing as future work to achieve gains in
scalability. Thus, the behavior of the Fog and Cloud in the proposed algorithms was not studied.

Sedighizadeh et al. (2019) [9] introduced a new stochastic optimization method for short-term
scheduling of energy and reserve in Microgrids considering energy storage constraints. The Differential
Evolutionary (DE) and Modified PSO (MPSO) algorithms were used considering the incentive based
on the demand response program and generation reserve scheduling. The tests were performed in
MATLAB, and the results showed that applying the algorithm to the energy management model, it
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was possible to reduce the operating cost by 7.8% and the emission of pollutants by 18.03% if compared
to the MINLP method.

Javaid et al. (2018) [3] employed the load shifting strategy, to decrease total electricity payment;
for this was proposed a hybrid algorithm that used the techniques of the bat and crow algorithm. In this
study, simulations were performed in a single house with 15 appliances that used the Critical Peak price
(CPP) scheme to compare the bat algorithm, the crow algorithm, and the hybrid algorithm. The results
were obtained in tests carried out in MATLAB and showed that load was successfully shifted to lower
price time slots, which ultimately led to a 31,191% reduction in total electricity payment.

Jamil et al. (2018) [5] proposed a Home Energy Management System (HEMS) in which appliance
scheduling was performed using the load shifting strategy. Algorithms such as Cuckoo search,
earthworm optimization, and a hybrid technique cuckoo-earthworm optimization were used for
scheduling the smart home appliances. The hybrid technique HCEOdecreased the electricity cost by
49% with respect to unscheduled electricity cost because it scheduled most of the appliances during
the low price hours.

Muralitharan et al. (2016) [8] implemented the Multi-Objective Evolutionary Algorithm (MOEA)
to reduce energy costs and minimize the waiting time of the execution of appliances. The limitation of
traditional evolutionary algorithms handling only a single objective or a weighted combination was
explained, and it could not change the values of the parameters simultaneously. The results showed
that the proposed method minimized the cost of electricity and the waiting time of the appliances
for costumers.

Logenthiran et al. (2012) [10] presented a demand-side management strategy based on a load
shifting technique. The day-ahead load shifting technique proposed was mathematically formulated
as a minimization problem where a heuristic-based Evolutionary Algorithm (EA) that easily adapted
heuristics in the problem was developed for solving this minimization problem. Simulations were
carried out on a smart grid, which contained a variety of loads in three service areas, one with
residential customers, another with commercial customers, and the third one with industrial customers.
The simulation results showed that the proposed demand-side management strategy achieved
substantial savings, while reducing the peak load demand of the smart grid with gains of 5% in
residential areas, 5.8% in commercial areas, and 10% in industrial areas.

Wan et al. (2018) [11] proposed an Energy-aware Load Balancing and Scheduling (ELBS) method
based on Fog computing. This proposal was validated and compared with the Central-Station Control
scheduling (CSCS) method in experiments at a candy packaging manufacturer, and the experimental
results showed that the proposed method provided optimal scheduling and load balancing for the
mixing work robots. Comparisons between the Fog and Cloud were also performed, and the results
showed that the information obtained from the Fog nodes was more accurate.

Izadbakhsh et al. (2015) [12] implemented the scheduling of energy sources within a
microgridcomposed of micro-turbines, photovoltaics, fuel cells, and wind turbines through a
framework that dealt with the reduction of operating costs and emissions. This framework used
the Normal Boundary Intersection (NBI) technique to solve the multi-objective problem and generate
the Pareto set and the fuzzy method for making decisions.

Wang et al. (2018) [7] established an optimization model for economical operation of a microgrid.
This operational model was implemented using a GA, and a better operational strategy was determined
by the clean energy resources and the demand response program. In order to test these models, an
intelligent park microgrid consisting of photovoltaic power generation, a combined cooling and power
system, an energy storage system, and response load was used. Finally, it was observed that this
model could effectively reduce the operation cost of and improve the utilization rate of renewable
energy sources.

Zahoor et al. (2018) [4] proposed a three-layered architecture for smart buildings where a Fog
infrastructure was developed at the network edge to collect private data through smart meters.
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A performance analysis of a Cloud-based system was performed considering the Fog as an intermittent
layer, showing that the use of the Fog can be efficient at reducing the network bottleneck.

Shahryari et al. (2017) [6] introduced the dynamic scheduling of appliances with the help of the
Cloud and Fog. This approach suggested the use of a demand-side queue of priorities where consumers
were prioritized by their importance, their consumption policies, and the status of energy resources.

Unlike these works, we propose the Fog Computing Paradigmas an extension of Cloud
Computing. In our research, Fog Computing performs services directly at the edge of the network,
providing low latency and real-time computing, essential in cases where urgent flow changes are
required. In addition, these papers did not cover performance evaluation aspects in their analyses;
see Table 1.

Table 1. Related work.

Authors Peak Fog Cloud Optimization Scheduling Clean Communication PDI
Control Energy Layer Control

(Shahryari, 2017)
√ √ √ √

(Wan, 2018)
√ √ √ √ √

(Zahoor, 2018)
√ √ √ √

(Nadeem et al., 2018)
√ √ √

(Logenthiran et al., 2012)
√ √

(Sedighizadeh et al., 2019)
√ √ √

(Izadbakhsh et al., 2015)
√ √

(Jamil, 2018)
√ √ √

(Wang et al., 2018)
√ √ √ √

(Muralitharan, 2016)
√ √ √

(Javaid, 2018)
√ √ √

(This paper)
√ √ √ √ √ √ √ √

4. Performance Evaluation

Performance Evaluationis an important technique that evaluates any system, allowing one
to verify the accuracy, validity, and meaning of the magnitude produced during the evaluation.
Furthermore, it is used to obtain the highest statistical accuracy as possible, providing the maximum
information with a minimum number of experiments, showing the effects of various factors on the
observed result. In this paper, performance evaluation was used to select appropriate optimization
algorithms and in which environment they can be better deployed (Cloud or Fog).

4.1. Scenario

In this paper, the model used for evaluation considers the data that are obtained from energy
generation and houses’ consumption. Thus, renewable energy sources such as solar and wind and
non-renewable energy sources such as diesel turbines will be considered. The consumption side will
have up to four houses with seven appliances (refrigerator, freezer, washing machine, dishwasher,
TV, light, and microwave), but only the first four can carry out the shifting. The washing machine
and the dishwasher can only be turned on when the energy consumption is not during the peak time.
The refrigerator and freezer cannot turn on ice production at peak times. The rest of the appliances can
be connected according to the will of the consumer.

The energy price rate varies according to the renewable energy production and the consumption
peaks. Thus, the greater the renewable energy production, the lower the energy bill of the consumer.
This choice was made to encourage the use of renewable energy, which reduces the pollutants’ emission.

The algorithms created will be tested in two scenarios: the first in the Fog, which will process the
First In First Out (FIFO) algorithm, where it is checked if the devices can be turn on at that moment;
otherwise, they will enter the shift queue and will turn on during the first time the energy is less
expensive; the second in the Cloud will process a Genetic Algorithm (GA) that will check the conditions
of the previous day to decide the best time to turn the equipment on the next day. The goal is to see if
a Fog can manage a Microgrid with real-time data and compare the results with the processing in the
Cloud. In energy production, the PID controller is used in both scenarios; see Figure 2.
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Figure 2. Power generation managed by the PID controller and GA and FIFO algorithm in the Fog.

4.2. Genetic Algorithm Implementation

In the genetic algorithm implementation, we consider that each residence has a maximum value
that can be spent per hour and that each appliance has a consumption and a time to finish its task.
Thus, the appliances’ consumption being used at that time cannot exceed the maximum value; see
Equation (3). The genetic algorithm searches for an appliance combination that does not exceed the
consumption limit per hour. A table with the devices’ consumptions used in GA can be seen in Table 2.
As the consumption price depends on the energy type being produced (renewable or non-renewable),
the maximum and minimum value that each appliance can spend per hour is given in Table 3.

MCm ≥
Ta

∑
i=1

ACi ∗ Tm (3)

where MCm is the maximum consumption of the moment, AC appliance consumption (kWh) and Tm

the tariff at that moment. The tariffs used were: 0.15 for renewable energy and 0.45 for non-renewable
energy. These values mean that the tariff varied between 0.15 and 0.45, this variation depending on
which type of energy was most used, and a proportional value was applied.

At the beginning of the algorithm execution, a random population with two possible solutions
was created. This population was a set of chromosomes that had Genes 0 and 1. These genes represent
the appliances, and the value of one will be considered for appliances that can be turned on, otherwise
zero. Each chromosome will be calculated and evaluated so that it does not exceed the maximum
limit of that moment. If the maximum limit is exceeded, the grade of this chromosome will be one
(worst evaluation).

After the evaluation, the chromosomes passed through the crossover and mutation operators.
In the crossover, these chromosomes will be randomly mixed. These mixtures will be the new solutions.
In the mutation, each gene will have a 0.01 probability of being inverted. After these changes, new
solutions will be compared with the old ones, and those that have a better evaluation will remain.
The final solution will be given at the end of 15 iterations.
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Table 2. Consumption.

Appliance kWh

Refrigerator 2
Freezer 1.5

Washing Machine 0.47
Dishwasher 1.2

Table 3. Price.

Appliance Energy Type Price/kWh

Refrigerator Minimum RNW 0.3
Refrigerator Maximum N-RNW 0.9

Freezer Minimum RNW 0.225
Freezer Maximum N-RNW 0.675

Washing Machine Minimum RNW 0.0705
Washing Machine Maximum N-RNW 0.2115

Dishwasher Minimum RNW 0.18
Dishwasher Maximum N-RNW 0.54

4.3. Experiment Planning

The experiments performed on the power grid layer were performed using the GridLab-d
simulator. GridLab-d is a simulation tool that allows the study of several problems belonging to smart
grids, such as demand response and renewable integration [20]. Thus, GridLab-d was used to create
homes, appliances, and power generators, as well as sending consumption and power generation data
across the network to the Fog or Cloud. Each home could consume up to 550 kWh/month; the diesel
turbine could produce up to 5000 kWh/month; and renewable (solar and wind) power production
could produce up to 2500 kWh/month.

Our Fog consisted of a Raspberry PI 3 that had a 1.2-GHz Quad Core CPU and 1 GB of RAM.
The server Apache Tomcat 9 was installed on the Raspberry, which received the data coming from
GridLab-d and executed the algorithm FIFO, as well as the calculation of the control PID. The Cloud
was a virtual machine located in gcloud that had a 3.5-GHz Intel Xeon with 4GB of RAM with the
same installation of the Fog, the only difference being the scheduling algorithm used was the GA.
Considering this infrastructure, the cloudwas 42.07% slower than the fog, but within the range of
100 ms–5 s in the experiments performed.

Table 4. Factors and levels.

Factors Levels

Algorithm First in First out Genetic Algorithm
Appliance Shifting Non-shifting
Residences 2 4

PID Controller Renewable Diesel turbine

In order to evaluate the performance of the algorithms, full factorial experiment planning 2k

was used, presented in [21], where two levels were defined for each factor k. A full factorial design
(Table 4) measures the response variables by using all the possible combinations among the factors
levels. Our design consisted of four factors (A, B, C, and D), which all having two levels. It can be
expressed as a full factorial 24 design. Thus, we used the experiment model according to Equation (4).
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Yijkw = µ + Ai + Bj + Ck + Dw + ABij + ACik + ADiw+

BCjk + BDjw + CDkw + ABCijk + ABDijw + ACDikw+

BCDjkw + ABCDijkw + εijkw (4)

This µ represents the overall mean effect given by the replication requirement of 10 times (α = 0.05)
with all seeds well tested. We also considered the error term (ε) in the model. Besides, we assumed
in this work the linear regression model, which is the relationship between the dependent variable
yi and the linear regression vector xi. The general model through the error can be obtained by
yi = β1xi1 + · · ·+ βpxip + εi = xT

i β + εi, for i = 1, . . . , n, where T denotes the transpose, so that xT
i β is

the inner product between the vectors xi and β. Often, these n equations are put together and written
in vector form as y = Xβ + ε, where:

y =


y1

y2
...

yn

 ,

X =


xT

1
xT

2
...

xT
n

 =


x11 · · · x1p

x21 · · · x2p
...

. . .
...

xn1 · · · xnp

 ,

β =


β1

β2
...

βp

 , ε =


ε1

ε2
...

εn

 .

The experiments were performed according to Table 5, and the results of CPU usage and request
times can be seen in Figures 3 and 4.

Table 5. Experiments.

Exp Algorithm Residences Appliance PID Controller

0 FIFO 2 SHIFT RNW
1 FIFO 2 SHIFT N-RNW
2 FIFO 2 N-SHIFT RNW
3 FIFO 2 N-SHIFT N-RNW
4 FIFO 4 SHIFT RNW
5 FIFO 4 SHIFT N-RNW
6 FIFO 4 N-SHIFT RNW
7 FIFO 4 N-SHIFT N-RNW
8 GA 2 SHIFT RNW
9 GA 2 SHIFT N-RNW

10 GA 2 N-SHIFT RNW
11 GA 2 N-SHIFT N-RNW
12 GA 4 SHIFT RNW
13 GA 4 SHIFT N-RNW
14 GA 4 N-SHIFT RNW
15 GA 4 N-SHIFT N-RNW
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Figure 3. CPU usage. The experiments can be seen in Table 5.
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Figure 4. Waiting time for the request.

4.4. Results’ Analysis

Regarding energy savings, houses that used the FIFO algorithm reduced their energy bills by
between 4% and 6% in relation to homes that did not use any kind of demand response. Houses that
used the GA algorithm had between a 5% and 8% reduction in their energy bills. This savings was
made possible by the shift in energy consumption, which shifted the consumption of some household
appliances to times when renewable energy production was greater than the total consumption of the
houses; see Figures 5 and 6.

As can be seen in Figure 5, the change in renewable energy was accompanied by the PID controller
that used the total energy consumption and the variation of the renewable energy to control the gas
turbine production. Energy production had some problems at a time when power consumption was
at its highest, between 18 and 22 h, because at that time, solar production decreased, leaving only
wind production.
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Figure 5. Average power generation managed by the PID controller in the Fog.

An example of the energy consumption of houses can be seen in Figure 6, where Houses 01 and
04 were using the demand response with the FIFO and GA algorithms, respectively, and Houses 02
and 03 were not participating in the demand response. As can be seen, houses that used the demand
response, when they perceived that the production of renewable energy decreased, also reduced their
energy consumption by turning off some appliances and shifting that consumption to the moment
that the renewable production was greater.

0 5 10 15 20 25 30
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

House 01 - FOG - FIFO
House 02 - CLOUD - NONE
House 03 - FOG - NONE
House 04 - CLOUD - GA

Figure 6. Comparison of power management algorithms and infrastructures.

In addition to energy saving data, we verified the main factors responsible for calculations, which
can be seen in Figure 7; the shifting was the factor that most influenced both the CPU (57.78%) and
the request time (38.49%). This was due to the amount of equipment that needed to be analyzed;
whenever there was no appliance shifting (Experiments 2, 6, 10, and 14), the amount of processing
decreased (see Figure 8). The same assertion can be made regarding time, the only difference being
that no-shifting requests occurred on the Cloud, in which the time of the request tended to increase
due to Internet traffic (Figure 9).
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Figure 7. Influence factors in the studied scenario.
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Figure 8. CPU usage with and without the appliance shifting.

The second major influence factor was the generation of energy (17.83%). This was because
whenever the renewable energy was considered, the PID controller needed to perform the calculation of
the control variable, which increased the CPU time and, consequently, the time of the requests (13.67%).
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Figure 9. Time usage with and without the appliance shifting.

5. Conclusions

The concern of this paper was with the peaks of energy and the conditions of adjustment between
sources of renewable and non-renewable energy in a Microgrid environment. Currently, most of these
adjustments are made on the Cloud. However, some peaks of energy are seasonal and reactive, turning
Cloud Computing into a non-viable solution because of its non-desirable network latency, even after a
peak of energy or between them. Hence, we used Fog Computing with low latency to perform the
electric energy control in a Microgrid.

The Fog Computing proposed in this paper was an extension of the cloud, in which was made
available management services such as the PID controller and scheduling algorithms for appliances in
order to reduce consumers’ bills. Different from the related works, the scheduling algorithms executed
in our Fog used real-time data from the GridLab-d simulator. These algorithms (FIFO and GA) used
the PID calculations to know the current energy rate and then performed the scheduling, performing
the appliance shifting to hours when the energy was less expensive.

The request time reduction reached in this paper allowed saving energy and managing the use
of non-renewable energies. Our approach showed that the Fog Computing infrastructure can help
with algorithm execution time by shortening the time of each request by up to 21.49% in relation to the
cloud, providing low latency and real-time computing.

Performance Evaluation showed through the experiments that it was possible to reduce the energy
bills. The Fog demonstrated that it can perform the calculations required to manage a Microgrid,
providing faster returns and maintaining a CPU utilization rate below 50% during requests.
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Abbreviations

The following abbreviations are used in this manuscript:

FIFO First In First Out
GA Genetic Algorithm
PID Proportional Integral Derivative
FA Firefly Algorithm
OSR Optimal Stopping Rule
TLBO Teaching-Based Optimization
DE Differential Evolutionary
PSO Particle Swarm Optimization
EA Evolutionary Algorithm
ELBS Energy-aware Load Balancing and Scheduling
CSCS Central-Station Control Scheduling
NBI Normal Boundary Intersection
MOEA Multi-Objective Evolutionary Algorithm
PV Process Variable
MV Manipulated Variable
SP Set Point
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