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Abstract: The main objective of this paper is to develop an actuator and sensor fault estimation
framework taking into account various uncertainty sources. In particular, these are divided into three
groups: sensor measurement noise, process-external exogenous disturbances, as well as unknown
fault dynamics. Unlike the approaches presented in the literature, here they are not processed in
the same way but treated separately in a suitably tailored fashion. Finally, the approach resolves to
minimizing their effect on the fault estimation error in either theH2 orH∞ sense. As a result, a mixed
performance–based actuator fault estimation framework is obtained, along with its convergence
conditions. The final part of the paper presents performance analysis results obtained for a DC
servo-motor. Subsequently, another three-tank-system-based example is presented. In both cases,
the proposed approach is compared with an alternative one, which clearly exhibits its superiority.

Keywords: fault estimation; sensor and actuator fault; robustness; estimator design; observers

1. Introduction

The problem of recovering immeasurable quantities has received considerable research attention.
Indeed, it was initiated with the advent of the celebrated Kalman filter and Luenberger observer [1,2],
which are traditionally applied to the state estimation of linear systems. Subsequently, the research
attention was focused on unknown input observers (UIOs) [2–4], which were used for both control and
fault diagnosis (FD) [5,6] purposes. Another important aspect pertains to the fact that UIOs can be
applied in various multi-model-based configurations [7–9], and hence, they can model nonlinearities
and tackle various multiple decoupling scenarios.

Indeed, the appealing property of UIOs pertains to the fact that they can decouple the effect of
given inputs on the state estimation error. This makes it possible to achieve a state estimator insensitive
to a given set of actuator faults. To tackle the problem of sensor fault detection and isolation (FDI),
a bank of suitably designed observers was utilized [2]. Each of them was sensitive to all but one fault.
Such a strategy allowed the formulation of suitable FDI logic capable of providing appropriate FDI
decisions. Thus, FD can be perceived as a multi-level task aimed at deciding if a fault has occurred
(fault detection), finding its location (fault isolation), and estimating its size (fault identification and
estimation) [10]. In the literature, the FDI problem has been tackled from various angles and with
a large spectrum of tools, e.g., [1,3,5–9,11–18]. On the other hand, fault estimation has received
significantly less research attention. However, this situation is changing rapidly with the advent of
an active fault-tolerant control (FTC) [3,6,19–21]. Indeed, active FTC requires on-line fault diagnosis
including both FDI as well as fault identification and estimation. This fact becomes even more evident
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while dealing with the so-called integrated FTC [3,22,23], which eliminates the need for the classical FDI
while relying on fault estimation exclusively. Unlike the conventional FTC, its main appealing property
pertains to the fact that all fault estimation errors are incorporated into the control design framework.
Similarly to observer-based output-feedback control, such a strategy requires proving the so-called
separation principle [3,24]. Irrespective of the elegance of integrated FTC, it cannot fully compensate
all fault estimation inaccuracies. This raises an obvious conclusion that the better the information about
the fault, the better the FTC. This evident fact is the main force exciting the need for the development
of more accurate and efficient fault estimation schemes. This is particularly important in the case of
two crucial components of any system, namely sensors and actuators (cf. [25–28] and the references
therein). However, it is an obvious fact that their estimation quality can be impaired by external
exogenous process disturbances and measurement noise. To tackle this unappealing phenomenon,
two main strategies can be distinguished, namely decoupling and attenuation. The former is typically
based on the application of UIOs [2,3], which decouple the effect of an unknown input disturbance
from the states estimation error. As a consequence, its influence on the fault estimation quality
is eliminated. However, the quality of such a decoupling strongly depends on the mathematical
disturbance distribution model. Another group of strategies can be used for attenuating the effect
of the disturbance/noise on the estimation error. In this case, the disturbance/noise can be modeled
in strictly stochastic fashion like in the case of the celebrated Kalman filter. In that event, an optimal
fault estimation filter can be developed, as proposed in [29]. Its optimality is, of course, proven under
a zero mean white noise assumption concerning uncertainty acting on the system. An alternative
approach is to use the H∞ paradigm and hence impose an assumption that the uncertainty-related
signal has a finite energy [30]. Using such approaches, the maximum gain between uncertainty
factors and the estimation error can be minimized. Another strategy is to minimize the mean square
value of such a response, which boils down to an H2 [31] approach. Finally, the uncertain factors
can be described using convex sets [32,33], and their worst-case values are taken into account while
determining the estimates. However, such a strategy may lead to conservative estimates, the quality of
which depends solely on precise knowledge about worst-case values of the upper and lower bounds
of uncertainty factors.

The development presented in this paper is motivated by the fact that measurement noise cannot
be formally threaded as a signal with a finite energy. Indeed, nowadays, such an uncertainty source
can be mainly associated with the quantization error resulting from an analog-to-digital conversion.
On the other hand, the process disturbance usually has an intermittent character. This observation
leads to the idea of treating it in a different way. This means that the influence of measurement noise
is to be minimized with theH2 approach while the process disturbance is to be tackled with theH∞

one. Therefore, the proposed strategy captures benefits from bothH2 andH∞ paradigms. Finally, its
appealing feature is that simultaneous actuator and sensor fault estimation can be performed. Thus,
the contribution of the paper can be summarized as follows:

1. to propose a novel fault estimator structure capable of estimating possibly simultaneous sensor
and actuator faults;

2. the proposed estimator can tackle both an exogenous process disturbance with finite energy and
a random measurement noise;

3. the estimator design procedure allows the minimizing of noise/disturbance effects on both state
and fault estimation errors;

4. the estimator design procedure yields a fault estimator with a guaranteed trade-off between fault
and state estimation quality.

Finally, it should be noted that the proposed approach is devoted to linear systems. There
are, of course, approaches that can be used to tackle fault diagnosis of nonlinear systems using a
nonlinear model description directly [34–36]. However, the approach proposed in this paper can be
extended to nonlinear systems by modeling them as linear parameter-varying (LPV) or Takagi–Sugeno
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ones. Subsequently, by the convexity principle [37], a direct extension of the proposed algorithm can
be developed.

The paper is organized in the following order. Section 2 provides necessary preliminaries and
suitable system transformation for further deliberations. Section 3 formulates the problem along with
the suitable state and sensor/actuator fault estimator. It also derives the underlying estimation error
along with its compact form dynamics. The section ends with definitions and supplementary lemmas.
Section 4 delivers the technical theorem required for completing the design procedure (Section 6).
An alternative approach is also briefly presented in Section 5. Subsequently, Section 7 exhibits an
illustrative example concerning the application of the proposed strategy to a DC motor as well as a
three–tank system. Finally, the last section concludes the paper.

2. Preliminaries

Let us consider a linear discrete-time system:

xk+1 = Axk + Buk + B f a,k + W1w1,k, (1)

yk = Cxk + C f f s,k + W2w2,k, (2)

where xk ∈ Rn, uk ∈ Rr, and yk ∈ Rm stand for the state, input, and output, respectively. Whilst
f a,k ∈ Rr and f s,k ∈ Rs stand for the actuator and sensor faults, respectively. Vectors w1,k ∈ Rq1

and w2,k ∈ Rq2 signify system disturbance and measurement noise signals, respectively. Matrices
A ∈ Rn×n, B ∈ Rn×r, C ∈ Rm×n, C f ∈ Rs, W1 ∈ Rn×q1 , W2 ∈ Rm×q2 are constant and possess
appropriate dimensions. Moreover, it is assumed that the ith actuator fault f a,k,i and jth sensor
fault f s,k,j are detectable, isolable, and identifiable [19]. Finally, a fundamental assumption is that
s + r ≤ m, which simply means that it is impossible to estimate more faults than the existing number
of measurable outputs.

To make the paper self-contained, let us recall that

lnw
2 =

{
w ∈ Rn

w| ‖w‖l2 < +∞
}

, ‖w‖l2 =

(
∞

∑
k=0
‖wk‖2

) 1
2

. (3)

Bearing in mind the above nomenclature, let us impose the following assumptions:

• Assumption 1: The process of exogenous disturbance is bounded in the lq1
2 sense, i.e., w1,k ∈ lq1

2 ;
• Assumption 2: The measurement noise w2,k is a random sequence;
• Assumption 3: Actuator and sensor faults’ rates of change εa,k = f a,k+1 − f a,k, εs,k = f s,k+1 − f s,k

are bounded in the lr
2 and ls

2 sense, i.e., εa,k ∈ lr
2 and εs,k ∈ ls

2, respectively.

Assumption 1 signifies that the exogenous disturbance w1,k has a finite energy. Contrarily, w2,k
does not satisfy this property. Indeed, inaccuracies of today’s digital sensors can be accompanied
by quantization errors and other random factors that can be efficiently exemplified as a random
sequence. This clearly necessitates Assumption 2. Furthermore, any physical actuator exhibits a finite
performance, which cannot be arbitrarily increased. Thus, it is natural to assume that the fault rate
of change cannot increase without limits as well. Indeed, while a given fault settles, it converges
to zero, and hence, in most of the works presented in the literature [38], εa,k = 0 (or ḟ = 0 in the
continuous-time framework). Using a similar reasoning, a sensor fault rate of change cannot increase
without limits as well.

Given the general description of the system along with assumptions, the system (1) and (2) is to
be converted into a form that is more suitable for further deliberations. Indeed, it couples the state
and sensor fault into an extended-state vector and hence eliminates its direct existence in the output
equation. Unlike the sensor fault, the actuator fault is estimated by applying an adaptive rule.
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Let x̄k =
[

xT
k , f T

s,k

]T
, then the system (1) and (2) can be transformed into the so-called descriptor

shaped by: [
I 0
0 0

] [
xk+1
f s,k+1

]
=

[
A 0
0 I

] [
xk
f s,k

]
+

[
B
0

]
uk +

[
B
0

]
f a,k +

[
0
I

]
εs,k +

[
W1

0

]
w1,k, (4)

yk =
[
C C f

] [ xk
f s,k

]
+ W2w2,k, (5)

which can be rewritten in a simpler form:

Ēx̄k+1 = Āx̄k + B̄uk + B̄ f a,k + H̄εs,k + W̄1w1,k, (6)

yk = C̄x̄k + W2w2,k. (7)

Given the general description of the system, the underlying simultaneous actuator and sensor
fault estimation problem is to be tackled in the subsequent section.

3. Problem Formulation

This section describes the main problems that will be investigated in this paper. Let us consider a
discrete-time estimator of the form

zk+1 = Nzk + Muk + Lyk + T1B̄ f̂ a,k, (8)

ˆ̄xk = zk + T2yk, (9)

f̂ a,k+1 = f̂ a,k + F (yk − C̄ ˆ̄xk) , (10)

where ˆ̄xk ∈ Rn and f̂ k ∈ Rr denote the estimate of the state and actuator fault, respectively. Thus,
the estimator design problem amounts to determining the gain matrices N, M, L, and F, while the
form of T1 and T2 is to be exposed in a direct form. Based on (6) and (7), the state estimation error
ēk obeys

ēk = x̄k − ˆ̄xk = x̄k − zk − T2C̄x̄k − T2W2w2,k = (I − T2C̄) x̄k − zk − T2W2w2,k

= T1Ēx̄k − zk − T2W2w2,k.
(11)

From (11) it can be deduced that

zk = T1Ēx̄k − ēk − T2W2w2,k. (12)

Thus, bearing in mind (4)–(5) and (11)–(12), the dynamics of the estimation error obeys

ēk+1 = T1Ēx̄k+1 − zk+1 − T2W2w2,k+1 = T1 Āx̄k + T1B̄uk + T1B̄ f a,k

+ T1H̄εs,k + T1W̄1w1,k − Nzk −Muk − LC̄x̄k − LW2w2,k

− T1B̄ f̂ a,k − T2W2w2,k+1 = (T1 Ā− NT1Ē− LC̄) x̄k + T1B̄ea,k

+ (T1B̄−M) uk + Nēk + T1H̄εs,k + T1W̄1w1,k

− T2W2w2,k+1 + (NT2 − L)W2w2,k.

(13)

Based on (13), it is apparent that the following relationships must hold:

T1B̄−M = 0, (14)

T1 Ā− NT1Ē− LC̄ = 0. (15)
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Thus, it is evident that:

M = T1B̄, (16)

T1 Ā = NT1Ē + LC̄, (17)

and hence

T1 Ā = N (I − T2C̄) + LC̄, (18)

T2 Ā = N − NT2C̄ + LC̄, (19)

N = T1 Ā + NT2C̄− LC̄, (20)

N = T1 Ā− (L− NT2) C̄, (21)

N = T1 Ā− KC̄, (22)

where the new gain matrices are:

K = L− NT2, (23)

L = K + NT2. (24)

As a consequence, the augmented estimation error is given as

ēk+1 = (T1 Ā− KC̄) ēk + T1B̄ea,k + T1W̄1w1,k + T1H̄εs,k − T2W2w2,k+1 − KW2wk. (25)

Subsequently, the dynamics of the estimation error obeys

ea,k+1 = f a,k+1 + f̂ a,k+1 = f a,k+1 + f a,k − f a,k − f̂ a,k − F (yk − C̄x̂k)

= εa,k + ea,k − FC̄ēk − FW2w2,k,
(26)

with εa,k = f a,k+1 − f a,k. For the purpose of further deliberations, let us define the following vectors

ẽk =
[
ēT

k , eT
a,k

]T
, ε̃k =

[
εT

s,k, εT
a,k

]T
, (27)

which make it possible to describe (25) and (26) as follows

ẽk+1 = (Ã− K̃C̃)ēk + W̃1w1,k − K̃W̃2w2,k + H̃w2,k+1 + Ẽε̃k, (28)

e f ,k = Ĩ ẽk, (29)

where

Ã =

[
T2 Ā T1B̄

0 I

]
, K̃ =

[
K
F

]
, C̃ =

[
C̄ 0

]
, W̃1 =

[
T1W̄1

0

]
, W̃2 = W2,

H̃ =

[
−T2W2

0

]
, Ẽ =

[
T1H̄ 0

0 I

]
, Ĩ =

[
0 I

]T
.

Based on the above transformations, five different objectives are considered while determining the
gain matrices K and L for (8)–(10): (i) asymptotic convergence to zero of the state and fault estimation
error (28) and (29); (ii) rejection of w1,k; (iii) rejection of εk in the H∞ sense; (iv) rejection of w2,k in
theH2 sense; and (v) rejection of w2,k+1 in theH2 sense. The above problem is formulated formally
through the following definition:
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Definition 1. The system (8)–(10) is robustly convergent in theH2/H∞ sense if given scalars µ1 > 0, µ2 > 0,
γ1 > 0 and γ2 > 0:

(i) (8)–(10) are asymptotically stable when w1,k = 0, w2,k = 0, w2,k+1 = 0, and ε̃k = 0;
(ii) ‖Ge f w1(z)‖∞ < µ1 when w1,k 6= 0;
(iii) ‖Ge f ε̃ (z)‖∞ < µ2 when ε̃k 6= 0;
(iv) ‖Ge f w2(z)‖2 < γ1 when w2,k 6= 0;
(v) ‖Ge f w∗2 (z)‖2 < γ2 when w2,k+1 6= 0,

where

Ge f w1(z) = Ĩ
(
zI −

(
Ã− K̃C̃

))−1 W̃1,

Ge f ε̃ (z) = Ĩ
(
zI −

(
Ã− K̃C̃

))−1 Ẽ,

Ge f w2(z) = Ĩ
(
zI −

(
Ã− K̃C̃

))−1 (−K̃W̃2
)

,

Ge f w∗2 (z) = Ĩ
(
zI −

(
Ã− K̃C̃

))−1 H̃,

denotes the transfer function from the inputs w1,k, ε̃k, w2,k, and w2,k+1 to the output e f ,k, respectively.

For further deliberations, let us consider the following system

X k+1 = AX k +BU k, (30)

Y k = CX k, (31)

with the transfer function matrix G(z) = C (zI −A)−1 B. Subsequently, let us remind the
following lemmas:

Lemma 1. ‖G(z)‖2 < γ2 if, and only if, there exist matrices P � 0 and W � 0 such that Trace(W) < γ2 and −P ∗ ∗
ATP −P ∗
BTP 0 −I

 ≺ 0,

[
W ∗
CT P

]
� 0. (32)

Lemma 2. ‖G(z)‖∞ < µ if, and only if, there exist matrices P � 0 such that
−P ∗ ∗ ∗
ATP −P ∗ ∗
BTP 0 −µI ∗

0 C 0 −µI

 ≺ 0. (33)

Proof. For proof of Lemma 1 and Lemma 2, the reader is referred to [39].

Lemma 3. ‖G(z)‖∞ < µ2 if, and only if, there exist matrices P � 0 such that
−P ∗ ∗ ∗

0 −I ∗ ∗
ATP CT −P ∗
BTP 0 0 −µ2

2 I

 ≺ 0. (34)

Proof. Proof of Lemma 3 can be obtained using the authors’ results concerning fault estimation [40].

Given Definition 1 and the general structure of the estimator, along with its estimation error (28)
and (29), the design procedure for determining the gain matrices K and F will be given in the
next section.
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4. Fault Estimator Design

The objective of this section is to determine necessary and sufficient conditions for the synthesis
of the observer (8)–(10) for the system (1) and (2), satisfying the conditions expressed by Definition 1.
Using the above-mentioned definitions, it is possible to formulate the main result of this section:

Theorem 1. For prescribed attenuation levels µ1 > 0, µ2 > 0, γ1 > 0, and γ2 > 0 of w1,k, ε̃k, w2,k, and
w2,k+1, respectively, theH2/H∞ estimator design problem is solvable if, and only if, there exist P � 0, V1 � 0,
V2 � 0 and Ñ such that the following conditions are satisfied: −P ∗ ∗

ÃTP− C̃T ÑT −P ∗
W̃ T

2 ÑT 0 −I

 ≺ 0, (35)

 −P ∗ ∗
ÃTP− C̃T ÑT −P ∗
−H̃TP 0 −I

 ≺ 0, (36)

[
V1 ∗
ĨT P

]
� 0, (37)[

V2 ∗
ĨT P

]
� 0, (38)

Trace (V1) < γ2
1 (39)

Trace (V2) < γ2
2 (40)

−P ∗ ∗ ∗
0 −I ∗ ∗

ÃTP− C̄T ÑT ĨT −P ∗
W̃ T

1 P 0 0 −µ2
1 I

 ≺ 0, (41)


−P ∗ ∗ ∗

0 −I ∗ ∗
ÃTP− C̃T ÑT ĨT −P ∗

ẼTP 0 0 −µ2
2 I

 ≺ 0, (42)

where Ñ = PK̃.

Proof. The above LMIs were obtained by performing a set of suitable manipulations on the matrices
underlying (28) and (29), which can be summarized as follows:

Constraint (35): Setting (Ã− K̃C̃)→ A, W̃2 → B, P→ P in Lemma 1 gives −P ∗ ∗
ÃTP− C̃TK̃TP −P ∗

W̃ T
2 K̃TP 0 −I

 ≺ 0. (43)

Substituting Ñ = PK̃ gives (35).
Constraint (36): Setting (Ã− K̃C̃)→ A, H̃ → B, P→ P in Lemma 1, −P ∗ ∗

ÃTP− C̃TK̃TP −P ∗
−H̃TP 0 −I

 ≺ 0. (44)

Substituting Ñ = PK̃ gives (36).
Constraint (37)–(40): Setting P → P , V1 → W , V2 → W , Ī → C in Lemma 1 gives (37) and (38),

respectively.
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Constraint (41): Setting (Ã− K̃C̃)→ A, W̃1 → B, P→ P , Ī → C in Lemma 3 gives


−P ∗ ∗ ∗

0 −I ∗ ∗
ÃTP− C̄TK̃TP ĨT −P ∗

W̃ T
1 P 0 0 −µ2

1 I

 ≺ 0. (45)

Using Ñ = PK̃ gives (41).
Constraint (42): Setting (Ã− K̃C̃)→ A, Ẽ→ B, P→ P , Ī → C in Lemma 3,


−P ∗ ∗ ∗

0 −I ∗ ∗
ÃTP− C̃TK̃TP ĨT −P ∗

ẼTP 0 0 −µ2
2 I

 ≺ 0. (46)

Using Ñ = PK̃ gives (42).

5. An Alternative Approach to Fault Estimator Design

Before proceeding to the performance validation results, let us introduce an alternative approach,
which is based on a direct application of the approach proposed in [39]. An alternative approach is
characterized by the following theorem:

Theorem 2. For prescribed attenuation levels µ1 > 0, µ2 > 0, γ1 > 0, and γ2 > 0 of w1,k, ε̃k, w2,k, and
w2,k+1, respectively, theH2/H∞ estimator design problem is solvable if, and only if, there exist P � 0, V1 � 0,
V2 � 0 and Ñ such that the following conditions are satisfied: −P ∗ ∗

ÃTP− C̃T ÑT −P ∗
W̃ T

2 ÑT 0 −I

 ≺ 0, (47)

 −P ∗ ∗
ÃTP− C̃T ÑT −P ∗
−H̃TP 0 −I

 ≺ 0, (48)

[
V1 ∗
ĨT P

]
� 0, (49)[

V2 ∗
ĨT P

]
� 0, (50)

Trace (V1) < γ2
1 (51)

Trace (V2) < γ2
2 (52)

−P ∗ ∗ ∗
ÃTP− C̄T ÑT −P ∗ ∗

W̃ T
1 P 0 −µ1 I ∗
0 Ĩ 0 −µ1 I

 ≺ 0, (53)


−P ∗ ∗ ∗

ÃTP− C̄T ÑT −P ∗ ∗
ETP 0 −µ2 I ∗

0 Ĩ 0 −µ2 I

 ≺ 0, (54)

where Ñ = PK̃.

Proof. The proof can be performed based on [39], which boils down to:
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Constraint (47): Setting (Ã− K̃C̃)→ A, W̃2 → B, P→ P in Lemma 1 gives −P ∗ ∗
ÃTP− C̃TK̃TP −P ∗

W̃ T
2 K̃TP 0 −I

 ≺ 0. (55)

Using Ñ = PK̃ gives (47).
Constraint (36): Setting (Ã− K̃C̃)→ A, H̃ → B, P→ P in Lemma 1, −P ∗ ∗

ÃTP− C̃TK̃TP −P ∗
−H̃TP 0 −I

 ≺ 0. (56)

Using Ñ = PK̃ gives (48).
Constraint (49)–(52): Setting P → P , V1 → W , V2 → W , Ī → C in Lemma 1 gives (49)–(50),

respectively.
Constraint (53): Setting (Ã− K̃C̃)→ A, W̃1 → B, P→ P , Ī → C in Lemma 2 gives

−P ∗ ∗ ∗
ÃTP− C̄TK̃TP −P ∗ ∗

W̃ T
1 P 0 −µ1 I ∗
0 Ĩ 0 −µ1 I

 ≺ 0. (57)

Using Ñ = PK̃ gives (53).
Constraint (42): Setting (Ã− K̃C̃)→ A, Ẽ→ B, P→ P , Ī → C in Lemma 2,

−P ∗ ∗ ∗
ÃTP− C̄TK̃TP −P ∗ ∗

ETP 0 −µ2 I ∗
0 Ĩ 0 −µ2 I

 ≺ 0. (58)

Using Ñ = PK̃ gives (54).

6. Final Design Procedure of the Fault Estimation Scheme

The problem of determining the estimator gain matrices described by Theorem 1 can be treated as
an optimization problem directed at minimizing the disturbance attenuation levels µ1, µ2, γ1, and γ2.
Setting β1 = γ2

1 and β2 = γ2
2, the structure of the whole observer design can be summarized by the

following algorithm:

Offline computation:

1. Iteratively change the values of µ1 and µ2.
2. Solve the optimization problem

minimize β1 + β2 (59){
subject to (35)–(42) for the proposed approach
subject to (47)–(54) for the alternative approach

(60)

to find a trade-off between disturbance attenuation levels γ1, γ2, µ1, and µ2, where
γ1 =

√
β1 and γ2 =

√
β2.

3. If the attenuation levels are not satisfactory, then go to Step 1, or else obtain matrices K and
F and calculate:
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[
T1 T2

]
=

[
Ē
C̄

]†

, (61)

N = T1 Ā− KC̄, (62)

M = T1B̄ (63)

L = K + NT2. (64)

Online computation:

1. Compute the fault estimates f̂ a,k and f̂ s,k with (8)–(10).

7. Illustrative Examples

This section presents an empirical verification of the proposed approach. For that purpose, a DC
servo-motor given in [40] and a three-tank system where considered. For the DC motor, the system
matrices were as follows:

A =

1.0000 0.1000 0
0 0.8495 0.4977
0 −0.0357 0.9995

 , B =

 0
0

0.0729

 ,

C f =

[
0
1

]
, C =

[
1 0 0
0 1 0

]
, W1 =

0.05
0
0

 , W2 =

[
0.025 0

0 0.025

]
,

while for the three–tank system they are given by:

A =

0.9982 0 0
0.0018 0.9973 0

0 0.0025 0.9972

 , B =

11.14
0
0

 ,

C f =

[
0
1

]
, C =

[
1 0 0
0 0 1

]
, W1 =

0.05
0
0

 , W2 =

[
0.025 0

0 0.025

]
.

7.1. Analysis ofH2/H∞ Trade-off—DC Servo-Motor

At the beginning, the trade-off between ‖Ge f w1(z)‖∞ < µ1, ‖Ge f ε̃ (z)‖∞ < µ2, ‖Ge f w2(z)‖2 < γ1,
and ‖Ge f w2(z)‖2 < γ2 depending on µ1 and µ2 is shown. In particular, 20 values of µ1 and µ2 were
selected from a range between 1 to 20. Next, for each value of µ1 and µ2, the optimization problem (59)
was solved under constraints (35)–(42) for the proposed approach and constraints (47)–(54) for the
alternative approach. Figure 1 shows the evolution of γ1 and γ2 for different µ1 and µ2. From these
results, it can be deduced that the proposed approach (Theorem 1) allows us to obtain lower values of
γ1 and γ2 than results obtained using Theorem 2. Moreover, Table 1 contains the minimal values of µ1

and µ2 for which the constraints (59) are satisfied.

7.2. Simulation Case—DC Servo-Motor

In the simulation case, the input signal is chosen as a step signal with an amplitude of 10 [V].
The initial conditions for the system and the observer are:

x0 = [0, 0, 0]T , z0 = [0.2, 0.1, 0.5]T , f̂ a,0 = 0, f̂ s,0 = 0.
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Figure 1. Trade-off between ‖Ge f w1 (z)‖∞ < µ1, ‖Ge f ε̃ (z)‖∞ < µ2, ‖Ge f w2 (z)‖2 < γ1, and
‖Ge f w2 (z)‖2 < γ2 for proposed Theorem 1 (T1) and Theorem 2 (T2) based on [39].

Table 1. The minimal values of µ1 and µ2 for which the constraints (59) are satisfied.

Proposed (T1) Hilhorst et al. (T2)

γ1 0.3193 1.6467
‖Ge f w2 (z)‖2 0.5666 1.1870

γ1 − ‖Ge f w2 (z)‖2 0.3510 0.4597

γ2 0.9176 0.6547
‖Ge f w2 (z)‖2 0.3227 1.6467

γ2 − ‖Ge f w2 (z)‖2 0.5948 0.9920

µ1 1.0000 3.2999
‖Ge f w1 (z)‖∞ 0.9595 2.2283

µ1 − ‖Ge f w1 (z)‖∞ 0.0404 1.0716

µ2 10.0000 10.0000
‖Ge f ε̃ (z)‖∞ 9.6806 7.41762

µ2 − ‖Ge f ε̃ (z)‖∞ 0.3193 2.5823

The signal w1,k is shown in Figure 2. w2,k was chosen as a uniformly distributed random vector,
where each element takes values in the interval [−0.01, 0.01]. The estimator parameters calculated for
µ1 and µ2 given in Table 1 are

N =


−0.7279 0.0750 0 0.0250
−21.8327 1.8572 0.5000 1.0082
−17.6055 1.0311 0.9996 1.0668
21.8327 −1.8572 −0.5000 −1.0083

 , M =


0
0

0.0729
0

 , L =


0.8639 −0.0000

10.9163 0
8.8028 0
−10.9164 0

 ,

T1 =


0.5 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 0

 , T2 =


0.5 0
0 0
0 0
0 1

 F =
[
35.2003 −3.6162

]
,

N =


−0.5637 0.0658 0 0.0158
−16.0557 1.6293 0.5000 0.7804
−8.7495 0.5343 0.9996 0.5701
16.0558 −1.6293 −0.5000 −0.7803

 , M =


0
0

0.0729
0

 , L =


0.7818 0
8.0279 0
4.3748 0
−8.0279 0

 ,

T1 =


0.5 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 0

 , T2 =


0.5 0
0 0
0 0
0 1

 F =
[
14.3768 −1.6188

]
,

for Theorem 1 and Theorem 2, respectively. For the purpose of further comparative study, two DC
servo-motor fault scenarios (FS) were considered:
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FS1

f a,k =

{
−0.2 50 ≤ t ≤ 55,

0 otherwise.

f s,k =0

FS2

f a,k =0

f s,k =

{
−0.3 50 ≤ t ≤ 55,

0 otherwise.

FS3

f a,k =

{
−0.2 50 ≤ t ≤ 55,

0 otherwise.

f s,k =

{
−0.3 50 ≤ t ≤ 55,

0 otherwise.

The analysis of fault estimation starts with a fault-free case ( f s,k = 0, f s,k = 0). Figures 3 and 4
show the response of the fault estimate to the disturbance signal w1,k. From these results, it can be seen
that the response of the fault estimate (Theorem 1) has a smaller amplitude than for the parameters
obtained using Theorem 2. In particular, in the case of actuator fault estimation, better performance
results from the fact that theH∞ norm (µ1) of the transfer function Ge f w1(z) is 0.9595, which means
that disturbances are rejected correctly, in contrast to the results obtained using Theorem 2, where the
H∞ norm of transfer function Ge f w1(z) is 2.2283. Subsequently, Figures 5–10 present the real values of
faults (solid red line) and their estimation obtained using Theorem 1 (solid blue line) and Theorem 2
(dashed black line) for FS1–FS3. Additionally, the response to the disturbance signal w1,k at time
t = 60, . . . , 65 [s] was included as well. It can be observed that the response to w1,k is similar to a
fault-free case. Furthermore, fault estimation is performed with a good quality as well. However, it can
be seen that the convergence of the fault estimation is not as good as for parameters calculated using
Theorem 2. To summarize, the estimator obtained with Theorem 1 is able to reject the disturbances
better than the one using Theorem 2. This is, of course, realized at the expense of the fault estimation
convergence. Finally, Figures 5, 6, 9 and 10 illustrate that if actuator and sensor faults act in the same
time-range, then they can be estimated simultaneously. However, it is natural that at the transient phase
they influence each other.
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Figure 2. Disturbance signal w1,k (left) (for t = 0, . . . , 100) and measurement noise signal w2,k (right)
(for t = 0, . . . , 10).
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Figure 3. Actuator fault estimate for the fault–free case (for t = 10, . . . , 30) with Theorem 1 (T1) and
Theorem 2 (T2), based on [39] for disturbance signal w1,k.
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Figure 4. Sensor fault estimate for the fault-free case (for t = 10, . . . , 30) with Theorem 1 (T1) and
Theorem 2 (T2) based on [39] for disturbance signal w1,k.
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Figure 5. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS1 (for t = 45, . . . , 65[s]) as well as the response for disturbance signal w1,k.
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Figure 6. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS1 (for t = 45, . . . , 65 [s]) as well as the response for disturbance signal w1,k.
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Figure 7. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS2 (for t = 45, . . . , 65 [s]) as well as the response for disturbance signal w1,k.
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Figure 8. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS2 (for t = 45, . . . , 65 [s]) as well as the response for disturbance signal w1,k.
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Figure 9. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS3 (for t = 45, . . . , 65 [s]) as well as the response for disturbance signal w1,k.
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Figure 10. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS3 (for t = 45, . . . , 65 [s]) as well as the response for disturbance signal w1,k.
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7.3. Analysis ofH2/H∞ Trade-off—Three-Tank System

Similarly for the DC servo-motor example, 20 values of µ1 and µ2 were selected from a
range between 1 and 20 to present the trade-off between ‖Ge f w1(z)‖∞ < µ1, ‖Ge f ε̃ (z)‖∞ < µ2,
‖Ge f w2(z)‖2 < γ1, and ‖Ge f w2(z)‖2 < γ2 for the three-tank system. For each value of µ1 and µ2,
the optimization problem (59) was solved under constraints. Figure 11 shows the evolution of γ1 and
γ2 for different µ1 and µ2. Finally, Table 2 contains the minimal values of µ1 and µ2 for which the
constraints (59) are satisfied. Thus, it is evident that this example also proves the superiority of the
proposed approach with respect to the comparative one.
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Figure 11. Trade-off between ‖Ge f w1 (z)‖∞ < µ1, ‖Ge f ε̃ (z)‖∞ < µ2, ‖Ge f w2 (z)‖2 < γ1, and
‖Ge f w2 (z)‖2 < γ2 for proposed Theorem 1 (T1) and Theorem 2 (T2) based on [39].

Table 2. The minimal values of µ1 and µ2 for which the constraints (59) are satisfied.

Proposed (T1) Hilhorst et al. (T2)

γ1 0.7658 0.7701
‖Ge f w2 (z)‖2 0.0079 0.0089

γ1 − ‖Ge f w2 (z)‖2 0.7579 0.7611

γ2 0.7658 0.7701
‖Ge f w2 (z)‖2 0.0251 0.0252

γ2 − ‖Ge f w2 (z)‖2 0.7406 0.7449

µ1 0.0700 0.7000
‖Ge f w1 (z)‖∞ 0.0088 0.0148

µ1 − ‖Ge f w1 (z)‖∞ 0.0611 0.6851

µ2 2.0000 4.0000
‖Ge f ε̃ (z)‖∞ 1.7528 1.9587

µ2 − ‖Ge f ε̃ (z)‖∞ 0.2471 2.0412

7.4. Simulation Case—Three-Tank System

In the simulation case, the input signal is chosen as a step signal with an amplitude of 0.0001
[m3/s]. The linear model along with all its parameters are derived from [41]. The initial conditions for
the system and the observer are:

x0 = [0, 0, 0]T , z0 = [0.02, 0.01, 0.05]T , f̂ a,0 = 0, f̂ s,0 = 0.
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The signal w1,k is shown in Figure 12. w2,k was chosen as a uniformly distributed random vector,
where each element takes values in the interval [−0.0001, 0.0001]. The estimator parameters calculated
for µ1 and µ2 are included in Table 2.

N =


−1.4333 0 0.0001 0.0001
0.0000 0.9973 0.0000 0.0000
0.0000 0.0025 0.9972 0.0000
0.0000 −0.0025 0.9971 0.0001

 , M =


5.5700

0
0
0

 , L =


1.2157 0.0000
0.0018 0.0000
0.0000 0.0000
0.0000 0.0000

 ,

T1 =


0.5000 0 0 0

0 1.0000 0 0
0 0 1.0000 0
0 0 −1.0000 0

 , T2 =

0.5000 0
0 0
0 0.00000 1.0000

 F =
[
0.2230 0.0000

]
,

N =


−1.3283 0 0.0000 0.0000
0.0000 0.9973 0.0000 0.0000
0.0000 0.0025 0.9972 0.0000
0.0000 −0.0025 −0.9974 −0.0002

 , M =


5.5700

0
0
0

 , L =


1.1633 0
0.0018 −0.0000
−0.0000 −0.0000
0.0000 0.0000

 ,

T1 =


0.5000 0 0 0

0 1.0000 0 0
0 0 1.0000 0
0 0 −1.0000 0

 , T2 =


0.5000 0

0 0
0 −0.0000
0 1.0000

 F =
[
0.2385 0.0000

]
,

for Theorem 1 and Theorem 2, respectively. For the purpose of further comparative study, the following
three-tank system fault scenarios (FS) were considered:

FS1

f a,k =

{
−0.0002 550 ≤ t ≤ 555,

0 otherwise.

f s,k =0

FS2

f a,k =0

f s,k =

{
−0.0003 550 ≤ t ≤ 555,

0 otherwise.

FS3

f a,k =

{
−0.0002 550 ≤ t ≤ 555,

0 otherwise.

f s,k =

{
−0.0003 550 ≤ t ≤ 555,

0 otherwise.

Analogously to the previous example, let us start an analysis with a fault-free case ( f s,k = 0,
f s,k = 0). Figures 13 and 14 show the response of the fault estimate to the disturbance signal w1,k.
It can be seen that the difference in rejecting w1,k between the observer designed using Theorem 1
and Theorem 2 is not as visible as in the first example. However, the response for an observer
designed using Theorem 1 has a smaller oscillation than for the one designed using Theorem 2. Next,
Figures 15–20 present the real values of the fault (solid red line) and its estimation obtained using
Theorem 1 (solid blue line) and Theorem 2 (dashed black line) for FS1–FS3. Additionally, the response
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to the disturbance signal w1,k at time t = 560, . . . , 565 [s] was included as well. It can be observed that
the response to w1,k is similar to a fault-free case. Furthermore, fault estimation is performed with a
good quality as well.
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Figure 12. Disturbance signal w1,k (left) (for t = 400, . . . , 700) and measurement noise signal w2,k
(right) (for t = 0, . . . , 10).
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Figure 13. Actuator fault estimate for fault-free case (for t = 490, . . . , 570) with Theorem 1 (T1) and
Theorem 2 (T2) based on [39] for disturbance signal w1,k.
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Figure 14. Sensor fault estimate for fault-free case (for t = 490, . . . , 570) with Theorem 1 (T1) and
Theorem 2 (T2) based on [39] for disturbance signal w1,k.
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Figure 15. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS1 (for t = 490, . . . , 570 [s]) as well as the response for disturbance signal w1,k.
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Figure 16. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS1 (for t = 540, . . . , 570 [s]) as well as the response for disturbance signal w1,k.
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Figure 17. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS2 (for t = 540, . . . , 570 [s]) as well as the response for disturbance signal w1,k.
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Figure 18. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS2 (for t = 540, . . . , 570 [s]) as well as the response for disturbance signal w1,k.
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Figure 19. Fault f a,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS3 (for t = 540, . . . , 570 [s]) as well as the response for disturbance signal w1,k.
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Figure 20. Fault f s,k (red line) and fault estimate obtained with Theorem 1 (T1) and Theorem 2 (T2)
based on [39] for FS3 (for t = 540, . . . , 570 [s]) as well as the response for disturbance signal w1,k.

8. Conclusions

The main research problem addressed in this paper was oriented toward developing an actuator
and sensor fault estimation capable of delivering fault estimates under various sources of uncertainty,
namely sensor measurement noise, process-external exogenous disturbances, as well as unknown fault
dynamics. Unlike the approaches presented in the literature, these were not treated in the same way
but analyzed separately in a tailored fashion. As a result, a complete design procedure was obtained
along with a suitable convergence analysis. The final part of the paper presents the performance of
the proposed approach using DC-motor and three-tank system benchmarks, as well as a comparative
study with an alternative strategy. The presented comparison clearly justifies the superiority of the
proposed scheme. Future research directions are oriented toward applying the proposed scheme
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within an integrated FTC framework. Another appealing research avenue pertains to extending the
proposed strategy toward a class of nonlinear systems.
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