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Abstract: This paper addresses the problem of interferometric noise reduction in Synthetic Aperture
Radar (SAR) interferometry based on sparse and redundant representations over a trained dictionary.
The idea is to use a Proximity-based K-SVD (ProK-SVD) algorithm on interferometric data for obtaining
a suitable dictionary, in order to extract the phase image content effectively. We implemented this
strategy on both simulated as well as real interferometric data for the validation of our approach.
For synthetic data, three different training dictionaries have been compared, namely, a dictionary
extracted from the data, a dictionary obtained by a uniform random distribution in [−π, π], and a
dictionary built from discrete cosine transform. Further, a similar strategy plan has been applied to
real interferograms. We used interferometric data of various SAR sensors, including low resolution
C-band ERS/ENVISAT, medium L-band ALOS, and high resolution X-band COSMO-SkyMed,
all over an area of Mt. Etna, Italy. Both on simulated and real interferometric phase images,
the proposed approach shows significant noise reduction within the fringe pattern, without any
considerable loss of useful information.

Keywords: SAR (Synthetic Aperture Radar) interferograms; dictionary learning; sparse representation;
ProK-SVD, proximity operator; l0-minimization; simulated data

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) [1–9] is a consolidated remote sensing technique
with broad applications in the field of Earth and environmental sciences. In the last two decades,
InSAR has been playing a significant role for measuring several geophysical quantities, including land
topography, surface deformations, land changes, water levels, ocean currents, soil moisture, glacier
dynamics and vegetation properties [10]. Basically, InSAR uses two coherent SAR images to form an
interferogram that can be acquired either from two different antennas on the same platform or from
different passes of the same antenna at different times. In general, SAR interferograms are affected
by several decorrelation effects, depending on different noise sources, which collectively produce
interferogram phase noise. Decorrelation stems from system noise, processing errors and other internal
and external factors (e.g., atmospheric fluctuations) [6,9,11]. In the last decade, several techniques have
been proposed in the literature for getting rid of the decorrelation effects in the interferometric phase
noise. Non-adaptive filtering methods, including the mean filtering technique proposed by Rosen [9],
are not so effective for InSAR interferograms. In fact the adoption of some fixed windows for filtering
can induce phase distortions due to the periodic character of interferograms not being considered.
Another well known filtering method is the adaptive noise filtering proposed by Lee [12]. This method
uses suitably selected windows, whose orientations better fit the fringes. Although it has an advantage
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over the previous non-adaptive filtering methods, it uses phase unwrapping before filtering, and phase
rewrapping after, resulting in potentially poor accuracy, and slow processing. Goldstein and Werner
proposed a frequency domain adaptive filter algorithm [7] that presents the limitation that for high
values of filter parameter α, a residual systematic phase trend appears, indicating a loss of resolution
in the filtered phase. Baran et al. [13] proposed a modification of Goldstein filter that makes the
parameter of the filter dependent on the interferogram coherence. In recent years, Feng et al. [14]
suggested a further modification of Goldstein filter in order to preserve fringe edges. Suo et al. [15]
designed a strategy that makes use of a coherence-adaptive window size to suppress the phase noise,
compensating the correlation effects induced by the terrain topography.

An interferogram typically exhibits structures on different scales due to varying fringe density.
Hence multiresolution techniques could be appropriate tools for SAR interferogram denoising.
Accordingly, López-Martínez and Fàbregas introduced a noise reduction algorithm in the complex
wavelet domain [16], further elaborated in [17]; Suksmono and Hirose [18] used a fifth order
complex-valued Markov random-field model and a residue-based adaptive multiresolution technique;
a non-local multiresolution method has been proposed in [19,20].

Recently, a new emerging technique named Compressive Sensing (CS) [21] has been extensively
applied in many applications of optical image processing. Unitary wavelet coefficients, leading to
shrinkage algorithm [22–26] are firstly used, and then, because of regular separable 1-D wavelets are
not well suited for handling images, curvelet [27], contourlet [28], wedgelet [29], bandlet [30], and the
steerable wavelet [31] were investigated. Further, introduction of Matching Pursuit (MP) [32] and
Basis Pursuit (BP) denoising [33] allowed to address the image denoising problem as a direct sparse
decomposition problem over redundant dictionaries [34]. The CS technique has also been used in
SAR imaging [35–37]. Several applications to object detection in SAR images are discussed in [38].
Yet, very few algorithms for InSAR denoising have been proposed, based on CS [39,40]. In this context,
we address the interferometric phase image denoising problem by solving the related noise-free phase
estimation problem, using an efficient technique, namely the K-Means Singular Values Decomposition
(henceforth K-SVD [34]), capitalizing on sparse representation over trained dictionary [41]. In addition
we introduce a proximity concept in applying K-SVD to image-patches, that generally improves its
performance at almost no cost.

When approaching a general inverse problem in image processing using the Bayesian approach,
an image prior is needed (spatial smoothness, low/max-entropy, or sparsity in some transform domain).
In our case, the prior is represented by the observation that the original phase image without noise
should be smooth within the fringes. The idea is trying to extract this data structure directly from
images; this corresponds to learning the dictionary from data themselves [30,42–44]. In this work,
we compare three options for initial dictionary selection: (1) building the dictionary using the discrete
cosine transform, (2) building the dictionary using patches on simulated data corrupted by additive
noise, and real InSAR phase images from different platforms for training, and (3) building a random
dictionary. The K-SVD algorithm [45,46] merges together training and denoising into one coherent and
iterative process [34]. The approach is based on handling small image patches [34,47] rearranged in a
1D array using a proximity concept in order to preserve the spatial correlation among adjacent pixels.
In particular in [47] this local approach has been used for turning a local Markov Random Field-based
prior into a global one. Following the same strategy, we obtain global and efficient denoising by using a
global image prior that forces sparsity over patches at every point of the image (with overlaps) [48–50].
This paper is accordingly organized as follows. Section 2 provides a general formulation of the
denoising problem in the context of SAR interferometric data, and describes the rationale of using
ProK-SVD approach, as well its practical implementation. Numerical experiments and discussion are
presented in Section 3; summary and conclusions follow in Section 4.
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2. The Proximity-Based K-SVD Methods for SAR Interferogram Denoising

This section introduces the theoretical framework of a Proximity-based K-SVD (ProK-SVD) algorithm
for denoising SAR interferometric data, relying on dictionary learning, sparse representations,
and clever proximity-driven rearrangement of the data.

2.1. Fundamental of Denoising Problem in Interferometry

To set the stage, let us start by considering one single SAR interferogram I, obtained from two
co-registered SAR acquisitions S1 and S2 in InSAR data processing. Let φ1 and φ2 represent the phase
information of the acquired images S1 and S2, such that:

I = S1 · S∗2 = |S1||S2|ej(φ1−φ2) = |S1||S2|ejφm (1)

where φm = φ1 − φ2 represents the interferometric phase [8,51]. In general, measurements of the
interferometric phase are both noisy (due to various decorrelation effects such as sensor noise, temporal
and geometrical fluctuations), and affected by undeterminate additive multiples of 2π (periodic
functions, wrapped phase). Consequently retrieving the noise free φm from noisy data is a very difficult
inverse problem [40]. Given a phase φ ∈ <, the corresponding wrapped interferometric phase φ2π can
be expressed as

φ2π = W(φ)

W : φ ∈ < → φ2π ∈ [−π, π )
(2)

where

φ2π = (φ mod 2π)− π (3)

and (a mod b) is the remainder of a/b. The main goal of the interferometric phase estimation problem
is to figure out the 2D phase map φ2π from the observed 2D map φz given by

φz = φ2π + ν (4)

where ν represents noise [1–9,52]. Our aim is evaluating an estimate φ̂2π of φ2π from φz, capitalizing
on the fact that the original noise-free phase image should be smooth within the fringes. We propose
here a modified K-SVD algorithm for interferometric phase denoising, named Proximity-based K-SVD
(ProK-SVD).

The conventional K-SVD algorithm has been originally formulated in connection with (digitized)
optical image denoising [34]. The semantic and structure of differential interferograms is quite different
and hence the performance of K-SVD denoising is not obvious, as discussed below.

2.2. The Proximity-Based K–SVD Method

For the sake of the casual reader we summarize here the basics of sparse representations, and the
rationale of the conventional K-SVD algorithm. Signal processing techniques for denoising problems
require that the chosen representation should efficiently separate signal and noise. Representing a
signal translates into the choice of a dictionary, a set of elementary signals or atoms [21]. Orthogonal
dictionaries (bases) have been widely used due to their mathematical simplicity and general
applicability. However, orthogonal dictionaries trade generality for compactness of representation.
This led to the development of new classes of (overcomplete) dictionaries, which allow to represent
specific classes of signal in more compact way. Let us consider the dictionary D = [d1d2 · · · dL] ∈ <N×L,
where the columns constitute the dictionary atoms, and L ≥ N. Representing a signal x ∈ <N , using
this dictionary, can follow of two alternative paths: either the analysis path, where the signal is
represented via its inner products with the atoms,
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γa = DTx (5)

or the synthesis path, where it is represented as a linear combination of the atoms,

X = Dγs (6)

In the general case (where the dictionary is not a basis), analysis and synthesis of a signal may
differ very much. If D is overcomplete, the family of representations satisfying (6) is actually infinitely
large and we can seek the most informative representation of the signal with respect to some cost
function C(γ):

γs = argmin
γ

C(γ) Subject to: x = Dγ (7)

In the present context, C(γ) will promote the sparsity of the representation. Then, the dictionary
is updated assuming known and fixed coefficients. Given a set of samples X = [x1x2, · · · xn],
the goal of sparse representation is to find a dictionary D and a sparse matrix Γ which minimize
the representation error,

argmin
D,Γ

= ‖X− DΓ‖2
F subject to: ‖γi‖0 ≤ T ∀i, (8)

where {γi} represents the columns of Γ , and the l0 sparsity measure ‖·‖0 counts the number
of non-zeros in the representation, and ‖·‖F is the Frobenius distance [32,46,47]. The resulting
optimization problem is combinatorial and highly non-convex. K-SVD [34] finds a numerical solution
to this optimization problem rather than using matrix inversion for dictionary update, changing
atom-by-atom via a simple and efficient process.

Applying the original K-SVD algorithm proposed by [34] to differential radar interferogram
denoising requires further modification of the algorithm.

Following a local approach in [34] and by using the efficient code developed by Rubinstein
in [53] modified for our purposes as we shall explain better later, the original two dimensional N × N
interferogram is reduced to a one dimensional array whose elements are patches of size n× n, with
n� N to be scanned sequentially, with partial overlap (see Figure 1 ), and local sparsification on each
patch is applied. Mathematically this can be described by

φ̂2π =

(
h

∑
i=1

argmin
[
φ̂2π(i)

]
)

(9)

where φ̂2π(i) for i = 1, . . . , h represents the sparsification of the ith patch viz.:

φ̂2π(i) = α̂(i)D̂(i) (10)

with a dictionary (matrix) of size D(i) ∈ <n2·k (with k� n2), and α̂(i) defined such that

α̂(i) = argmin
α
‖α‖0 Subject to: ‖D(i)α− φz(i)‖2

2 ≤ ε (11)

with φz(i) being the ith (noisy) patch. To set the patch dimension Q we estimate the number of principal
components of the original image. This latter is partitioned into a variable number of patches, and in
each patch the number of Principal Component Analysis (henceforth PCA) is computed. Remarkably,
irrespective of the partitioning, each patch can be considered as a realization of the stochastic process
characterizing the interferogram structure. To estimate the optimal PC-patch dimension we perform
an unsupervised training Principal Component Analysis on a simulated interferogram dataset shown
in Figure 2.
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(a)

(b)

Figure 1. Overlapping patches in Rubinstein K-SVD algorithm and related horizontal (a) and vertical
(b) shift.

Figure 2. Simulated 512 × 512 pixels interferogram split into 64 patches, 64 × 64 pixels each,
for PCA analysis.

The dataset consists of 64 blocks of 4096 elements each. The normalized mean square error
between the simulated noise-free data and its patched Q-components approximant for varying Q are
shown in Figure 3. The typical PCA behaviour is observed namely the presence of a knee in the curve
for Q ≈ 60. Accordingly, we will use 64 principal components to describe each block.
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Figure 3. Log-lin plot of normalized mean square error when approximating the noise-free data with
Q principal components.

The next step is to reduce each patch to a one dimensional array, as in [53]. However, instead
of scanning the patch in columns, appending columns one after another, in order to preserve spatial
correlation of the data, we introduce a proximity concept, assuming that proximity implies similarity.
Each patch is accordingly scanned as exemplified in Figure 4.
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Figure 3. Log-lin plot of normalized mean square error when approximating the noise-free data
with Q principal components.

v11 v12 v13

v21 v22 v23

v31 v32 v33

Figure 4. Proximity based ordering of sample 3× 3 patch matrix.

Figure 4. Proximity-based ordering of sample 3× 3 patch matrix.

We will show that this choice will give better performance than the K-SVD column-by-column
scanning. K-SVD is applied to each patch in two steps [54]: (1) a block-coordinate minimization
algorithm and (2) a search of optimal α̂i. Orthonormal matching pursuit [32,54] is used, selecting one
atom at a time, and stopping when the error ‖Dα− φz(i)‖2

2 goes below a fixed threshold. Given all α̂(i),
α̂ is updated. The block diagram of the whole processing chain of the proposed ProK-SVD algorithm
for SAR interferogram denoising is shown in Figure 5. An initial dictionary is selected to start the
process of phase denoising on a single wrapped interferogram from a stack of data. Next the ProK-SVD
method is applied in two steps, i.e., sparse representation and dictionary update. When the algorithm
meets the preset threshold T, the process stops and the denoised phase map is obtained.

In the next section numerical experiments on simulated as well as real data are described
and commented.
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Figure 5. Block diagram of ProK-SVD SAR interferogram denoising algorithm. In the first step an
unsupervised PCA analysis is implemented aimed at decomposing the original image into P patches
of size n× n. In the second step each patch Xk is re-arranged in a 1D array using proximity, an
initial dictionary D(0)

k is chosen, and K-SVD algorithm is run (up to a suitable maximum number
of iteration) to obtain a denoised version of the patch X̂k, and the related (optimal) dictionary Dk.
Finally, all denoised patches are re-assembled to form the denoised (full) interferogram X̂.

Figure 5. Block diagram of ProK-SVD Synthetic Aperture Radar (SAR) interferogram denoising
algorithm. In the first step an unsupervised PCA analysis is implemented aimed at decomposing the
original image into P patches of size n× n. In the second step each patch Xk is re-arranged into a 1D
array using proximity, an initial dictionary D(0)

k is chosen, and the K-SVD algorithm is run (up to a
suitable maximum number of iteration) to obtain a denoised version of the patch X̂k, and the related
(optimal) dictionary Dk. Finally, all denoised patches are re-assembled to form the denoised (full)
interferogram X̂.

3. Results and Discussion

We discuss here the performance of our ProK-SVD algorithm, using different simulated as well
as real interferometric data (provided by CNR-IREA: the ALOS and COSMO-SkyMed data in the
frame of the MED-SUV project (http://med-suv.eu/); the ENVISAT and ERS data in the frame
of the ASI, DCP and MIUR project ”A multidisciplinary study on the preparatory phases of
an earthquake“ (http://www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=545:
a-multidisciplinary-study-on-the-preparatory-phases-of-an-earthquake&Itemid=166).).

http://med-suv.eu/
http://www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=545:a-multidisciplinary-study-on-the-preparatory-phases-of-an-earthquake&Itemid=166
http://www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=545:a-multidisciplinary-study-on-the-preparatory-phases-of-an-earthquake&Itemid=166
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3.1. Simulated Data

For interferogram simulation, we follow the procedure described in [55], using two SAR
acquisitions of the same area, and a Digital Elevation Model (DEM). Specifically, we use a Shuttle
Radar Topography Mission (SRTM) DEM of three arcseconds (i.e., 90 m spatial resolution), and two
ERS-sensor data of the city of Rome, acquired on December 1st 1996 and on 9 June 1996. In Figure 6a
we show a 100× 100 close-up of the whole simulated 512× 512 interferogram.

In Figure 6b we added zero mean white Gaussian noise with a standard deviation of 0.5 to the
simulated fringe pattern. For simplicity we confine our investigation here to additive Gaussian noise,
but the proposed method does not rely on any specific assumption about the noise statistics.

(a) (b)

(c) (d)

Figure 6. Extracted 100 × 100 patch of simulated interferogram from ERS data of Rome (Italy):
(a) simulated noise-free interferogram (X); (b) simulated data corrupted by an additive white noise
with standard deviation equal to 0.5 (Y = X + ν); (c) denoised interferogram obtained by K-SVD (X̂);
(d) denoised interferogram obtained by ProK-SVD (X̂prox).

For producing Figure 6, the initial dictionaries D(0)
k were chosen as the columns of the Xk patch.

Figure 7 shows a close-up of Figure 6 comparing visually the denoising performance of K-SVD
and ProK-SVD.

The final dictionaries {Dk} are shown in Figure 8, together with some close-ups whereby the
effect of proximity can be qualitatively grasped.
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D
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D

(d)

Figure 7. Top: Extracted 100× 100 patch from Figure 6: (a) simulated fringe pattern (X); (b) noisy
interferogram with σν = 0.5; (c) denoised interferogram obtained by K-SVD; (d) denoised interferogram
obtained by ProK-SVD. Bottom: some close-ups.

(a)

(a)(a)

(a)

(b)

(b)(b)

(b)

Figure 8. Final update of dictionary, {D(k), k = 1 · · · , 256}, for ERS data of Rome (Italy) patched into
16× 16 patches, 64× 64 pixels each. (a) K-SVD and (b) ProK-SVD. Some blocks are highlighted to
show the effects of proximity.

For each (n× n) patch we may estimate the local Peak Signal-to-Noise Ratio (PSNRk) [56]

PSNRk = 20 · log10

[
max(Xk)√

MSEk

]
where MSEk =

1
n2 ∑ ‖ Xk − X̂k ‖2 (12)

Xk beeing the true and X̂k the estimated phase. The map of the (local) PSNRk for K-SVD and
ProK-SVD is displayed in Figure 9 for the simulated interferogram shown in Figure 6.
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(a) (b)

(c) (d)

Figure 9. Extracted 100 × 190 patch of a simulated interferogram: (a) simulated fringe pattern;
(b) simulated data corrupted by an additive white noise with standard deviation equal to 0.5; (c) Peak
Signal-to-Noise Ratio (PSNR) map for K-SVD; (d) PSNR map for ProK-SVD.

The related (empirical) distribution functions of the PSNRk for the K-SVD and ProK-SVD
denoised interferograms are shown in Figure 10. It is seen that proximity boosts the performance of
K-SVD in the range [5–10] dB.

0 5 10 15 20 25

0.5

0.6

0.7

0.8

0.9

1

PSNR (dB)

EC
D

F

Proximity
No Proximity

Figure 10. Empirical Cumulative Distribution Function of PSNR, Equation (12), for K-SVD denoised
simulated interferogram with and without proximity.

The average of the quantities (12) over all patches making up our test-image is given in Table 1.
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Table 1. Peak Signal-to-Noise Ratio (PSNR) and Mean Standard Error (MSE) metrics for noisy simulated
interferogram [ν = 0.5], denoised by K-SVD and ProK-SVD.

Noisy Interferogram Denoised Interferogram Denoised Interferogram

Y = X + ν

from K-SVD from ProK-SVD
X̂ X̂prox

PSNR(dB)
10.5138 11.5843

MSE(dB)
−2.6650 −3.7355

Overall, the proximity strategy helps extracting the structure of the original phase map in a more
faithful way. Accordingly, we will adopt the ProK-SVD in our further experiments on real data.

Different choices of the initial dictionaries D(0)
k are obviously possible. Specifically, we consider

two additional possible choices: an Overcomplete Discrete Cosine Transform (ODCT) dictionary, and a
Random Dictionary (RD).

The ODCT dictionary has a strong energy compaction property, tending to concentrate the signal
features in a few low-frequency components. The RD taken from a uniform distribution in the interval
[−π, π] provides a structure-free playground. The ODCT and RD do not depend on the content
and noise level of the image. The DD dictionary on the other hand is built from the noise corrupted
interferogram.

The performance of the above dictionaries for different noise levels is compared in Figure 11 for
the considered simulated interferogram in terms of the average (over patches) PSNR. It is seen that
the ODCT and RD behave almost equivalently better than the DD dictionary.

0.25 0.35 0.45 0.55 0.65 0.75 0.85
2

3

4

5

6

7

8

Noise Level

PS
N

R
(d

B)

Data-driven
ODCT
Random

Figure 11. Plot of PSNR (dB) vs. noise level (ν) for simulated data using three types of training
dictionaries in ProK-SVD.
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A visual comparison of the denoised interferograms obtained using the DD, ODCT, and RD
initial dictionaries, for various added noise levels, is shown in Figure 12. It is visually evident that
for low to moderate noise levels the random dictionary provides the best (smoothest, more faithful)
reconstruction. For any fixed dictionary the reconstruction becomes worse as the noise level is
increased, in particular loosing contrast.
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Figure 12. On top the original noisy-free map is shown. The second row displays the original phase
map corrupted by additive noise with given standard deviation. The subsequent rows describe the
reconstruction obtained using ProK-SVD for different initial dictionary D.

The choice of the dictionary has little impact on the number of iterations required in the K-SVD209

step of the algorithm, as illustrated in Fig. 13, in terms of the l2 reconstruction error in Eq. (12) versus210

the number of iterations.211

3.2. Real Data212

On the basis of the above, we finally illustrate the performance of ProK-SVD on real SAR213

interferometric data, using the RD initial dictionary.214

On purpose we use interferometric data pairs from various SAR platforms over the area of the215

Etna Volcano (Italy), namely archived data from the ERS, ENVISAT, ALOS and COSMO-SkyMed SAR216

sensors, with varying spatial and temporal baselines summarized in Table 2. Data having smaller217

Figure 12. On top the original noisy-free map is shown. The second row displays the original phase
map corrupted by additive noise with given standard deviation. The subsequent rows describe the
reconstruction obtained using ProK-SVD for different initial dictionary D.
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The choice of the dictionary has little impact on the number of iterations required in the K-SVD
step of the algorithm, as illustrated in Figure 13, in terms of the l2 reconstruction error in Equation (12)
versus the number of iterations.
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Figure 13. Iterative algorithm convergence: l2 norm of the Γ matrix coefficients (see Eq. 8) versus
number of iterations for three different chosen dictionaries: DD (blue), ODCT (red), RD (green)

spatio-temporal baseline, e.g. in our case COSMO-SkyMed and ENVISAT have lower interferometric218

noise. Conversely data having large spatial temporal baselines, i.e. ALOS and ERS have higher noise.219

Table 2. SAR interferometric data pairs of the Etna Volcano used for validation of ProK-SVD.

SENSORS COSMO-SkyMed ALOS ENVISAT ERS

Band X L C C
Spatial resolution [m] 3 10 30 30
1st acquisition [d/m/y] 25/11/2009 30/01/2008 15/09/2004 24/11/2004
2nd acquisition [d/m/y] 04/12/2009 01/05/2008 20/10/2004 07/06/2006
Perpendicular baseline [m] 49.9241 840.309 -19.0227 -197.872
Time interval [days] 10 122 35 545

As a first benchmark we consider Goldstein filtering [? ], widely used in the conventional SAR220
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Figure 13. Iterative algorithm convergence: l2 norm of the Γ matrix coefficients (see Equation (8))
versus number of iterations for three different chosen dictionaries: DD (blue), ODCT (red), RD (green).

3.2. Real Data

On the basis of the above, we finally illustrate the performance of ProK-SVD on real SAR
interferometric data, using the RD initial dictionary.

On purpose we use interferometric data pairs from various SAR platforms over the area of the
Etna Volcano (Italy), namely archived data from the ERS, ENVISAT, ALOS, and COSMO-SkyMed SAR
sensors, with varying spatial and temporal baselines summarized in Table 2. Data having smaller
spatio-temporal baseline, e.g., in our case COSMO-SkyMed and ENVISAT have lower interferometric
noise. Conversely data having large spatial temporal baselines, i.e., ALOS and ERS have higher noise.

Table 2. Synthetic Aperture Radar (SAR) interferometric data pairs of the Etna Volcano used for
validation of ProK-SVD.

SENSORS COSMO-SkyMed ALOS ENVISAT ERS

Band X L C C
Spatial resolution [m] 3 10 30 30
1st acquisition [d/m/y] 25/11/2009 30/01/2008 15/09/2004 24/11/2004
2nd acquisition [d/m/y] 04/12/2009 01/05/2008 20/10/2004 07/06/2006
Perpendicular baseline [m] 49.9241 840.309 −19.0227 −197.872
Time interval [days] 10 122 35 545

As a first benchmark we consider Goldstein filtering [7], widely used in the conventional SAR
denoising techniques, with the power factor α = 0.5 (As shown in Figure 4 of Baran et al. (2003),
the performance of the plain and modified Goldstein algorithm are comparable in the coherence
range [0.4, 0.8 ] for the chosen filter parameter α = 0.5), to denoise an ENVISAT interferogram over
the Etna Volcano. In Figure 14 the ProK-SVD results are visually compared to those obtained from
Goldstein technique.



Sensors 2019, 19, 2684 14 of 20
Version June 7, 2019 submitted to Sensors 17 of 21

(a)

(a)

(b)

(b)

(c)

(c)

Figure 14. Comparison among different filtering algorithms. Extracted 700 × 700 patch of
interferogram of ENVISAT SAR sensor over the Etna Volcano area. Top row :(a) original
interferogram, (b) Goldstein Filtering with filter parameter value equal to 0.5, (c) ProK-SVD ; bottom
row close-ups.

SDR = 10 log10

[
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∑i,j(Y(i, j)− X̂(i, j))2

]
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that represents the ratio of the energies of the noisy phase map and the energy of the (fiducial) noise228

removed by the de-noising process.229

In Fig. 15 we extend the comparison to other denoising techniques3. It is noted that the230

ProK-SVD entails minimum smoothing, and yields the higher SDR while producing effective231

denoising.232

3 In order to preserve phase circularity, the mean, median, and wavelet filters have been applied to the complex
interferogram and then the wrapped filtered phase has been extracted.

Figure 14. Comparison among different filtering algorithms. Extracted 700× 700 patch of interferogram
of ENVISAT SAR sensor over the Etna Volcano area. Top row: (a) original interferogram; (b) Goldstein
Filtering with filter parameter value equal to 0.5; (c) ProK-SVD. Bottom row close-ups.

Assessing the quality of image denoising algorithms in the case where no noise-free version is
available is an extensively studied (and still open) issue. Several quality metrics have been proposed
in the literature, as discussed e.g., in [57]. We adopt the signal-to-distorsion ratio (SDR), discussed,
e.g., in [58], defined as

SDR = 10 log10

[
∑i,j Y(i, j)2

∑i,j(Y(i, j)− X̂(i, j))2

]
(13)

that represents the ratio of the energies of the noisy phase map and the energy of the (fiducial) noise
removed by the de-noising process.

In Figure 15 we extend the comparison to other denoising techniques (in order to preserve phase
circularity, the mean, median, and wavelet filters have been applied to the complex interferogram and
then the wrapped filtered phase has been extracted). It is noted that the ProK-SVD entails minimum
smoothing, and yields a higher SDR while producing effective denoising.

In Table 3 the various denoising techniques are accordingly compared in terms of the average SDR.

Table 3. Signal-to-Distortion Ratio (SDR) values relevant to ProK-SVD, K-SVD, Goldstein filter
with parameter α = 0.5, non-local filter, wavelet filter, median filter, mean filter (ENVISAT SAR
sensor data-set).

ProK-SVD KSVD Goldstein non-Local Wavelet Median Mean

SDR [dB]

13.0450 12.9350 −2.8505 9.6538 3.9728 3.7970 3.4605

Figure 16 show the retrieved interferograms for ERS, ALOS, and COSMO-SkyMed data, with a
rectangular box marking a zoomed-in view of the area.
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Figure 15. Comparison among ProK-SVD and several denoising techniques: at the top extracted 600×
400 patch of the noisy interferogram with a phase cross section profile relevant to the A-B section.
The third row shows the results of the denoised process using ProK-SVD, Mean filter, Median Filter,
Wavelet Filter, and Non-Local filter. The fouth row displays the corresponding phase cross section
profiles. The last row presents the SDR maps for each technique.

Figure 15. Comparison among ProK-SVD and several denoising techniques: at the top extracted
600× 400 patch of the noisy interferogram with a phase cross section profile relevant to the A-B section.
The third row shows the results of the denoised process using ProK-SVD, Mean filter, Median Filter,
Wavelet Filter, and Non-Local filter. The fouth row displays the corresponding phase cross section
profiles. The last row presents the Signal-to-Distortion Ratio (SDR) maps for each technique.
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(c)

(c)

(d)

(d)

(e)

(e)

(f)

(f)

Figure 16. ProK-SVD denoised interferograms of several SAR sensors over the area of the Etna Volcano
(Italy). (a) ERS original interferogram, and zoomed view; (b) ERS denoised interferogram, and zoomed
view; (c) ALOS original interferogram, and zoomed view; (d) ALOS denoised interferogram,
and zoomed view; (e) COSMO-SkyMed original interferogram, and zoomed view; (f) COSMO-SkyMed
denoised interferogram, and zoomed view.
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All zoomed views display significant reduction of the noise level compared to the original data.
The ProK-SVD technique is seen to preserve effectively the local features within the fringe pattern
without any sensible loss of valuable information, and without introducing any artifacts.

This is further illustrated by the values of SDR collected in Table 4.

Table 4. SDR of retrieved SAR interferometric data-sets.

Serial Nr. Study Area Data SDR [dB]

1
Etna Volcano

COSMO-SkyMed 13.0617
2 ALOS 15.1970
3 ERS 15.1383

Summing up, the ProK-SVD approach performs well for all SAR sensors considered, in terms of
noise suppression and lack of artifacts.

4. Conclusions

In this paper we addressed the interferometric phase image denoising problem by solving the
sparse and redundant representations problem over a trained dictionary. The key new idea is to
apply a proximity-based modified K-SVD algorithm to the noisy interferograms so as to obtain both
a sparse representation and an updated dictionary together. This approach, remarkably, does not
require any fine tuning of the relevant parameters, nor any a priori information to work reliably.
We tested the proposed algorithm on both simulated and real SAR interferometric data, from low
resolution (ERS and ENVISAT), medium resolution (ALOS), and high resolution (COSMO-SkyMed)
data. We discussed the choice of the initial dictionaries, referring to three particular cases, namely,
random, ODCT and data-driven, and evaluated their performances on simulated data with additive
(Gaussian) noise with varying sigma values. The random dictionary was found to yield the best
performance. The proposed technique was capable of effectively retrieving the fringe pattern from the
noise interferograms, without introducing significant artifacts in a wide range of signal to noise ratios.

As far as computational complexity and burden are concerned, assuming a dictionary of
dimension N × L and T iterations (see Equation (8)), the ProK-SVD algorithm is dominated by the
K-SVD stage, requiring T2L + 2NL floating point operations, as demonstrated in [53]. We plan to
implement the algorithm using parallel (GPU) architectures for further optimization.
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