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Abstract: Distracted driving jeopardizes the safety of the driver and others. Numerous solutions have
been proposed to prevent distracted driving, but the number of related accidents has not decreased.
Such a deficiency comes from fragile system designs where drivers are detected exploiting sensory
features from strictly controlled vehicle-riding actions and unreliable driving events. We propose a
system called ADDICT (Accurate Driver Detection exploiting Invariant Characteristics of smarTphone
sensors), which identifies the driver utilizing the inconsistency between gyroscope and magnetometer
dynamics and the interplay between electromagnetic field emissions and engine startup vibrations.
These features are invariantly observable regardless of smartphone positions and vehicle-riding
actions. To evaluate the feasibility of ADDICT, we conducted extensive experiments with four
participants and three different vehicles by varying vehicle-riding scenarios. Our evaluation results
demonstrated that ADDICT identifies the driver’s smartphone with 89.1% average accuracy for all
scenarios and >85% under the extreme scenario, at a marginal cost of battery consumption.

Keywords: driver detection; invariant sensory characteristics; built-in smartphone sensors; distracted
driving; driving while distracted

1. Introduction

Driving while distracted (DWD) is a grave threat to the safety of the driver and others. Studies
conducted by the United States Department of Transportation indicate that nearly 20% of reported
vehicle incidents involve distracted drivers who use smartphones while driving [1–3]. Considering
the risk of distracted driving to public safety, a number of countries banned smartphone use for
all drivers [4]. To further enforce the law, smartphone manufacturers and mobile service providers
distributed various smartphone apps to reduce or prevent distracted driving. However, there still
exists an increasing number of distracted-driver-related incidents due mainly to their limitation of
users having to manually identify themselves as the driver. Such an approach is highly unreliable
because users may be reluctant to restrict their favorite mobile services or simply forget to do so.

To date, there have been numerous proposals to improve the reliability of DWD prevention
services by automatically detecting drivers by exploiting various sensory features found from
driving-related events such as running over a pothole [5], wearing seat-belts [6], and entering a
vehicle [7]. However, they are ineffective in real-world settings for the following two reasons. First,
these systems were designed assuming that users will always behave within predefined norms that
would not distort their proposed sensory features. For example, a smartphone must not be touched
when starting a vehicle or must be held in a specific location (e.g., trouser pocket). Such restrictions are
highly unrealistic because users may take smartphones out to check emails or send messages whenever
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they want to. Second, the sensory features are not guaranteed to be found in a timely manner, thus
failing to protect the user from the very beginning. Although there exist several studies addressing
this issue by identifying the driver before the vehicle leaves its parking spot [8,9], they still need to
address the first problem.

Considering the shortcomings of existing solutions, we stress the importance of a reliable
system design addressing diverse vehicle-riding actions and unexpected events. To meet this need,
we propose a system called ADDICT (Accurate Driver Detection exploiting Invariant Characteristics of
smarTphone sensors) exploiting two invariantly observable sensory features found when entering
and starting a vehicle. First, one has to twist the body when entering a vehicle, and this action causes
one’s smartphone to be rotated as well. We may use either gyroscope or magnetometer sensors to
estimate how much the smartphone is rotated. But the latter (magentometer) is inevitably affected by
electromagnetic field (EMF) interferences as well as actions taken by the user. As such, we observe
different values of rotation between two sensors and the difference is significant enough to discriminate
rotations made when entering the vehicle from other activities. Second, although one may use subtle
EMF fluctuations when starting a vehicle for driver identification [7], it’s applicability is significantly
limited because one’s smartphone should remain static while an engine is being turned on. Such a
restriction is mandated since the magnitude of the EMF can be easily overridden by small rotational
forces applied to the smartphone. In order to tell unique EMF spikes occurring when starting a
vehicle, we propose to employ the engine vibrations on startup (between 8∼12 Hz) captured from
accelerometer readings. According to our observations, such vibration characteristics cannot be easily
mimicked by human motions.

For a comprehensive evaluation of ADDICT, we used Android-based smartphones equipped
with inertial measurement units (IMUs) to measure the acceleration, angular velocity, and EMF.
We employed three different vehicles and four participants to collect sensory features under three
different vehicle-riding scenarios (including basic, common, and extreme scenarios). For the basic
scenario, participants were guided not to make any unexpected actions and manipulate smartphones
after being seated in a vehicle. In the common scenario, participants were instructed to ride the vehicles
as usual, thus generating a moderate amount of noise. Lastly, the extreme case allowed participants to
make various unexpected actions to produce a significant amount of noise. Our results demonstrated
that entering a vehicle was identified with an 88.3 average area under the curve (AUC) for all cases,
while determining the seated row (front or rear) was classified with a 93.5 average AUC for all cases.
Overall, ADDICT detected the driver with an accuracy of 86.6∼96.6% and identified the passengers with
80.0∼96.6% accuracy, thus outperforming existing methods, with a marginal increase in the battery
consumption.

The rest of this paper is organized as follows. Section 2 details how our proposed system works.
Section 3 presents the results of our comprehensive performance evaluation. Finally, the paper
concludes with Section 4.

2. The Proposed System

2.1. System Overview

When designing ADDICT, we assumed the following. First, users may carry their smartphones in
their pockets, bags, or hands while entering the vehicle. Second, If a user places his/her bag, carrying
a smartphone, in the rear seats before entering a vehicle, we cannot make accurate decisions. However,
we can safely ignore such a case since drivers will not be able to manipulate the phone in the back seat.
Lastly, remote vehicle starters are not considered in this paper since most vehicles are not equipped
with such an option [9].

As shown in Figure 1, ADDICT consists of an in-vehicle classifier (IVC), a left–right classifier (LRC),
and a front–rear classifier (FRC). Considering the fact that vehicle-riding actions are always preceded
by walking to and standing by a vehicle, we identify the moment when the user is about to enter the
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vehicle using accelerometer values as employed in [7,9–11]. If the user is found to be standing by the
vehicle, the IVC is triggered to determine whether or not the user enters the vehicle by monitoring
upcoming user actions. The IVC hinges on an invariant feature, a difference of rotational inertia (DRI ),
from gyroscope and magnetometer readings (see Section 2.2 for details).

Walking Standing

Entering a vehicle Starting an engine

In-Vehicle Electromagnetic 
Fields [7, 9] Body Rotation [8, 9]

In-Vehicle Electromagnetic 
Fields [7, 9]

In-Vehicle Classifier Left–Right Classifier Front–Rear Classifier
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Activity

Specific 
Features

Classifier

Driver 
Detection
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Rotational Inertia (DRI)

Engine Vibration on 
Startup (EVS)

Invariant 
Features

(Counter)Clockwis   
Rotation [8, 9]

Figure 1. Overview of how Accurate Driver Detection exploiting Invariant Characteristics of
smarTphone sensors (ADDICT) works.

Once the IVC confirms that the user has entered the vehicle, the LRC is initiated to determine the
boarding side, left or right. Our analyses show that the curvature of the moving trajectory monitored
when entering the vehicle from the left side differs from the opposite. The former (left-side entrance)
generates a clockwise curve while the latter produces a counterclockwise motion. The LRC combines
both accelerometer and gyroscope readings at the moment of vehicle entry to compute the moving
trajectory and determines whether or not the trajectory corresponds to the clockwise curvature using,
e.g., a fuzzy inference system as presented in [8].

After identifying the boarding-side, the FRC is triggered to differentiate seated rows, front or
rear, using an invariant feature produced when the engine is turned on. According to [7,9], starting
the vehicle causes a subtle in-vehicle EMF fluctuation with a relatively greater magnitude around the
driver’s seat than the rear seats. However, manipulating the smartphone also causes EMF readings
to fluctuate, causing false alarms by classifying the user seated in the rear as being in the front. To
overcome this problem, we exploit engine vibrations monitored by the accelerometer when starting
a vehicle, which cannot be easily generated by the users. By using the engine vibrations on startup
(EVS ), FRC achieves accurate classification results (see Section 2.3 for details).

2.2. Difference of Rotational Inertia

To detect the moment of vehicle entry, one may use EMF values of magnetometers induced by
the vehicle [7,9]. But unfortunately, similar EMF features can be monitored from other activities of
users holding smartphones. For instance, similar EMF fluctuations may occur with a simple motion
such as raising and lowering the smartphone. Figure 2a depicts a plot of a magnetometer’s (x, y)
values while a smartphone is rotated by 360◦. Ideally, it forms a circle with an origin at (0, 0) and
completely overlaps with a reference signal. But in reality, it moves away from the reference signal,
which contributes to distortions in sensing accurate EMF values. Moreover, measured EMF values
fluctuate when the smartphone is rotated as shown in Figure 2b. This means existing solutions based
on EMF fluctuations suffer from frequent false alarms [12,13].

To address this problem, we exploit the fact that rotation angles individually estimated from
the gyroscope and magnetometer do not match well if there exist EMF interferences induced by the
vehicle, leading to an invariant feature, the difference of rotational inertia (DRI ). A magnetometer
has three axes (x, y, and z), each of which varies proportionally with the rotation of a smartphone
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(magnetometer) as well as the strength of surrounding magnetic fields. In fact, Figure 3 plots how
rotation angles of both sensors vary when the smartphone is rotated 90◦. Figure 3a shows that the
readings vary from 0◦ to 90◦ under no EMF interferences. In this case, both sensors give similar values
that correspond to the tilt of a smartphone. By contrast, as shown in Figure 3b, at 113 s the two sensors
produce different results when there are EMF interferences, i.e., the output of the magnetometer
is larger than that of the gyroscope since the former accumulates the effects of in-vehicle EMF as
well. Thus, we translate this difference into an amount of in-vehicle EMF in terms of DRI, which is
calculated by:

DRI = max
∣∣∣θ′mag(t)− θ′gyr(t)

∣∣∣ , (1)

where θ′mag(t) and θ′gyr(t) are the sums of integrated (x, y, z) readings of the magnetometer and the
gyroscope at time t, respectively, capturing the maximum difference between the magnetometer and
gyroscope while the user is sitting down. With an appropriately chosen cut-off threshold, the DRI
assumes that the user has entered the vehicle if the difference exceeds the threshold.
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Figure 2. Discrepancy between measured and reference values of magnetometers: (a) magnetometer’s
(x, y) values while a smartphone is rotated by 360◦, and (b) magnetometer readings in the time domain.

(a) (b)

Figure 3. How the rotation angles of the magnetometer and accelerometer vary when the smartphone
is turned by 90◦: when (a) there is no electrical interference, and (b) electrical interferences exist.

2.3. Engine Vibrations on Startup

The FRC aims to identify whether the smartphone is located at the front or the rear, even when
there exist various unexpected activities inducing unwanted noise. Previous studies pointed out that
the EMF spike monitored at the front row is relatively stronger than that of the rear when starting the
vehicle [7,9]. However, solely relying on the EMF feature introduced by previous solutions suffers
from a high risk of false alarms in real-world scenarios because human activities such as door closing
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or taking a smartphone out of a bag may also incur EMF variations, as described in Section 2.2.
We therefore aim to reinforce the FRC with the capability of identifying whether or not the EMF
changes are caused by the engine startup.

It is important to employ a new feature for engine startup that appears regardless of the
smartphone’s position. After monitoring various sensor readings by varying smartphone positions and
types of vehicles, we find the accelerometer is suitable for sensing the EVS. Figure 4 plots variations
in the magnitude of acceleration during the startup of engines. From the figure, all of the magnitude
changes follow similar patterns, i.e., lasting around 1 s of vibration, experiencing a slight increase after
the engine startup, and then gradually decreasing over time. We use a correlation coefficient (for each
smartphone position) to quantify the similarity of EVS among different seat positions. The average
correlation coefficients are computed as 0.86, 0.72, and 0.86 for the cases of smartphones held in pockets,
bags, and hands, respectively. This means EVS is highly correlated with smartphone location since
the coefficients are larger than a threshold of 0.6 [14,15]. In addition, we compute the similarity of
smartphone positions in terms of cross-correlation coefficients (mean ± standard deviation) as follows:

• cross_correlation(pockets, hands) = 0.92± 0.02,
• cross_correlation(hands, bags) = 0.83± 0.13, and
• cross_correlation(bags, pockets) = 0.79± 0.19.

This means EVS has little to do with the smartphone positions. Finally, we extract EVS patterns
from four vehicles to yield an average cross-correlation coefficient of 0.71. All of these results indicate
that EVS can be used to reliably detect when the engine starts, regardless of seat position and
vehicle types.

Front–Left
Front–Right
Rear–Left
Rear–Right

Front–Left
Front–Right
Rear–Left
Rear–Right

Front–Left
Front–Right
Rear–Left
Rear–Right

(a) Pocket (b) Bag (c) Hand

Figure 4. Variations in the magnitude of acceleration during the startup of engines when smartphones
are held in: (a) pockets, (b) bags, and (c) hands.

To deal with situations of accelerometer readings being distorted by human activities during
engine startup, we extract and use frequency features in the range of 8∼12 Hz. Accordingly, as shown
in Figure 5, the FRC executes the following steps:

1. It reads accelerometer and magnetometer readings for a predefined duration of time, which is set
to 2 s in our experiments.

2. It passes the accelerometer readings through a pre-filter to extract EVS within a frequency band
of 8∼12 Hz while removing interferences and noises.

3. It determines the similarity between the filtered EVS and the reference pattern by calculating a
cross-correlation coefficient.

4. If the similarity is less than 0.6, it goes back to step 1.
5. Otherwise, it analyzes the magnitude of the EMF to distinguish between the front and rear.

As mentioned earlier, the magnitude of EMF changes at the front seat is larger than the rear seat.
To quantify the EMF change, we employ a sample variance of EMF values, as visualized in Figure 6.
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We observe that computed values near the front (rear) seat are larger (smaller) than 1 µT. Finally, like
the IVC, the FRC uses the Bayesian classifier to determine the seated row, minimizing the error rate.
We set a threshold τf rc to 0.98 to distinguish between the front and rear seats.

Reading
the sensors

Extracting
EVS

Calculating
cross-correlation

Distinguishing
between front and rear

Magnetometer

Pre-filter
(8-12[Hz]) C>ThresholdCross-correlation

Pre-defined signal

EMF feature analysis

Front / Rear seat

N

Y

Readings

Readings

Filtered 
signal

Correlation
coefficient (C)

Result

1 2 3 4 5

Acclerometer

Figure 5. The workflow of the front–rear classifier (FRC). EMF—electromagnetic field.

(b)(a)

Figure 6. Experiments on EMF changes: (a) measurement locations in a vehicle, and (b) sample
variances of EMF values during engine startup.

3. Performance Evaluation

3.1. Experimental Setup

We used Android-based smartphones (Galaxy S5, Samsung Electronics, Seoul, Korea), each with
a built-in inertial measurement unit (IMU) to measure the acceleration, angular velocity, and EMF.
The sampling rate of the IMU was set to 20 ms. We employed four participants who consented to
participate in our study after receiving detailed information on the procedures, scenarios, and potential
risks. Note that our participants were in their mid 20s and early 30s, as shown in Table 1, and hence we
did not consider the behavioral patterns of elderly and disabled individuals who might have limited
physical movements. Furthermore, wild actions likely to be found in kids were also omitted from
our design since they are not allowed to drive on a public road. The participants repeatedly rode
three vehicles from three different segments widely found in our daily lives. The vehicles included a
Hyundai Accent, Kia K5, and Hyundai Grandeur from the subcompact, mid-sized, and large-sized
segments, respectively. While other vehicle types such as trucks and sport utility vehicles are not
considered in this work, we stress that ADDICT exploits invariant sensory features found in vehicles
running on petrol engines.

The participants were instructed to stand at least 20 m away from the vehicles to include walking,
standing, and vehicle-riding actions. In addition, participants carried their smartphones in three
different positions (pockets, bags, and hands) and behaved according to the following scenarios.

Basic scenario: participants did not manipulate their smartphones when entering, thus incurring only
three events (standing, sitting, and engine-starting).
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Common scenario: participants were allowed to use their smartphones while entering a vehicle
(e.g., texting and phone call), which generates noise that could distort/override required
sensory features.

Extreme scenario: participants were allowed to perform unexpected actions (e.g., swinging while
walking, and shaking) that are less likely to be observed during vehicle-riding events, to produce
a significant amount of noise.

We employed both receiver operating characteristic (ROC) curves and area under the curve (AUC)
values to evaluate the performance of the IVC and FRC and demonstrate their feasibility against other
classifiers proposed in [9]. The ROC curve illustrates the performance of a binary classifier where the
curve is generated with the true positive rate against the false positive rate under various threshold
settings. The performance of a classifier can also be evaluated by computing the AUC, where an AUC
close to 1 indicates that the system is able to differentiate vehicle entry perfectly from other activities
while an AUC≤0.5 indicates that the classifier is meaningless.

Table 1. Participant information.

Subject Sex Age Height Weight

P1 M 30 179 90
P2 M 31 181 85
P3 M 25 173 80
P4 F 26 160 51

3.2. Performance of In-Vehicle Classification

To evaluate the performance of the IVC in differentiating the vehicle-riding actions from other daily
activities involving similar sitting motions, we conducted two separate experiments where the four
participants recorded their (1) vehicle-riding actions and (2) sitting-down motions in front of an office
desk (with non-swivel and non-rotating chairs), following the three scenarios we defined previously.
The office environment was carefully selected among others because electronic devices found around
the office desk emit EMFs that likely distort the electromagnetic sensor readings. For each experimental
condition (a total of 6 experimental conditions as shown in Table 2), each participant recorded 62 trials,
giving us a total of 1488 data instances.

Table 2. Characteristics of distributions attained from different experimental conditions.

Condition Summary Statistics Shapiro–Wilk W Test Mann–Whitney U Test

Scenario Environment Min Median Max Mean Std. Dev. W Prob < W p-Value

Basic Office chair 0.76 15.90 69.94 19.19 13.61 0.898 <0.0001 <0.0001Vehicle 15.05 33.05 53.98 32.66 6.74 0.989 0.0626

Common Office chair 5.03 22.59 38.44 22.85 6.07 0.982 0.0033 <0.0001Vehicle 6.78 42.81 79.53 44.23 9.88 0.888 <0.0001

Extreme Office chair 2.85 27.56 78.18 29.99 12.89 0.957 <0.0001 <0.0001Vehicle 25.41 42.58 93.72 45.71 12.49 0.944 <0.0001

Since the characteristics of each distribution representing six different experimental conditions
shown in Table 2 were unknown, we first conducted the normality test called the Shapiro–Wilk W
test [16] to validate whether these distributions, shown in Figure 7, follow the Gaussian behavior.
The test results in Table 2 indicate that most of the distributions did not follow the Gaussian behavior,
except for the vehicle-riding actions under the basic scenario.

Therefore, we further investigated the distinction between vehicle-riding actions and
sitting-on-an-office-chair motions for each scenario, using a non-parametric test called the
Mann–Whitney U test [17]. The results in Table 2 illustrate that there was a less than 0.01% risk
of concluding that a difference exists for all combinations of distributions when there was no actual
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difference. In other words, the distributions found from vehicle-riding and sitting-on-an-office-chair
actions were statistically different and thus could be safely and successfully differentiated. We applied
a logistic regression model [18] to differentiate vehicle entry from the sitting-down motion.

The performance of the IVC is further evaluated against the magnetic field variance detection
(MVD) [7,9]. Figure 8 shows the ROC curves and AUC values of the IVC and MVD under three
scenarios. As expected, MVD had AUCs of 0.85, 0.79, and 0.49 in the basic, common, and extreme
scenarios, respectively. This means that MVD could not differentiate vehicle-riding-actions and
non-vehicle-related sitting actions. In contrast, the IVC achieved AUCs of 0.92, 0.90, and 0.82 for the
three scenarios, which means that the IVC outperforms MVD and maintains a high performance even
in the extreme settings.
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Figure 7. Histograms of DRI values in two cases: vehicle entry and sitting in daily living.
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Figure 8. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values of the
in-vehicle classifier (IVC) and magnetic field variance detection (MVD) under three (basic, common,
and extreme) scenarios.

3.3. Performance of Front-Rear Classification

We evaluated both the FRC and an existing method called MFD (magnetic field fluctuation
detection) [7,9], where the latter utilizes EMF fluctuations when starting the vehicle. Both the FRC and
MFD showed very similar performances in the basic scenario, and hence we focused on the rest of
scenarios. Figure 9 plots the results of the FRC and MFD evaluation. If accurately classifying between
the front and rear row, the front row is marked in red and the rear row in blue. In both scenarios,
the FRC maintained much clearer separation between the front and rear compared to MFD. While MFD
provided an accuracy of 72% and 64%, the FRC achieved 94.0% and 90.5% for common and extreme
scenarios, respectively.

Figure 10 plots the ROC curves and AUC values of the FRC and MFD. MFD had AUCs of 0.51 and
0.32 in the common and extreme scenarios, respectively, which means that MFD performed poorly in
classifying the seated row, agreeing with the results of Figure 9. However, the FRC achieved AUCs of
0.96 and 0.91 for common and extreme scenarios, respectively. This indicates that the FRC is capable of
accurately detecting the seated rows in real environments.
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3.4. Performance of Driver Detection

We distributed ADDICT-enabled smartphones to the participants and conducted experiments in
three vehicles by varying smartphone positions and scenarios. Figure 11 shows the results of each seat
position. ADDICT achieved very high accuracy for detecting the driver, i.e., 96.7%, 93.3%, and 90.0% for
the basic, common, and extreme scenarios, respectively. In addition, it accurately detected passengers’
seats with an accuracy of 93.3∼90.0%, 90.0∼86.7%, and 90.0∼80.0% for the three respective scenarios.
These results clearly demonstrate that ADDICT maintains a high level of accuracy in distinguishing
between the driver and passengers, even in extreme (or real-world) settings.
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Figure 11. The results of detecting the driver and passengers in three scenarios.



Sensors 2019, 19, 2643 10 of 11

3.5. Energy Consumption

Finally, we evaluated the energy consumption incurred by ADDICT. To do so, we developed an
application to record the battery level when all services such as WiFi, GPS, and Bluetooth were turned
off and while a display was maintained at the highest level of brightness. Our experimental results
indicate that ADDICT shortens the smartphone’s battery lifetime by 132 min. This means that one
may use the ADDICT-enabled smartphone for nearly 10 h when the default smartphone covers 12 h of
battery usage.

3.6. Discussion

While ADDICT demonstrated a significant performance advantage over other state-of-the-art
solutions, there are several limitations which need further investigation. First, ADDICT was designed
and evaluated using a representative set of vehicle types that all run on petrol engines installed at the
front of the vehicles. The EMF interference and engine vibration patterns of vehicles with rear engines
(e.g., Porsche 911) and electric vehicles (e.g., Tesla Model S) are yet to be discovered. Furthermore,
other vehicle types that could require different vehicle-entering actions, such as trucks, SUVs, buses,
and more, are not considered in our study.

Second, it is important to point out that ADDICT (and other works as well) does not always
guarantee a perfect result. Our evaluation results showed that drivers are detected with an accuracy of
86% under the extreme scenario. Therefore, DWD prevention services should consider incorporating
additional checking mechanisms that exploit various driving-related sensory features introduced
by other researchers, in addition to our method. However, we stress the importance of identifying
the drivers (or drivers’ smartphones) before the vehicle leaves its parking spot, to ensure the safety
of everyone.

4. Conclusions

In this work, we presented an accurate and reliable driver detection system called ADDICT that is
composed of three classifiers exploiting invariant characteristics extracted from daily vehicle-riding
actions. The IVC determined if a user entered a vehicle based on the difference in rotational inertia
between the gyroscope and the magnetometer. Once the IVC detected the vehicle entry, the LRC
analyzed the curvature of the movement trajectory monitored when entering the vehicle to differentiate
the boarding side, left or right. Lastly, the FRC identified the seated row, front or rear, exploiting
in-vehicle electromagnetic field fluctuations and engine vibrations. We evaluated ADDICT under three
different vehicle-riding scenarios to achieve an overall performance of 92.50%, 89.16%, and 85.83%
for the basic, common, and extreme scenarios, respectively, demonstrating superior performance
compared to existing methods.
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